搜档网
当前位置:搜档网 › 红外光谱法测定样品方法

红外光谱法测定样品方法

红外光谱法测定样品方法
红外光谱法测定样品方法

一、红外光谱法测定样品方法

红外光谱的试样可以是液体、固体或气体,一般应要求:

1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。

2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。

3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。

二、制样的方法

1. 气体样品

气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。

2. 液体和溶液试样

(1)液体池法

沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。

(2)液膜法

沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。

3. 固体试样

(1)压片法

将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

(2)石蜡糊法

将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法

主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

仪器操作

1. 样品准备(固体样品)

取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。

2. 模具准备

将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。

3. 制片方法

将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

样品测试过程中的注意事项

1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。

2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。

3. 压片过程应在红外灯照射下进行。

4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重)

5. 易吸水和潮解的样品不宜用压片法。

6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱测试条件

红外光谱分析采用Nicolet Impact 410 型红外光谱仪,样品的结构及骨架振动采用KBr 支撑片,在400-4000 cm-1范围内记录样品的骨架振动红外吸收峰。 吡啶FT-IR 分析:首先将压成自支撑薄片的样品(~20 mg)装入原位红外样品池中,在200 ℃,10-4mmHg 高真空条件下处理0.5 h 以活化样品,降温至室温。将吡啶引入真空系统中。吸附0.5 h 后,抽真空至10-4mmHg 清除吸附后余气,再利用Nicolet-Impact 410 型红外光谱仪进行红外扫描,测定吡啶吸附态的红外光谱。 采用美国Nicolet公司的Nexus 670型傅立叶变换红外光谱仪测试,测试分辨率为4cm-1,扫描次数为32次,测试范围为400-4000cm-1。 红外光谱制样方法: 1、用玛瑙研钵将KBr固体研成极细的粉末,放入玻璃小盒内,放到100℃烘箱里保存,以防KBr粉末潮解; 2、称取0.2g KBr粉末和2-4mg样品(无机材料),放入研钵内研磨,将二者充分混合; 3、用药匙加适量样品至压片磨具中,用圆柱体铁棒旋转压实。套上空心圈及顶盖; 4、讲磨具放到压片机上,拧到上方转盘固定,拧紧下方螺旋钮; 5、摆动右侧长臂,至压力为8-9MPa,等待30s即可取出。 注意事项: 1、KBr粉末不用时,最好放入烘箱中,否则易潮解; 2、若样品为有机物,则加入样品量1mg即可; 3、样品量过多会造成出现宽峰的情况,此时数据无效; 4、KBr粉末潮解后,压片以后容易粘在磨具上,无法取下导致压片失败; 5、压力过大可能导致压片破裂,视破裂程度也可能进行红外测定(中间未破损即可测量)。红外光谱测试方法: 测试分辨率:4cm-1,扫描次数:64次,测试范围400-4000cm-1 点测量快捷键,改文件名和保存路径; 改变设置:OPTIC→Aperture Setting→1.5mm(狭缝设置) OPTIC→preamp Gain→Ref(放大倍数) Check signal:1万以上(若低于1万有可能液氮量不够,补充液氮即可) Basic→Background Signal Channel(采背景,大概60s,此时不放置样品) Background→Save Background 装样品,点Sample Signal Channel 选中点,可变换颜色,点---校准峰 保存:选中图(变换颜色按钮),File→Save as→名称→路径 Mode→Data point table(保存以后为DPH文件,大小为69k)

