搜档网
当前位置:搜档网 › 厌氧塔计算手册

厌氧塔计算手册

厌氧塔计算手册
厌氧塔计算手册

1. 厌氧塔的设计计算

1.1 反应器结构尺寸设计计算

(1)

反应器的有效容积

设计容积负荷为

5.0 /( 3 / )

N v kgCOD m d

进出水 COD 浓度 C 0 2000( mg / L) , E=0.70

QC 0 E

3000 20 0.70

8400m

3

3

V=

5.0

,取为 8400 m

N v

式中 Q ——设计处理流量

m 3 / d

C 0——进出水 CO

D 浓度 kgCOD/

3

m

E ——去除率

N V ——容积负荷

(2)

反应器的形状和尺寸。

工程设计反应器 3 座,横截面积为圆形。

1) 反应器有效高为

h 17.0m 则

横截面积: S

V 有效

8400

=495(m 2 )

h

17.0

单池面积: S i S

495 165(m 2 )

n

3

2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。

设直径 D

15 m ,则高 h

D*1.2

15 * 1.2m 18 ,设计中取 h 18m

单池截面积: S i '

3.14 * ( D

)2 h

3.14 7.52 176.6( m 2 )

2

设计反应器总高 H 18m ,其中超高 1.0 m

单池总容积: V i

S i ' H ' 176.6 (18.0 1.0) 3000( m 3 )

单个反应器实际尺寸:

D H φ15m 18m

反应器总池面积: S S i ' n

176.6 3 529.8(m 2 )

反应器总容积: V

V 'i n 3000 3 9000(m 3 )

(3)水力停留时间( HRT)及水力负荷(V r) N v

t HRT V9000

72h Q

24

3000

V r Q30000.24[m3/( m2 .h)]

S24 176.63

根据参考文献,对于颗粒污泥,水力负荷

0.10.93/(2. ) 故符合要求。V r m m h

1.7.2三相分离器构造设计计算

(1)沉淀区设计

根据一般设计要求,水流在沉淀室内表面负荷率'

0.73/(2. ) 沉淀室底部进水

q m m h

口表面负荷一般小于 2.03

/(2. ) 。

m m h

本工程设计中,与短边平行,沿长边每池布置8 个集气罩,构成7 个分离单元,则每池设置 7 个三项分离器。

三项分离器长度: l ' b 16(m)

每个单元宽度: b'l

18 2.57(m) 77

沉淀区的沉淀面积即为反应器的水平面积即288 m2

沉淀区表面负荷率:Q i114.580.39

m 3 /(

m

2 . ) 1.0 2.0

m

3/(

m

2 . )

S288h h (2)回流缝设计

设上下三角形集气罩斜面水平夹角为 55°,取h3 1.4m

h3 1.4

0.98(m)

b1

tan 55.

tan

b2 b 2b1 3.0 2 0.98 1.04(m)

式中: b —单元三项分离器宽度,m;

b1—下三角形集气罩底的宽度,m;

b2—相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之一), m;

h3—下三角形集气罩的垂直高度,m;

设上下三角形集气罩斜面水平夹角为 55°,取h3 1.4m

h3 1.4

0.98(m)

b1

tan 55.

tan

b2 b 2b1 3.0 2 0.981.04(m)

式中: b —单元三项分离器宽度,m;

b1—下三角形集气罩底的宽度,m;

b

h1

h2

h4

h3

b1 b 2

图 4 三相分离器计算草图

b2—相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之一), m;

h3—下三角形集气罩的垂直高度,m;

下三角集气罩之间污泥回流缝中混合液的上升流速

a1nb2 l '7 1.04 16116.48(m2 )

v1

Q i114.58

0.98(m / h)

a1116.48

式中: v1—下三角形集气罩之间污泥回流缝中混合液的上升流速,m/h;

2

a1—下三角形集气罩回流缝总面积,m;

l '—反应器的宽度,即三项分离器的长度b,m;

n —反应器三项分离器的单元数;

为使回流缝水流稳定,固、液分离效果好,污泥回流顺利,一般v1 2m / h ,上三角集器罩下端与下三角斜面之间水平距离的回流缝中水流的流速。设b3CD0.3m

a2 2nb3l 2 7 0.3 16 67.2(m2 )

v2

Q i114.58

a21.7(m / h)

67.2

式中: v2—上三角集气罩下断语下三角集气罩斜面之间水平距离的回流缝中水流的流速,

m/h;

a2—上三角形集气罩回流缝总面积,2m;

b3—上三角形集气罩回流缝的宽度,m;

假设 a2为控制断面 A min,一般其面积不低于反应器面积的20%,v2就是v max,同时要满足: v1v2 (v max ) 2.0m / h

(3)气、液分离设计由上图 1 知:

CE CD sin 550.3 sin 550.24( m)

CB

CE0.24

0.42(m) sin 35sin 35

设 AB0.5m 则

h4( AB cos55.b

2) tan 55.(0.5 cos55.

