搜档网
当前位置:搜档网 › Energy and Momentum in Spacetime Homogeneous G$ddot{o}$del-type Metrics

Energy and Momentum in Spacetime Homogeneous G$ddot{o}$del-type Metrics

Energy and Momentum in Spacetime Homogeneous G$ddot{o}$del-type Metrics
Energy and Momentum in Spacetime Homogeneous G$ddot{o}$del-type Metrics

a r

X

i

v

:g r

-

q

c

/

3

1

1

8v

1

3

O

c

t

2

3

Energy and Momentum in Spacetime Homogeneous G ¨o del-type Metrics M.Sharif ?Department of Mathematics,University of the Punjab,Quaid-e-Azam Campus Lahore-54590,PAKISTAN,Abstract Using Einstein and Papapetrou energy-momentum complexes,we explicitly calculate the energy and momentum distribution associated with spacetime homogeneous G¨o del-type metrics.We obtain that the two de?nitions of energy-momentum complexes do not provide the same result for these type of metrics.However,it is shown that the results obtained are reduced to the energy-momentum densities of G¨o del metric already available in the literature.Key Words:Energy and Momentum,G ¨o del-type Metrics PACS:04.20.Cv

1Introduction

The problem of energy and momentum has been one of the oldest but most interesting problems in Einstein’s theory of General Relativity(GR).Due to its peculiar nature and diverse points of view,it has been the most con-troversial problem.In a curved spacetime the energy-momentum tensor of matter plus all non-gravitational?elds no longer satis?es T b a;b=0.The con-tribution from the gravitational?eld is now required to construct an energy-momentum expression which satis?es a divergence relation.Einstein himself started work to solve this problem and suggested an expression for energy-momentum distribution[1].He justi?ed that his energy-momentum complex provides convincing results for the total energy and momentum of isolated systems.After this,many physicists including Landau-Lifshitz[2],Tolman [3],Papapetrou[4],Bergmann[5],Weinberg[6]had suggested di?erent ex-pressions for the energy-momentum distribution.The main problem with these de?nitions is that they are coordinate dependent.One can have mean-ingful results only when calculations are performed in Cartesian coordinates. This restriction of coordinate dependent motivated some other physicists like M¨o ller[7]-[8],Komar[9]and Penrose[10]who constructed coordinate inde-pendent de?nitions of energy-momentum complex.

M¨o ller claimed that his expression gives the same values for the total energy and momentum as the Einstein’s energy-momentum complex for a closed system.However,M¨o ller’s energy-momentum complex was subjected to some criticism[8]-[11].Komar’s prescription,though not restricted to the use of Cartesian coordinates,is not applicable to non-static space-times. Penrose[10]pointed out that quasi-local masses are conceptually very impor-tant.The inadequacies of these quasi-local masses(these di?erent de?nitions do not give agreed results for the Reissner-Nordstrom and Kerr metrics and that the Penrose de?nition could not succeed to deal with the Kerr metric) have been discussed in[12]-[14].Thus each of these energy-momentum com-plex has its own drawback.As a result these ideas of the energy-momentum complex were severally criticized.

Virbhadra[14]-[15]was the?rst who revived the interest in this approach. Since then lot of work on evaluating the energy-momentum distributions of di?erent spacetimes have been carried out by di?erent authors[16]-[19]. In a recent paper,Virbhadhra[14]investigated whether or not the energy-momentum complexes of Einstein,Landau and Lifshitz,Papapetrou and Weinberg give the same energy distribution for the most general non-static

2

spherically symmetric metric.It was a great surprise that contrary to previ-ous results of many asymptotically?at spacetimes and asymptotically non-?at spacetimes,he found that these de?nitions disagree.He observed that Einstein’s energy-momentum complex provides a consistent result for the Schwarzschild metric whether one calculates in Kerr-Schild Cartesian coor-dinates or Schwarzschild Cartesian coordinates.The prescriptions of Landau-Lifshitz,Papapetrou and Weinberg furnish the same result as in the Einstein prescription if the calculations are carried out in Schwarzschild Cartesian co-ordinates.Thus the prescriptions of Landau-Lifshitz,Papapetrou and Wein-berg do not give a consistent result.On the basis of these and some other facts[12,13],Virbhadra concluded that the Einstein method seems to be the best among all known(including quasi-local mass de?nitions)for en-ergy distribution in a spacetime.Recently,Lessner[20]pointed out that the M¨o ller’s energy-momentum prescription is a powerful concept of energy and momentum in GR.