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

近红外光谱分析技术在煤质检测中的应用

近红外光谱分析技术在入炉煤煤质 在线检测中的应用 一.煤质分析的意义: 煤炭在我国占一次能源消费的68%,大部分用于发电或燃煤锅炉,在热电厂的成本核算中,燃料消耗占到成本的70%左右。 充分了解当前燃煤质量,可以有效的提高锅炉燃烧效率、提升企业经济效益,同时还可以减少炉受热面结焦、积灰等情况,极大的提高锅炉运行的安全性。 二.煤质分析现状: 国内企业目前多采用传统的煤质分析方法,主要测定灰分、水分、发热量等指标,分析精度高,但检测周期长,严重滞后于当前生产,只能进行抽检,不能实时指导生产。 国内还有少量企业使用γ射线来分析煤质,实时性较好,但由于采用辐射源,给工作人员和企业带来了很大的安全隐患,并且价格昂贵,增大了企业的成本负担。 国外相关企业普遍采用近红外光谱技术来分析煤质,实时性好、精确度高、无安全隐患、成本适中。 三.近红外光谱技术检测煤质: 1.近红外光谱的原理: 近红外波长范围为780~2526nm,当近红外光照射到对于含氢基团X—H(X=C、N、O)的物质上时,组成物质的化学键就会吸收一定波长的特征波,吸光度与成分的含量大小有关,而煤炭中燃烧成分主要是含氢基团,正适用于近红外技术。 2.建立近红外模型: 近红外技术是二次测量方法,通过取样,测量样品的近红外光谱、并用

传统分析方法得到该样品的灰分、发热量、水分等含量,通过算法建立光谱与成分和含量之间的联系(模型)。 3.在线实时测量: 近红外仪器安装在入炉煤传送皮带上方,采集皮带上当前煤炭的近红外光谱,通过近红外模型,使用化学计量学方法分析光谱,即可获得该煤炭的灰分、发热量、水分等含量信息。 4.技术特点: ●分析速度快,分析效率高:不到1分钟就可以采集一次光谱,并同时得到 多个组分的性质和含量数据。 ●安装方便:采用非接触的方式进行检测,可以根据生产线的工况采用俯 视、仰视、侧视等方式进行安装。比如安装在入炉煤传送皮带上方。 ●适应复杂环境:仪器具有防尘、防水、防暴等多种特点。 ●运行成本低:近红外仪器自动化程度非常高,日常运行中基本不需要维 护人员,没有消耗品,不产生运行费用。 ●样品不需要预处理,不需要使用化学试剂,不会产生化学、生物或电磁 污染。 ●安全性:近红外仪器使用的是近红外光,没有高温、高压、辐射、易燃 品等构件,保证人员、设备和生产环境的安全。

红外吸附光谱法

红外吸附光谱法的学习 吸附研究方法多种多样,经典的方法有吸热法,比表面积,吸附等温线等。近代研究方法增加了红外光谱法,表面电压法,紫外光电子能谱等多个新研究方法技术。我主要对红外吸附光谱法进行了学习。 红外吸附法可提供吸附质及吸附剂—固体键的资料。通过吸附质在吸附前后红外吸收光谱地位移,考察表面吸附情况。不同的振动频率代表了吸附分子中不同的原子和表面成键。该方法有助于区别物理吸附和化学吸附。物理吸附靠范德华力,一般只能观察到谱带位移,不产生新谱带;而化学吸附形成新的化学键,能出现新谱带。该方法还能确定化学吸附分子的构型,如采用红外光谱测定CO在Pd上的吸附构型,表明覆盖率增加直线式结构增强。下面将具体介绍利用红外光谱仪测定CO在Pd/ Al 2O3 催化剂及载体上的吸附性能。 实验用催化剂系将一定浓度的含活性组分的混合溶液,浸渍于载体,然后经干燥、还原和活化而成。在红外测定前,将样品充分还原后,研磨成小颗粒,置于可用于吸附态测定的漫反射池中。采用 NaCl 做吸收池窗片。首先在高纯氮气吹扫下以 2 ℃ / mi n 的升温速率升至 180 ℃脱气,跟踪记录样品表面脱附情况 , 直至观测到的红外光谱图基本不变化。降至室温后切换为 CO 吸附气,并开始跟踪记录红外光谱图的变化。为防止催化剂表面吸附的物质对下次实验造成影响,每次实验均更换为新鲜催化剂。 首先是CO在载体Al2O3上吸附的红外光谱。众所周知 ,载体的作用不仅是稀释、支撑、分散金属活性组分 ,而且也具有明显的吸附剂特征。图 1 为 120 ℃时 CO 在载体Al2O3上吸附的红外-光谱图。从图 1 中可以看出 , CO 在Al2O3表面上有 HCOO-的形成 ( 1600 cm-1、 1383 cm-1) ,这是由于在Al2O3表面上存在不同的表面OH-可与-吸附在载体上的 CO 生成羧基等表面吸附态 , 即CO + O H-→ HCOO-。另外 , 在Al2O3上不可避免地会吸附少量的水 , 也可促进 HCOO-的生成。从图1还可发现 , 在Al2O3上有少量吸附态HCO3-的生成( 1465 cm-1,1254 cm-1)。 比较不同温度下 CO 在Al2O3上吸附的红外光谱 , 如图 2 所示 , 在室温时 , 可以发现少量的HCO3-吸收峰 ( 1656 cm-1、 1465 cm-1和1254cm-1 ,随着温度升高 , HCO3-吸收峰强度逐-渐减弱。温度至 100 ℃时 ,在 1600 cm-1处出现了一个新峰 , 且随温度的升高而逐渐增强。同时 ,1383 cm-1峰附近的 1349 cm-1处峰也随温度升-高逐渐增大 , 到100 ℃时强度已明显超出 1383cm-1处峰。 1600 cm-1和 1383 cm-1峰分别对应于HCOO-的不对称和对称伸缩振动 , 这说明HCO3-在升温过程中转变为 HCOO-, 至 120 ℃-时催化剂表面只有少量的HCO3-吸附态。 其次是CO 在催化剂Pd表面上吸附的红外光谱研究。图 3 为反应温度 120 ℃时 CO 在 Pd/ Al2O3催-化剂表面上吸附的红外光谱图。图 3 中的 2176cm-1、 2116 cm-1-处峰为