1.04

) tan 55. 1.15(m) 22

校核气、液分离。如图 2 所示。假定气泡上升流速和水流速度不变,根据平行四边形法则,要使气泡分离不进入沉淀区的必要条件是:

v b AD BC

v a AB

AB

沿 AB 方向水流速度: Q i 687.5 / 6 3.72( m / h)

v a

0.24 16 2 7

CEB2N

式中: B —三项分离器长度, m ;

N

—每池三项分离器数量;

气泡上升速度: V b

g ( 1g ) d 2

18

式中: d —气泡直径, cm ;

1 —液体密度, g/cm 3

g —沼气密度, g/cm 3

—碰撞系数,取 0.95 ;

—废水动力黏滞系数,

g/(cm.s) ;

2

v —液体的运动黏滞系数, cm ;

设气泡直径 d

0.01cm ,设水温 30。C ,

1 1.03g / cm 3 , g 1.13 10 3 g / cm 3

v 0.010cm 2 / s ,

0.95 ;

0.0101 1.03 0.0104[ g /(cm.s)

由于废水动力黏滞系数值比净水的大,取

0.02 g /(cm.s)

则: V b

0.95 981 (1.03 1.13 10 3 ) 0.012

0.266(cm / s) 9.58(m / h)

18 0.02

BC 0.42

V b 9.58 2.58

AB

0.84

V A

3.72 0.5

V b

BC 0.01cm 的气泡

V a

可以脱去 d

AB

(4)三项分离器与

UASB 高度设计

三相分离区总高度:

h h 2 h 3 h 4 h 5

式中: h 2 —集气罩以上的覆盖水深,取

0.5m ;

h 3 1.4 1.71( m)

AF

DF AF BD AB 1.71 0.5 0.52 0.69(m)

h5 DF sin 55.0.69sin 55.0.56( m)

则: h 0.5 1.4 1.150.56 2.49( m)

UASB总高度 H=7.5m,沉淀区高 2.5m,污泥床高2.0m, 悬浮区高 2.5m,超高 0.5m。

1.7.3布水系统的设计计算

反应器布水点数量设置预处理流量、进水浓度,容积负荷等因素有关,有资料知,颗粒

污泥

N v 4/(3 . ) 每个布水点服务2, 出水流速2-5m/s ,配水中心距池底一般

2-5m

kgCOD m d

为20-25cm。

(1)配水系统:

配水系统形式采用多管多孔配水方式,每个反应器设 1 根 D=100mm的总水管, 16 根d=50mm的支水管。支管分别位于总水管两侧,同侧每根只管之间的中心距为 2.0m,配水孔径取15mm 孔距2.0m,每根水管有3 个配水孔,每个孔的服务面积 2.0 1.67 3.34(m2 )孔口向下。

(2)布水孔孔径的计算:

流速 u

4Q i

=

4687.5 / 6

4.05(m / s) 3600D

2

3.14

2

36000.1

布水孔 3 1648 个,出水流速为 u 2.1m / s ,则孔径为:

d

114.58

10.03(mm) 取15mm 3600 3.1448 2.1

本装置采用连续进料方式,布水口向下,有利于避免管口堵塞,而且由于UASB反应器底部反射散布作用,有利于布水均匀,为了污泥和废水之间的接触,减少底部进水管的堵塞,建议进水点距反应底部200~300mm,本工程设计采用布水管离UASB底部 200mm处。布水管设置在距UASB反应器底部200mm 处。

1.7.4排泥系统的设计计算

( 1) UASB 反应器中污泥总量计算

一般UASB 污泥床主要由沉降性能良好的厌氧污泥组成,平均浓度为20VSS / L ,则UASB反应器中污泥总量:

G V C9818 20 196360(kg / d)196.36(t / d )

厌氧生物处理污泥产量取0.08kgMLVSS / kgCOD

剩余污泥量的确定与每天去除的有机物量有关,当设有相关的动力学常数时,可

根据经验数据确定,一般情况下,可按每去除1kgCOD产生 0.05~0.10kgVSS 计算,本工程取0.08kgVSS / kgCOD

流量 Q 687.5m3 / h ,进水COD浓度 C05600(mg / l ) 5.6( kg / m3 ) ,COD去除率E 85% ,则

1) UASB反应器的总产泥量

x Q C0 E 0.08 687.5 24 5.6 0.856283.2(kgMLVSS/ d )

2)不同试验规模下MLVSS

是不同的,因为规模越大,被处理的废水含无机杂质越多,MLSS

因此取 MLVSS0.8,则

MLSS

6283.2

7854(kgMLSS / d)

x

0.8

单池产泥 x i

x 7854

1309(kgMLSS / d ) 66

3)污泥含水率98%,当污泥含水率〉95%时,取s1000(kg / m3)

则污泥产量: W s

10007854392.7(m3 / d) (198%)

单池排泥量: W si392.765.45( m3 / d )

6

4)污泥龄

G196360

c25.0(d )

x7854

1.7.5排泥系统的设计

在距 UASB反应器底部 100cm和 200cm 高处个设置两个排泥口,共 4 个排泥口。排泥时由污泥泵从排泥管强排。反应器每天排泥一次,各池的污泥由污泥泵抽入集泥井中,排泥管选钢管 DN150mm。

由计算所得污泥量选择污泥泵,型号为:WQK25— 17— 4 污泥泵,

3

;扬程: H=17m;电机功率: P=4Kw;数量: 3 台;