In a series of papers[21]Cooperstock has propounded a hypothesis ac-cording to which,in a curved spacetime,energy and momentum are con?ned to the regions of non-vanishing energy-momentum tensor T b a of the matter and all non-gravitational?elds.The results of Xulu[22]and the recent results of Bringley[23]support this hypothesis.It would be interesting to investi-gate further whether or not the Cooperstock’s hypothesis stands true.In a recent paper[19],we have applied Einstein and Papapetrou’s prescriptions to calculate energy-momentum densities of G¨o del spacetime.The results ob-tained for the G¨o del metric are much simple in both the prescriptions.We obtain that the energy density is exactly the same in both the prescriptions with the exception of di?erent signs in the?rst term while the momentum density components exactly coincide up to the?rst term only.

In this paper we extend the procedure and use Einstein and Papapetrou’s prescriptions to evaluate energy and momentum densities in G¨o del-type met-rics.As we shall see from the analysis given in the paper,when procedure is extended to such metrics,the problem becomes considerably complicated. We?nd that the results obtained by these two prescriptions are not the same.However,it is shown that they both reduce to the known results for particular values of H and D,i.e.,G¨o del spacetime.In the next section,we shall describe the spacetime homogeneous G¨o del-type metrics.In sections three and four,we evaluate energy and momentum using Einstein and Pa-papetrou’s prescriptions respectively.Finally,the results obtained will be concluded.

3

2Spacetime Homogeneous G¨o del-type Met-rics

A solution of Einstein’s?eld equations with cosmological constant for inco-herent matter with rotation was found by G¨o del.This is the best known example of a cosmological model which makes it apparent that GR does not exclude the existence of a closed timelike world-lines,despite its Lorentzian character which leads to the local validity of the causality principle.G¨o del-type metrics are given by the line element of the form[24]

ds2=[dt+H(r)dθ]2?dr2?D2(r)dθ2?dz2,(1) in the cylindrical coordinates(r,θ,z).Here the metric functions H and D depend on the coordinate r only.It admits a?ve-parameter group of isometries(G5)having an isotropy subgroup of dimension one(H1).

Raychaudhuri and Thakurta[25]are the?rst who have determined the necessary conditions for a G¨o del-type metric to be a spacetime homogeneous (hereafter called ST homogeneous).Later,Reboucas and Tiomno[26]proved that these conditions are also su?cient for ST homogeneity of G¨o del-type Riemannian spacetime manifolds.These necessary and su?cient conditions are given by

D′′

D

=constant≡?2ω.(3) The necessary and su?cient conditions were?nally re-derived for a G¨o del-type manifold to be ST homogeneous without assuming any such simplifying hypothesis in[27].

We can distinguish the ST metrics in the following four classes as given in[28-29]according to

Class I:m2>0,ω=0.In this case,the general solution of Eqs.(2)and(3) is given by

H(r)=2ω

m

sinh(mr).(4)

Class II:m2=0,ω=0.For this class,the general solution of Eqs.(2)and (3)can be written as

H(r)=?ωr2,D(r)=r.(5)

4

Class III:m2≡?μ2,ω=0.If we integrate Eqs.(2)and(3)for this case, we have the following solution

H(r)=2ω

μ

sin(μr).(6)

Class IV:m2=0,ω=0.In this case,the cross term related to the rotationωin the G¨o del model vanishes.Consequently,one can make H=0 by a trivial coordinate transformation.

If m2=0=ω,the line element(1)becomes Minkowskian.Also,it is mentioned that the case m2=2ω2de?nes the original G¨o del metric.