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

几种有机化合物的红外光谱测定

几种有机化合物的红外光测定 一、实验目的 1、学习红外光谱的理论知识,了解红外光谱仪的工作原理及使用操作; 2、初步掌握固体样品和液体样品的红外光谱测定方法; 3、初步学习根据红外光谱图进行结构分析的方法。 二、红外吸收的基本原理 红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射时,化合物中某个化学键的振动或转动频率与红外光频率相当等,就会吸收光能,并引起分子永久偶极矩的变化, 产生分子振动和转动能级从基态到激发态的跃迁, 使相应频率的透射光强度减弱;分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱,根据谱带的位置、峰形及强度,对待测样品进行分析。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内。但同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动。因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。红外光谱中吸收谱带的位置与分子中组成化学键的原子之间的振动频率有关。每个化合物有着彼此不相同的谱图,通过化合物的红外光谱可以测定化合物的结构。 衰减全反射(ATR)装置是将红外光照射在有较高折射率的晶体上,光穿过晶体折射到样品表面一定深度后,反射回表面;当样品的折射率小于晶体的折射率,入射光的入射角大于临界角时,即可产生全反射现象,收集此时的反射光,可获得样品的衰减全反射光谱。此方法特别适合于材料分析,如塑料、橡胶、纸张等,也可用于液体和固体粉末样品的检测。 三、仪器与试剂 1、仪器:TENSOR27 FT-IR红外光谱仪;透射(TR)装置,衰减全反射(ATR)装置等。 2、样品:聚乙烯(PE)薄膜, 聚苯乙烯薄膜,无水乙醇,苯甲酸。 四、实验步骤 (一)透射法(TR)测试 1.安装透射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_TR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。 6.用TR装置,盖上盖子,先测量背景单通道光谱(注意不同样品,应选择适宜的参照物为背景)。 7.再将样品(聚乙烯或聚苯乙烯)模具卡装在样品架上,盖上盖子,测定样品单通道光谱。 8.扫谱结束后,取出压片模具、试样架等,用无水乙醇擦拭干净,置于干燥器中保存。 (二)衰减全反射法(A TR)测试 1.安装衰减全反射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_ATR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。

红外吸收光谱法试题与答案

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基,却在1773cm -1和1736 cm -1处出现两个吸收峰,这是 因为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍,每个球从静止位置伸长1cm ,哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器,同紫外可见分光光度法有哪些相似和不同之处? 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能,能引起分子振动和转动的能及跃迁,产生的吸收光谱一 般在中红外区,称为红外光谱 当物质分子吸收一定波长的光能,分子外层电子或分子轨道电子由基态跃迁到激发态,产生的吸收光 谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的,同时伴随转动能级跃迁,一般振动能级间隔约为0.05~1eV 。