主要性能:流量: Q=25m/h

用 2 台泵同时给两组反应器排泥,设每天排泥一次

1.7.6出水系统设计计算

出水系统的作用是把沉淀区液面的澄清水均匀的收集并排出,出水是否均匀对处理效果有很大的影响且形式与三向分离器及沉淀区设计有关。

( 1)出水槽设计

对于每个反应池有7 个单元三项分离器,出水槽共有7 条,槽宽 0.2m ( 2)单个反应器流量:

q i Q i114.580.032( m3/ s)

36003600

( 3)设出水槽槽口附近水流速度为0.3

m / s

q i0.032

则槽口附近水深

770.0762(m) u a 0.30.2

取槽口附近槽深为0.20m,出水槽坡度为0.01 ,出水槽尺寸:10 m0.2m 0.2m ,出水槽数量为7 座。

( 4)溢流堰设计

出水溢流堰共有17 条(7 2 ),每条长10 m。设计 90°三角堰,堰高 50 mm,堰口宽 100 mm,则堰口水面宽50 mm。

每个 UASB反应器处理水量31.8 L / s,查得溢流负荷为1 2L /( m.s)

设计溢流负荷为 f 1.8L /(m.s) ,则溢流堰上水面总长为:

q i31.8

L17.67(m)

f 1.8

L17.67

353 个,取354 个

三角堰数: n

50 103

b

每条溢流堰三角堰数:354

35.4 个,取为36 个10

一个溢流堰上共有36 个 100mm的堰口

堰上水头校核

每个堰处流率:q q i17.67 10 3 4.99 105 (m/ )s

n354

按90°三角堰计算公式:q 1.43h2.5

则堰上水头:h q)0.4(4.99 10 5) 0.40.0164( )

(m

1.7.7出水渠设计计算

UASB反应器沿长边设一条矩形出水渠,7 条出水槽的出水流至此出水渠,设出水渠宽

0.3m,坡度 0.001 ,出水渠渠口附近水流速度为0.2m/s 。

q i17.6710 3

0.295(m)

渠口附近水深:

0.30.2

u a

以出水槽槽口为基准计算,出水渠渠深:0.20.2950.4950.5( m)

出水渠渠口最远的出水槽到渠口的距离为:16.6( m)

出水渠长为:16.6+0.1=16.7( m)

出水渠尺寸: 16.6m 0.50m0.30 m

向渠口坡度为:0.001

1.7.8UASB 排水管设计

Q=17.67L/s, 选用 D=200 mm 的钢管排水,充满度为0.6 ,设计坡度为0.001 ,管内水流速度为v=0.14m/s

1.7.9沼气收集系统设计计算

(1)沼气产量计算

1)沼气主要产生于厌氧阶段,设计产气率取0.4m3 / kgCOD

总产气量: G QC0 E0.416500 5.6 0.85 31416( m3 / d )

则单个 UASB反应器产气量:G i G314165236( m3/ d )

66

2)集气管:每个集气罩的沼气用一根集气管收集,单个池子共有13 根集气管,每根集气管内最大流量5236 4.66 10 3 ( m3 / s)

24360013

根据资料,集气室沼气出气管最小直径d=100mm本设计中取 100mm,结构图 5 如下:

3 )沼气主管:每池 13 根集气管,选通到一根单池主管然后再汇入两池沼气主管,采用钢管,单池沼气主管道坡度为0.5%。

则单池沼气主管内最大气流量:q i52360.061(m3 /)

3600s ,

24 D 150mm

充满度设计值为0.8 。则流速:

0.0612

1.08(m / s) v

0.1520.8

3.14

4)管内最大气流量:314160.182(m3 /)

q

24

36002s

0.1824

取 D= 500mm;充满度 0.6;流速 v=v 1.5m / s

0.520.6

DN100

图 5 集气管结构示意图

1.7.10水封罐设计

水封罐主要是用来控制三项分离器的集气室中气、液两相界面高度的,因为当液面太

高或波动时浮渣或浮沫可能会引起出气管的堵塞或使气体部分进入沉降室,同时兼有隔绝和排除冷凝水作用,每一反应器配一水封罐。

水封高度取H=H1H0

式中 H 0-反应器至储气罐的压头损失和储气罐的压头

为保证安全取储气罐内压头,集气罩中出气气压最大H 1取2m H 2 O ,储气罐内的压强H 0为400mm H 2O ,则H=2-0.4=1.6m

取水封高度为 2.5m, 直径为 1500mm,进水管、出气管各一根,D=200mm.

进水管、放空管各一根,D=50mm,并设液面计。

气水分离器起到对沼气高燥的作用,选用500mm H 1800mm 钢制气水分离器4个,气水分离器中预装钢丝填料,在气水分离器前设置过滤器以净化沼气,在分离器出气管上装设流量计及压力表。

1.7.11沼气柜容积确定

由上述计算知该处理中日产沼气31416 m3=1309 m3/ h ,则沼气柜容积应为3h产气量的体积来确定,即V g qt 13093 3927(m3 ) ,选用 3 座沼气柜,则每座沼气柜容