In order to have meaningful results in the prescriptions of Einstein and Papapetrou,it is necessary to transform the metric in Cartesian coordinates. We transform the metric in Cartesian coordinates by using

x=r cosθ,y=r sinθ.(7) The corresponding metric in these coordinates will become

ds2=dt2?1r4(H2?D2)(xdy?ydx)2?dz2+2

16π

M bc a,c,(9) where

M bc a=g ad

?g[?g(g bd g ce?g cd g be)],e,a,b,c,d,e=0,1,2,3.(10)

Θ00is the energy density,Θa0are the momentum density components,and Θ0a are the components of energy current density.The Einstein energy-momentum satis?es the local conservation laws

?Θb a

In order to evaluate the energy and momentum densities in Einstein’s pre-scription associated with G¨o del-type metrics,we need to calculate the non-vanishing components of M bc a

1

M010=

(H2H1x2y+H2H2xy2?2HDD1x2y?2HDD2xy2

Dr5

?H1r2x2y+H2r2x3+D2H1x2y+D2H2xy2),(13)

1

M021=?

(Hr4+H2H1x3+H2H2x2y?2HDD1x3?2HDD2x2y Dr5

+H1r2xy2?H2r2x2y+D2H1x3+D2H2x2y),(15)

1

M022=

(H1y?H2x),(17)

Dr

1

M120=

(?D3+D2D1x+D2D2y?2D2D11x2?2D2D22y2 16πD2r3

?4D2D12xy+Dr2?D1r2x?D2r2y+HH11Dx2+HH22Dy2

+2HH12Dxy+2H1H2Dxy+H21Dx2+H22Dy2

?HH1D1x2?HH2D1xy?HH1D2xy?HH2D2y2),(19)

6

Θ01=

1

16πD2r5

(H2H2Dxy+H2H1Dx2?H2H22Dxy2?H2H11Dx3?2H2H12Dx2y+H2H2D2xy2+H2H2D1x2y+H2H1D2x2y

+H2H1D1x3?2HH22Dxy2?2HH21Dx3?4HH1H2Dx2y

?2HD2D2xy?2HD2D1x2+2HD2D22xy2+2HD2D11x3

+4HD2D12x2y+D3H2xy+D3H1x2?D3H22xy2?D3H11x3

?2D3H12x2y+D2D2H2xy2+D2D2H1x2y+D2D1H2x2y

+D2D1H1x3+HDr2x+HD1r4+DH2r2xy?DH1r2y2

?DH1r4+DH22r2xy2?DH11r2xy2+DH12r2x2y

?DH12r2y3?H2D2r2xy2?H2D1r2x2y+H1D2r2y3+H1D1r2xy2),(21)Θ10=

1

2,Eqs.(19)-(24)become

Θ00=(1?ar)

2πr3

[?e ar+2r2e?ar],(25)

Θ01=y

2πr4

[2r+a(1?2ar)e2ar],(26) 7

Θ02=?x

2πr4

[2r+a(1?2ar)e2ar],(27)

Θ10=Θ20=Θ30=Θ03=0.(28) These are the energy and momentum densities of G¨o del spacetime given by Sharif[19].

4Energy and Momentum in Papapetrou’s Pre-scription

The symmetric energy-momentum complex of Papapetrou[4]is given by

?ab=

1

?g(g abηcd?g acηbd+g cdηab?g bdηac),(30) andηab is the Minkowski spacetime.The energy-momentum complex satis?es the local conservation laws

??ab

Dr3

(H2r2?D2r2?D2x2?r2y2),(32)

N0012=

1

Dr3

(H2r2?D2r2?D2y2?r2x2),(34)

N0121=?

1

Dr

Hy,(36)

8

N0211=?N0121,(37)

N0212=?N0122,(38) Substituting Eqs.(32)-(38)in Eq.(29),we obtain the following energy and momentum density components in Papapetrou’s prescription

?00=

1

16πD3r3

(HD2y?HDD1xy+2HDD2x2+HDD2y2

+HDD12r2x+HDD22r2y?2HD1D2r2x?2HD22r2y

+D2H1xy?2D2H2x2?D2H2y2?D2H12r2x

?D2H22r2y+DD1H2r2x+DD2H1r2x+2DD2H2r2y,(40)?02=?

1

2,Eqs.(39)-(42)yield

?00=(1?ar)

2πr3

(e ar+2r2e?ar),(43)?01=

y

2πr3

,(44)?02=?

x

2πr3

,(45) 9

?03=?30=0.(46) These turn out to be the energy and momentum density components for G¨o del spacetime given by Sharif[19].