红外光谱仪验证方案

第1 页共4 页1主题内容 本方案规定了FTIR—8300红外光谱仪的验证方案及实施。 2适用范围 本方案适用于FTIR—8300红外光谱仪的到货后的首次验证。 3职责 工程部计量管理员:负责安装确认。 QC仪器验证责任人:参与安装确认,并负责功能试验及适用性试验。 验证协调员:组织协调验证工作的开展,并根据验证情况,出具验证报告。 4内容 4.1简介 本仪器为日本岛津制作所生产,该公司生产科学仪器及材料试验的工厂均已取得ISO9001认证,产品在国内及国际上有一定知名度。该仪器型号为FTIR—8300,它以MS—Windows 为基础,操作简便,数据处理功能齐全,并可进行光谱图库检索,可用于定性及定量测试。 我公司现主要用于西药原料、中间体或成品的定性分析。因其性能直接关系到分析结果的可信度,故依据我公司验证管理程序(1205·001)及GMP要求,制定本方案对该仪器进行验证,以保证应其能满足使用要求。制定依据为《中国药典》1995年版二部附录P19页及中国药品生物制品检定所1999年1月编《药品检验仪器检定规程》P12页。 4.2安装确认 4.2.1建立完整的设备档案,专人妥善保管。并记录设备档案编号。 药品生产质量管理文件

4.2.3仪器应置于平稳的工作台上,安放处无强振动源,无强光直射。室内应清洁,无腐蚀性气 体,无强电磁场干扰。室温15~30℃;相对湿度≤65%;供电电源:电压为AC(220±22)V,频率为(50±1)Hz。安装及安装环境其他方面也应符合GMP要求及仪器供应商要求。 4.2.4 是否建立相应的仪器使用SOP、维护保养SOP等文件。 4.2.5是否对操作人员进行了必要的培训,并记录培训人员名单。 4.2.6维修服务单位 单位名称: 地址: 联系人:电话: 4.2.7仪器校验情况 4.2.8安装确认结论 检查人:复核人:日期: 4.3运行确认 4.3.1功能试验(应在开机预热稳定后进行) 4.3.1.1按仪器使用说明书,运行仪器各项功能,要求每种功能至少运行一次,各项功能均应能正常运行,无误操作或死机等异常现象。

红外光谱法测定样品方法

一、红外光谱法测定样品方法 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样 (1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项 1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。 2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。 3. 压片过程应在红外灯照射下进行。 4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重) 5. 易吸水和潮解的样品不宜用压片法。 6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

近红外光谱

近红外光谱在果蔬品质无损检测中的应用研究进展 摘要 本论文介绍了近红外光谱无损检测机理,近红外光谱在果实品质的定量分析和定性分析的研究概况,并对近红外光谱对果实品质无损检测存在问题及前景做了简单的分析。 关键词 无损检测;近红外光谱;内部品质;果蔬 1 引言 1.1 果蔬无损检测研究概况 果蔬品质主要是指果蔬形态、颜色、密度、硬度以及含糖量、水分、酸度、病变等。果蔬品质检测技术作为保障果蔬质量、提升产品市场竞争力的一种手段,可以分为有损检测和无损检测两种。有损检测一般需要借助传统的化学分析测定方法或是现代仪器分析方法( 如高效液相色谱分析、气相色谱分析、质谱分析等) ,测定过程比较烦琐、人力物力耗费大、检测成本非常高。无损检测又称为非破坏性检测,是利用果蔬的物理性质,如力学性质、热学性质、电学性质、光学性质和声学性质等,在获取样品信息的同时保证了样品的完整性,检测速度较传统的化学方法迅速,且能有效地判断出从外观无法获得的样品内部品质信息。目前,果蔬品质与安全的无损检测技术主要包括: 光谱分析技术、光谱成像技术、机器视觉技术、介电特性检测技术、声学特性及超声波检测技术、力学检测技术、核磁共振检测技术、生物传感器技术、电子鼻与电子舌技术等等。针对不同的检测对象和检测指标,这些无损检测技术各具优势。 1.2 近红外光谱无损检测研究概况 近红外光谱分析( Near Infrared Spectroscopy,NIR) 技术是近十年来发展最为迅速的高新分析技术之一,以其快速、简便、高效等优势已被人们认识和接受,并且其应用范围也由谷物、饲料扩展到食品和果蔬等领域。水果是重要的农产品,消费者在选购水果时对于内部品质如口感、糖度和酸度等极为看重。而近红外光谱分析技术将其用于水果内部品质检测具有快速、非破坏性、无需前处