积为: 3927/3=1309m3。

设计选用 800 钢板水槽内导轨湿式贮气柜,尺寸为:8000 mm H 8000mm

1.7.12UASB 的其他设计考虑

(1)取样管设计

在池壁高度上设置若干个取样管,用以采取反应器内的污泥样,以随时掌握污泥在高度

方向上的浓度分布情况,在距反应器底 1.1~1.2m位置,沿池壁高度上设置 4 根,沿反应器

高度方向各管相距 0.8m,水平方向各管相距 2.0m。取样管选用 DN100mm的钢管,取样口设于距地面 1.1m 处,配球阀取样。

(2)检修

1 )人孔

为便于检修,在UASB反应器距地坪 1.0m 处设置600mm 人孔一个2)风

为防治部分容重过大的沼气在UASB反应器内聚集,影响检修和发生危险,检修时可向 UASB反应器中通入压缩空气,因此在UASB一侧预埋压缩空气管(由鼓风机房引来)3)采光

为保证检修时采光,除采用临时灯光外,不设UASB预盖。

(3)防腐措施

厌氧反应器腐蚀比较严重的地方是反应器的上部,此处无论是钢材或是水泥都会被损坏,

因此, UASB反应器应重点进行顶部的防腐处理。在水平面以下,溶解的CO2会发生腐蚀,水泥中的 CaO 会因为碳酸的存在而溶解。沉降斜面也会腐蚀,为了延长反应器的使用寿命,

反应器的防腐措施是必不可少的。本次设计中,反应器上部2m以上池壁用玻璃钢防腐,三

相分离器 - 所有裸露的碳钢部位用玻璃钢防腐。

QTZ40塔吊基础计算手册

QTZ40塔吊基础计算书 博业大厦工程;属于框架结构;地上21层;地下2层;建筑高度:87.9m;总建筑面积:89800.00平方米;建设单位:内蒙古博业房地产开发有限公司;设计单位::内蒙古筑友建筑设计咨询有限责任公司;监理单位:内蒙古鸿元监理有限公司;施工单位:南通华新建工集团有限公司。 本工程QTZ40塔吊基础为十字梁基础,折合成矩形基础的边长为4.5m。按矩形基础计算。 一、参数信息 1. η η1--局部荷载或集中反力作用面积形状的影响系数; η2--临界截面周长与板截面有效高度之比的影响系数; βh--截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm时,取βh=0.9, 其间按线性内插法取用; ft--混凝土轴心抗拉强度设计值,取16.70MPa; σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值 宜控制在1.0-3.5N/mm2范围内,取2500.00; u m --临界截面的周长:距离局部荷载或集中反力作用面积周边h o /2处板垂直截面的

最不利周长;这里取(塔身宽度+h o)×4=9.20m; h --截面有效高度,取两个配筋方向的截面有效高度的平均值; o βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜 大于4;当βs<2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2; αs--板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱, 取αs=20.塔吊计算都按照中性柱取值,取αs=40。 计算方案:当F取塔吊基础对基脚的最大压力,将h o1从0.8m开始,每增加0.01m, 至到满足上式,解出一个h o1;当F取塔吊基础对基脚的最大拔力时,同理,解出一个h o2,最 后 2. G γm M。 三、塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算简图: 当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心矩较大时的基础设计值计算公式: 式中F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=304.30kN;

高程布置参考—给水处理厂课程设计计算手册

给水处理厂课程设计计算书 12.高程布置 为了配合平面布置,我们首先应根据下表估计各构筑物之间连接管渠的大小及长度大致水头损失。然后在平面布置确定后,按水力学公式逐步计算各构筑物之间的水 构筑物 沉淀池~滤池0.3~0.5 快滤池内 2.0~3.0 虹吸、无阀滤池 1.5~2.0 滤池到清水池0.3~0.5 1.3.4高程布置设计计算

1.3.4.1水处理构筑物的高程布置设计计算 1.水头损失计算 在处理工艺流程中,各构筑物之间水流应为重力流。两构筑物之间水面高差即为流程中的水头损失,包括构筑物本身、连接管道、计量设备等水头损失在内。水头损失应通过计算确定,并留有 余地. (1)处理构筑物水头损失 处理构筑物中的水头损失与构筑物的型式和构造有关,具体根据设计手册第3册表15-13 g ——重力加速度,2/m s 。 ① 配水井至絮凝池连接管线水头损失 a )沿程水头损失 配水井至絮凝池连接管采用800DN 钢管,管长15l m =。 考虑浑水的因素0.015n =,按0.013n =查设计手册第1册水力计算表得 1.8i =‰,换算成相当 于0.015n =时的i : 浑水管长15m 算得沿程损失为:

b)局部水头损失 管路中,进口1个,局部阻力系数 10.50 ξ=;急转弯管1个, 20.90 ξ=;闸阀1个, 30.06 ξ=; 90o弯头1个, 41.05 ξ= ;出口1个,局部阻力系数 5 0.04 ξ=,则局部阻力系数总计为: 管内流速 1.11/ v m s =,则管路局部水头损失为: c)总水头损失 ②絮凝池至沉淀池 絮凝池与沉淀池合建,其损失取0.1m。 ③沉淀池至V a)沿程水头损失 沉淀池至V型滤池连接管采用900 DN钢管,管长l= 21.052 2.1 ξ=?=; 闸阀2 43.0 ξ=;出口1个,V,按0.013 n=查设计手册第1册水力计算表得 2.4 i=‰,则V型滤池至清水池连接管沿程损失为: b)局部水头损失 管路中,进口1个,局部阻力系数 10.50 ξ=;90?弯头3个,局部阻力系数 21.053 3.15 ξ=?=; 闸阀1个, 30.06 ξ=;出口1个,局部阻力系数 41.00 ξ=,则局部阻力系数总计为:管内流速 1.0/ v m s =,则管路局部水头损失为: c)总水头损失

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

塔的水力学计算手册

塔的水力学计算手册

1.目的与适用范围 (1) 2.塔设备特性 (1) 3.名词术语和定义 (1) 4.浮阀/筛孔板式塔盘的设计 (1) 5.填料塔的设计 (1)

1.目的与适用范围 为提高工艺工程师的设计质量,推广计算机应用而编写本手册。 本手册是针对气液传质塔设备中的普遍性问题而编写。对于某些具体塔设备的数据(比如:某生产流程中针对某塔设备的板效率而采用的计算关联式,或者对于某吸收填料塔的传质单元高度或等板高度而采用的具体计算公式)则未予收入。本设计手册以应用为主,主要是指导性的计算方法和步骤,并配合相应的计算程序,具体公式及理论推阐可参考有关文献。 2.塔设备特性 作为气(汽)、液两相传质用的塔设备,首先必须能使气(汽)、液两相得到充分的接触,以得到较高的传质分离效率。 此外,塔设备还应具有以下一些特点: (1)当气(汽)、液处理量过大(超过设计值)时,仍不致于发生大量的雾 沫挟带或液泛等影响正常操作的现象。 (2)当操作波动(设计值的50%~120%)较大时,仍能维持在较高的传 质效率下稳定操作,并具有长期连续操作所必须具备的可靠性。 (3)塔压力降尽量小。 (4)结构简单、耗材少、制造和安装容易。 (5)耐腐蚀、不易堵塞。 (6)塔内的滞留液量要小。 3.名词术语和定义 3.1 塔径(tower diameter),D T 塔筒体内壁直径,见图3.1-(a)。 3.2 板间距(tray spacing),H T 塔内相邻两层塔盘间的距离,见图3.1-(a)。 3.3 降液管(downcomer),DC 各层塔盘之间专供液相流体通过的组件,单溢流型塔盘为侧降液管,双溢流型塔盘有侧降液管和中央降液管,三或多溢流型塔盘有侧降液管、偏侧降液管、偏中央降液管及中央降液管。 3.4 降液管顶部宽度(DC top width),Wd 弓形降液管面积的弦高。掠堰另有算法,见图3.1-(a),-(b)。 3.5 降液管底间隙(DC clearance),ho 降液管底部边缘至塔盘(或受液盘)之间的距离,见图3.1-(a)。 3.6 溢流堰高度(weir height),hw 降液管顶部边缘高出塔板的距离,见图3.1-(a)。 3.7 总的塔盘横截面积(total tower cross-section area),A T

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

工艺专业塔器水力学计算设计导则

1 塔器设计概述 1.1 石油化工装置中塔器占有很大的比重。几乎每种工艺流程都存在蒸馏或吸收等分离单元过程,因此塔器设计至关重要。往往塔器设计的优劣,决定着装置的先进性和经济性,必须给予重视。 1.2 塔器设计与工艺流程设计有着非常密切的关系,亦即塔器的选型和水力学计算与工艺流程的设计计算是结合在一起的。有时塔器设计影响着分离流程和操作条件的选择。例如减小蒸馏塔的回流比,能降低能耗,但塔板数增加,对塔器讲就是减小塔径和增加塔高,其中必有一个最经济条件的选择。又如真空塔或对釜温有要求的蒸馏塔均对压降要求较严,需要选择压降低的板式塔或填料塔,在塔器水力学计算后,压降数据要返回工艺作釜温核算。 1.3 一般工艺流程基本确定后,进行塔器的选型、设计等工作。塔器设计涉及到工艺、化学工程、设备、仪表、配管等专业。化学工程专业的任务及与各专业间关系另有说明。见化学工程专业工作手册H-P0101-96、H-P0301-96。 1.4 随着石油化工和科技的迅猛发展,蒸馏塔从一般的一股进料、二股产品的常规塔发展为多股进料、多侧线,有中间换热的复杂塔。要求塔的生产能力大、效率高、塔板数多,即大塔径、多程数、高效、低压降等,对塔器设计提出了更高的要求,并推动了塔器设计工作的发展。 1.5 近年来电子计算机的普及和发展,为工艺与塔器设计提供了有力的工具。我们可应用PROCESS或PRO/Ⅱ等工艺流程模拟软件进行计算,得到塔的最大和最小汽液负荷、密度等数据,以便进行分段的塔的水力学计算,使工艺和塔的水力学计算能同步进行,并作多方案比较,求得最佳设计。 1.6 设计中主要考虑的问题 1.6.1 确定工艺流程(尤其是分离流程) 通过工艺流程模拟电算,选定最佳切割方案,其中包括多股进料、侧线采出、进料状态和位置等方面的选择。 1.6.2 塔压的设定