红外光谱检测原理

红外光谱测试作为一种比较成熟的测试手段,对于材料的定性检测具有重要的作用,应用在许多领域。但是很多人对于红外光谱的检测原理并不是很清楚,下面,我们将进行一些基本原理的介绍。 在了解红外光谱的检测原理之前我们先来看一下什么是光谱分析。 光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种;按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。 接下来是红外吸收光谱的基本原理。 分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。 红外吸收光谱是由分子振动和转动跃迁所引起的, 组成化学键

或官能团的原子处于不断振动(或转动)的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。 红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。 分子的转动能级差比较小,所吸收的光频率低,波长很长,所以分子的纯转动能谱出现在远红外区(25~300 μm)。振动能级差比转动能级差要大很多,分子振动能级跃迁所吸收的光频率要高一些,分子的纯振动能谱一般出现在中红外区(2.5~25 μm)。(注:分子的电子能级跃迁所吸收的光在可见以及紫外区,属于紫外可见吸收光谱的范畴) 值得注意的是,只有当振动时,分子的偶极矩发生变化时,该振动才具有红外活性(注:如果振动时,分子的极化率发生变化,则该振动具有拉曼活性)。

傅立叶红外光谱仪测试样品的方法及注意事项-红外压片机

傅立叶红外光谱仪测试样品的方法及注意事项 要获得一张高质量红外光谱图,除了仪器本身的因素外,还必须有合适的样品制备方法。 一、红外光谱法对试样的要求 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样

(1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。 (3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

傅里叶红外光谱仪测试原理及常用制样方法

傅里叶红外光谱仪测试原理及常用制样方法 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外;-;可见分光光度计定量分析法的依据是什么? 比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg (I0/It) ○2.比耳定律 当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透

反式脂肪酸含量红外光谱检测方案

港东科技反式脂肪酸含量红外光谱检测方案 一、反式脂肪酸的生成 天然油脂主要由顺式脂肪酸组成,在金属催化剂的作用下,构型会发生变化,天然油脂中的顺式脂肪酸的一部分转化成反式脂肪酸。另外,油脂长时间高温加热,也会发生构型变化,产生反式脂肪酸。 ―CH=CH―+H2―CH2―CH2― 二、反式脂肪酸的应用及危害 反式脂肪酸为固态或半固态的油脂,便于保存,同时改善了观感和口感,其熔点高,炸制食品时温度再高也不冒烟不变黑,炸出的食物又酥又脆,同时因其成本低,故反式脂肪酸被许多食品生产商所采用。 反式脂肪酸的载体:

植脂末、起酥油、人造黄油(也叫植物奶油、植物黄油、植物脂肪、人造奶油)、麦淇淋、色拉油。 含反式脂肪酸的食品: ?煎炸类食品:一些高温煎炸的速食面、油酥饼、炸薯片、炸薯条、炸鸡块等 ?烘烤类食品:使用起酥油的饼干、薄脆饼、蛋糕、蛋挞、泡芙、巧克力派、蛋黄派等 ?饮料、糖果、调味酱:添加了植脂末的咖啡伴侣、奶茶、冰激凌、雪糕、巧克力、花生酱、沙拉酱等