厌氧塔计算手册

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1)反应器的有效容积 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(20000L mg C =,E= V= 3084000 .570 .0203000m N E QC v =??=,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3m E ——去除率 N V ——容积负荷 (2)反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1)反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2)单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ

反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?= (3)水力停留时间(HRT )及水力负荷(r V )v N 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.023'h m m q <沉淀室底部进水口表面负荷一般小于)./(23h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 18 7'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58 .1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流 缝之一),m ; 3h —下三角形集气罩的垂直高度,m ; 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13=

流体力学计算题

水银 题1图 高程为9.14m 时压力表G 的读数。 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?- ==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 l d Q h G B A 空 气 石 油 甘 油 7.623.66 1.52 9.14m 1 1

2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。 解题思路:(1)水平分力: l H H p p p x )(2 12 22121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

厌氧塔计算手册范本

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V=3084000 .570.0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002m h V S =有效 == 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 (*14.3222' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室表面负荷率)./(7.02 3'h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率: )./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan .31m h b ===α )(04.198.020.3212m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ;

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

理正岩土使用手册-水力学

第一章 功能概述 理正工程水力学计算软件包含有五个计算内容:倒虹吸水力学计算、渠道水力学计算、水闸水力学计算、隧洞水力学计算和消能工水力学计算。 倒虹吸水力学计算模块可计算倒虹吸的过水能力、设计倒虹吸管径; 渠道水力学计算模块含有清水渠道均匀流的水力计算、清水渠道非均匀流的水力计算和挟沙水流渠道的水力计算; 水闸水力学计算模块适用于无坎宽顶堰、有坎宽顶堰、WES实用堰上的平板和弧形闸门,可计算水闸的泄流能力、设计闸孔宽度和确定闸门的开启度; 水工隧洞水力学计算模块适用于矩形、圆形、拱形断面隧洞的水力设计,对无压隧洞可计算洞的过流能力和设计断面尺寸,半有压隧洞可校核隧洞的过流能力,对于有压隧洞可计算隧洞在不同水位、不同闸门开度下的泄流量,并可在已知过流量条件下校核上游水位,还可绘制出总水头线和压坡线,形象的显示洞身各点有无负压; 消能工水力学计算模块适用于底流式消能工和挑流式消能工的水力设计。底流式消能工中包括下挖式消力池、突槛式消力池(消力墙)和综合式消力池三种基本型式,可进行消力池尺寸设计计算和校核消能能力。挑流式消能工可进行连续式挑流鼻坎的水力计算。 五个计算模块最后都给出计算的图形结果、文字结果及图文并茂的计算书。 第二章 快速操作指南 2.1 操作流程 理正工程水力学计算软件的操作流程如图2.1-1,每一步骤都有相对应的菜单操作。 图2.1-1 操作流程 2.2 快速操作指南

2.2.1 选择工作路径 设置工作路径,既可以调入已有的工作目录,也可在输入框中键入新的工作目录,后面操作中生成的所有文件(包括工程数据及计算书等)均保存在设置的工作目录下。 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某单个计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。 2.2.2 增加计算项目 工程水力学计算软件包含有五个计算内容:倒虹吸水力学计算、渠道水力学计算、水闸水力学计算、隧洞水力学计算和消能工水力学计算。用户可根据需要选择。 图2.2-2 当选好一个计算项目后,点击【工程操作】菜单中的“增加项目”或“增”按钮来新增一个计算项目(以水闸水力学计算为例)。

IC厌氧塔

产品描述: 一简介 IC反应器中文名内循环厌氧反应器,由两个UASB反应器上下叠加串联构成,高度可达16-25m,高径比一般为4-8,由5个基本部分组成:混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。其内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等结构组 成。 二工作原理 经过调节pH和温度的生产废水首先进入反应器底部的混合区,并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD 在此处被降解,产生大量沼气。沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器,沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的倍。经膨胀床处理后的废水除一部分参与内循环外,其余污水通过一级三相分离器后,进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以精处理区的COD负荷较低,产气量也较小。该处产生的沼气由二级三相分离器收集,通过集气管进入气液分离器并被导出处理系统。经过精处理区处理后的废水经二级三相分离器作用后,上清液 经出水区排走,颗粒污泥则返回精处理区污泥床。 三选型、选材及尺寸(IC实验室选型) 1、有机玻璃IC厌氧反应器有效容积为25L,底边周长15cm,高120cm。其优点为外观结构干净漂亮;内部三相分离器、布水器、上下流管道等结构清晰可见;外附保温层保障了系统在合适的温度下自动运行; 该产品适用于学校、实验室小试模拟教学使用。 2、钢结构IC厌氧反应器为Q235碳钢焊制主体,内衬双层玻璃钢防腐层,内部管道喷双层环氧漆防腐,保障设备正常运行过程中不被腐蚀。该设备有效容积200L,底面直径40cm,高200cm,净重150kg。其优点为更接近于工程实际,抗压强度高,温度适应范围广,适用于科研单位、工地现场中试模拟运行。 四订货须知 1、用户应注明设备的材质及防腐要求。 2、用户应提供详细的水质化验单以便于我公司计算反 应器各部件的尺寸。 3、若用户有详细的加工图纸,可按用户要求进行生产。 4、可根据用户提出的具体要求进行设计制造。 天津国韵生物科技的限公司绍兴女儿儿酒有限公司山西 长冶金泽生化有限公司等 厌氧塔是本公司承接,效果很好~! 联系电话:

ABR、UASB、AO系统设计计算书

ABR 、UASB 、A/O 系统设计计算书 (1)ABR 厌氧池 主要设计参数: 厌氧池设置成2组并联,每组共6口串联。 配套污泥收集池1座,现浇半地下式钢砼结构。收集厌氧排出的剩余污泥,池内设 置污泥泵、泵提升装置及泵自控装置。 构筑物尺寸: 红泥塑料厌氧池:1-4口:L 1×B 1×H 1 = 4.5×6.9×6.5m ; 5-6口:L 1×B 1×H 2 = 4.5×6.9×6.0m , (厌氧池平均水深H 平均=5.8m ); 污泥收集池:L 2×B 2×H 3 = 2.5×1.2×4.2m ,(有效水深H 3有效 = 3.7m ); 水力停留时间(HRT ): d Q H B L Q V HRT 4.5400 8 .59.65.4121211≈???=??== 平均总有效; 厌氧池容积负荷:() d m kgCOD V C Q S cr i V ?=?=?= 3/25.12160 75 .6400总有效 S v <1.5kgCOD cr /(m 3·d) 符合设计要求; 式中:L 1、B 1、H 1、H 2、L 2、B 2、H 3——分别表示构筑物长度、宽度及深度,m ; Q —— 设计污水数量,400m 3/d ; 12 —— 表示12口厌氧池; S v —— 厌氧池容积负荷,kgCOD cr /(m 3·d) ; C i —— 厌氧池进水COD cr ,6.75kg/m 3; V 总有效 —— 厌氧池总有效容积,2160m 3。 构筑物数量:第一级与第二级合建,共1座; 厌氧池单口宽度4.5m ,下流区与上流区宽度比取4:1,考虑施工方便,下流区宽度 取0.9m ,上流区宽度3.6m 。

厌氧塔的防雷设计

厌氧塔的防雷设计 1.1接闪器的设计 厌氧塔简称IC 塔,是污水处理中的一个成品工艺设备,整体设备安装在厌氧反应器(IC 塔内),窜出屋面,IC 塔塔是一个全钢材制的距地标高为28.3m ,外直径为16m ,厚度为10mm 的圆形罐体,顶部还有4个圆形的小罐体,距地标高为31.25m ,直径为2.8m (见图1)。 鉴于厌氧塔的高度,在实际运用中,也相当于一个巨大的引雷器,需要设置避雷针保护一定半径的建筑物,而在IC 塔上的小罐体也需要防雷装置的保护,为了使其免受直击雷得破坏,根据《建筑物防雷规范》(GB55057-94 2000年版),进行了避雷针的设计和计算,设计方案见图。2 IC 塔的直径D=16m ,IC 塔的相对地面高度为28.3m ,圆形小罐体相对地面高度为32.15m ,直径为2.8m 。根据上述数据,用滚球法计算避雷针的高度: h 0=2)2/3(2D hr +h-hr (1) 式中: h0──保护范围的最低高度(圆形小罐体高度为3.85m )

D3──对角两避雷针水平距离(按规范规定,避雷针与被保护物间最小距离为3m,本设计为16m) h──避雷针的高度 hr──滚球半径(取60m) 将上述数据代入公式(1)中,经计算h=4.39m,因此设计避雷针的高度为5m。根据图集,由厂家根据设计结果制作自制的避雷针并进行现场安装。自制避雷针制作安装制作图可参见《建筑物防雷设施安装》99D501-1 避雷针底部与厌氧塔进行钢壁进行热镀锌可靠焊接,使其成为一体。 1.2下引线的设计 利用厌氧塔塔壁从上至下为均匀罐体的特点,因此把它作为下引线,由于塔壁厚度为10mm,根据规范规定,符合防雷设计要求。 1.3接地系统的设计 接地系统是避雷系统中重要的环节之一,不管是直击雷、感应雷和其他形式的雷电,最终都是把雷电引入大地,使之与大地的异种电荷中和。因此没有合理良好的接地装置,避雷是不可靠的。 利用厌氧塔基础中预埋地脚螺栓作为垂直接地级,基础中上下两层钢筋与地脚螺栓焊接在一起可形成地网,在厌氧塔基础上引出4个预留接地铁,每一个预留接地体采用2根40╳4镀锌扁钢与共同接地体可靠焊接,使其处于同一电位。 该工程采用总厂区共同接地的形式,各个单体接地系统均引出2根40╳4镀锌扁钢,与厌氧塔操作间地网可靠焊接,使总体处于同一等电位。 由于电力、电线线路不能直接接到地线上,在总进线处设置电涌保护器(SPD)实现了电气设备、电子设备、的等电位连接。 此外,各个单体均采用等电位联结措施。等电位是用连接导线或过电压保护器将在需要防雷空间内部的防雷装置、建筑物的金属构架、金属装置、外来的导体物、工艺设备电器和