反式脂肪酸降低了人体中有益的高密度胆固醇(HDL) 的含量,而使有害的低密度胆固醇(LDL)含量增加,会提高血液中低密度脂蛋白胆固醇浓度,导致心脑血管等如下疾病: ?形成血栓 ?影响发育和生育 ?降低记忆 ?容易发胖 ?引发冠心病 三、反式脂肪酸的检测的背景及标准 由于反式脂肪酸对人类健康的威胁,联合国粮农组织和世界卫生组织于1994年提出食品中的反式脂肪酸含量应低于4%。由于很多食品中含有油脂,因此反式脂肪酸含量的检测格外重要。2003年6月1日起,丹麦市场上任何含反式脂肪酸超过2%的油脂都被禁止,而从2003年12月31日起,这个规定更拓展到加工食品油脂。2003年7月,美国FDA公布的规章指出:自2006年1月1日起,食品营养标签中必须标注产品的饱和脂肪酸含量及反式脂肪酸的含量。几乎与此同时,巴西也通报了类似的新规定。 荷兰、法国、瑞典、澳大利亚也相继对反式脂肪酸进行立法。中国卫生部发布食品安全国家标准《预包装食品营养标签通则》(GB28050-2011),

近红外光谱(NIR)分析技术的应用

近红外光谱(NIR)分析技术的应用 近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。 一、近红外光谱的工作原理 有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。 二、近红外光谱仪的应用 NIR分析技术的测量过程分为校正和预测两部分(如图一所示),(1)校正:①选择校正样品集,②对校正样品集分别测得其光谱数据和理化基础数据,③将光谱数据和基础数据,用适当的化学计量方法建立校正模型;(2)预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。 图一 2.1定标建模

2.1.1 为什么要建立近红外校正模型 2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。 2.1.1.2 近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;②利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。 2.1.2 模型的建立与验证步骤 2.1.2.1 扫描样品近红外光谱 准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 2.1.2.2 测定样品成分(定量) 按照标准方法(如饲料中的粗蛋白GB/T6432、水分GB/T6435、粗脂肪GB/T6433)准确测定样品集中每个样品的各种待测成分或性质(称为参考数据)。这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限。 2.1.2.3 建立数据对应关系 通过2.1.2.1所得光谱与2.1.2.2所得不同性质参数的参考数据相关联,使光谱图和其参考数据之间形成一一对应映射的关系,从而建立一个带参考数据的光谱文件。 2.1.2.4 剔除异常值 2.1.2.3建立的光谱文件中,样品参考值与光谱有可能由于各种随机的原因而有较严重的失真,这些样品的测定值称为异常值。为保证所建数学模型的可靠性,在建立模型时应当剔除这些异常值。 2.1.2.5 建立模型 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想

红外吸收光谱法

红外吸收光谱法 第六章红外吸收光谱法 一、选择题 1.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( ) (1) 向高波数方向移动 (2) 向低波数方向移动 (3) 不移动 (4) 稍有振动 2. 红外吸收光谱的产生是由于 ( ) (1) 分子外层电子、振动、转动能级的跃迁 (2) 原子外层电子、振动、转动能级的跃迁 (3) 分子振动-转动能级的跃迁 (4) 分子外层电子的能级跃迁 3. 色散型红外分光光度计检测器多用 ( ) (1) 电子倍增器 (2) 光电倍增管 (3) 高真空热电偶 (4) 无线电线圈 4.一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 -15.一个含氧化合物的红外光谱图在3600,3200cm有吸收峰, 下列化合物最可能 的是 ( ) (1) CH,CHO (2) CH,CO-CH 333 (3) CH,CHOH-CH (4) CH,O-CH-CH 33 323 6. Cl分子在红外光谱图上基频吸收峰的数目为 ( ) 2

(1) 0 (2) 1 (3) 2 (4) 3 7. 下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的 (2) 极性键的伸缩和变形振动都是红外活性的 (3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动 (4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是 8. 羰基化合物中, C=O伸缩振动频率最高者为 ( ) O RC) R(1 O C) R F(2 O C) R Cl(3 O C) R Br(4 9.用红外吸收光谱法测定有机物结构时, 试样应该是 ( ) (1) 单质 (2) 纯物质 (3) 混合物 (4) 任何试样 10 以下四种气体不吸收红外光的是 ( ) (1)HO (2)CO (3)HCl (4)N 222 11. 红外光谱法, 试样状态可以是 ( ) (1) 气体状态 (2) 固体状态

相关主题