洗涤塔设计计算手册

洗涤塔设计计算手册 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

鹿岛建设SCRUBBER(ForNO X)设计计算书设计依据: 1、源排气量:150m3/min 2、源废气最高温度:130℃ 3、平均浓度:100mg/m3(根据生产设备数据推测) 4、源排放总量:0.9kg/hr(根据推测平时浓度计算) 5、国家标准: ①排放浓度≤240mg/m3 ②排放速率≤0.77kg/hr@15m 设计计算: 1、去除率 第一段SCRUBBER去除率:50% 第二段SCRUBBER去除率:30% 总去除率:65% 2、风量 风量=150m3/min(1套Scrubber) 3、空塔流速:1m/s 4、塔截面:1.6m×1.6m 5、填料长度:1.8m+1.8m(第一段+第二段) 6、作用时间:1.8S+1.8S=3.6S(第一段+第二段) 7、液气比L/G=6.0:1 8、水泵参数:50m3/hr×18mAq×2

9、加药系统参数计算: ①投药量计算: M(HNO3)=63g/mol M(NaOH)=40g/mol :0.9kg/hr/2/63g/mol=7.15mol/hr HNO 3 NaOH:7.15mol/hr×40g/mol≈0.286kg/hr 折合10%浓度的NaOH:0.286kg/hr÷10%=2.86kg/hr ②加药泵参数选择:3.9L/hr,@0.7Mpa ③药槽(第一段和第二段合用) 10、排放数据估算: ①排放速率0.9kg/hr×35%≈0.315kg/hr(<0.77kg/hr@15m),合格。 ②排放浓度0.315kg/hr÷60min/hr÷150m3/min≈35mg/m3 (≤240mg/m3),合格。 11、排气温度的控制 空气比热容以1kJ/kg.℃计 进气温度:130℃;冷却器出口温度:60℃,温差=70℃; 冷却器需要移去的热量=150(kg/min)×60(min/hr)×1(kJ/kg.℃)/4.18(kJ/kCal)×70℃=150718kcal/hr=175kw; 水的比热容=1.0kCal/kg.℃,假设水在冷却气体过程中的温升为8℃,则移去上述热量所需要的循环水量=150718(kcal/hr)/8(℃)/1.0kCal/kg.℃/1000(kg/m3)=18.5m3/hr。本系统配置1台30m3/hr的冷却塔,是留有余量的。 苏州乔尼设备工程有限公司 2006-02-16

厌氧池设计计算书

厌氧池设计计算书 1.设计参数 设计流量:10m3/d 每小时0.5m3 设计容积负荷为Nv=2.0kgCOD/(m3.d),COD去除率为60%。则厌氧池有效容积为:V1=10×(1500-600)×0.001/2=4.5m3 2.厌氧池的形状及尺寸 据资料,经济的厌氧池高度一般为4~6m,并且大多数情况下这也是系统优化的运行范围。厌氧池的池形有矩形、方形和圆形。圆形厌氧池具有结构稳定的特点,但是建造圆形厌氧池的三相分离器要比矩形和方形的厌氧池复杂得多。因此本次设计先用矩形厌氧池,从布水均匀性和经济考虑,矩形厌氧池长宽比在2:1左右较为合适。 设计厌氧池有效高度为h=5m,则横截面积S=4.5/5=1.125m2 设计厌氧池长约为宽的2倍,则可取L=1.4m,B=0.70m; 一般应用时厌氧池装液量为70%~90%,本工程中设计反应器总高度为H=6.5m,其中超高0.5m。 厌氧池的总容积V=0.7×1.4×6=5.88m3,有效容积为4.5m3,则体积有效系数为76.5%,符合有机负荷要求。 水力停留时间(HRT)和水力负荷率V2 T=(4.5/10) ×24=10.8h, V2=(10÷24)÷1.125=0.37m3/(m2.h) 对于颗粒污泥,水力负荷V2=0.1~0.9 m3/(m2.h),符合要求。 3、进水分配系统的设计

本次设计采用一管多点的布水方式,布水点数量与处理废水的流量、进水浓度、容积负荷等因素有关。 为配水均匀,出水孔孔径一般为10~20mm,常采用15mm,孔口向下或与垂线成呈450方向,为了使穿孔管各孔出水均匀,要求出口流速不小于2m /s. 本厌氧池采用连续进料方式,布水孔孔口向下,有利于避免管口堵塞,而且由于厌氧池底部反射散布作用,有利于布水均匀。 为了增强污泥与废水之间的接触,减少底部进水管的堵塞,建议进水点距厌氧池底200~250mm,本次设计布水管离厌氧池底部200mm。4、排泥系统的设计 一般认为,排出剩余污泥的位置在厌氧池的1/2高度处,但大都推荐把排泥设备安装在靠近厌氧池的底部,也有人在三相分离器下0.5m 处理设计排泥管,以排除污泥床上面部分的剩余絮状污泥,而不会把颗粒污泥排走,对于厌氧池排泥系统,必须同时考虑在上、中、下不同位置设排泥设备,应根据生产运行中的具体情况考虑实际的排泥要求,来确定排泥位置。 本次设计在三相分离器下0.5m开始设置三个排泥口。 厌氧池每三个月排泥一次,污泥排入集泥池中。

流体力学计算题..

水 水银 题1图 1 2 3 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?-==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分) 。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.1542 8.042.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分)。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。

解题思路:(1)水平分力: l H H p p p x )(2 1 222121-= -=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?=' =右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

相关主题