5Discussion

It has been remained a controversial problem whether energy and momen-tum are localizable or not.Misner et al[30]were the points of view that energy can only be localized for spherical systems.Cooperstock and Sarra-cino[31]argued that if energy can be localized in spherical systems then it can be localized in any spacetimes.Bondi[32]supported the point of view that a non-localizable form of energy cannot be allowed in GR and hence its localization can be found in principle.The energy-momentum complexes are non-tensorial under general coordinate transformations and hence are restricted to Cartesian coordinates only.Virbhadra and others have shown [14]-[19]that these energy-momentum complexes can provide meaningful re-sults.

In this paper,we have evaluated the energy and momentum density com-ponents for G¨o del-type metrics by using prescriptions of Einstein and Papa-petrou.It can be seen that the energy and momentum densities turn out to be?nite and well de?ned in both the prescriptions.These provide general results in terms of H and D which can furnish interesting results for special values of H and D.It follows from Eqs.(19)-(24)and(39)-(42)that the two results obtained by using the Einstein and Papapetrou energy-momentum complex di?er in general for G¨o del-type metrics.This should be considered important why the two results are di?erent.It is to be noted from Eqs.(25)-(28)and(43)-(46)that both the results reduce to the known energy and momentum densities of a G¨o del metric as given in[19].

There are spacetimes[14],[19],[33]for which the two or more energy momentum complexes do not give the same result.We have exposed another model for which the two energy-momentum complexes do not provide the consistent result.This is another example which indicate that the idea of localization does not follow along the lines of pseudo-tensorial construction but instead it follows from the energy-momentum tensor itself.

10

Acknowledgment

The author would like to thank Higher Education Commission(HEC), Pakistan for providing postdoctoral fellowship at University of Aberdeen, UK.I am also grateful for the useful comments made by the anonymous referee.

References

[1]Trautman,A.:Gravitation:An Introduction to Current Research ed.

Witten,L.(Wiley,New York,1962)169.

[2]Landau,L.D.and Lifshitz,E.M.:The Classical Theory of Fields(Addison-

Wesley Press,Reading,MA,1962)2nd ed.

[3]Tolman,R.C.:Relativity,Thermodynamics and Cosmology(Oxford

Univ.Press,1934)227.

[4]Papapetrou,A.:Proc.R.Irish.Acad.A52(1948)11.

[5]Bergmann,P.G.and Thompson,R.:Phys.Rev.89(1953)400.

[6]Weinberg,S.:Gravitation and Cosmology(Wiley,New York,1972).

[7]M¨o ller,C.:Ann.Phys.(NY)4(1958)347.

[8]M¨o ller,C.:Ann.Phys.(NY)12(1961)118.

[9]Komar,A.:Phys.Rev.113(1959)934.

[10]Penrose,R.:Proc.Roy.Soc.London A381(1982)53.

[11]Kovacs,D.:Gen.Rel.and Gravit.17(1985)927;

Novotny,J.:Gen.Rel.and Gravit.19(1987)1043;

[12]Bergqvist,G.:Class.Quantum Gravit.9(1992)1753.

[13]Bernstein,D.H.and Tod,K.P.:Phys.Rev.D49(1994)2808.

11

[14]Virbhadra,K.S.:Phys.Rev.D60(1999)104041.

[15]Virbhadra,K.S.:Phys.Rev.D41(1990)1081;D42(1990)1066;

D42(1990)2919;and references therein.

[16]Xulu,S.S.:Int.J.Mod.Phys.A15(2000)2979;Mod.Phys.Lett.

A15(2000)1511and references therein.

[17]Yang,I.C.and Radinschi,I.:Mod.Phys.Lett.A17(2002)1159.

[18]Sharif,M.:Int.J.of Mod.Phys.A17(2002)1175.

[19]Sharif,M.:Int.J.of Mod.Phys.A18(2003);Erratum A(2003).

[20]Lessner,G.:Gen.Rel.Grav.28(1996)527.

[21]Cooperstock,F.I.:in Topics on Quantum Gravity and Beyond,Es-

says in honour of Witten,L.on his retirement,ed.Mansouri,F.and Scanio,J.J.(World Scienti?c,Singapore,1993);Mod.Phys.Lett.

A14(1999)1531;Annals of Phys.282(2000)115;

Cooperstock,F.I.and Tieu,S.:Found.Phys.33(2003)1033.

[22]Xulu,S.S.:Mod.Phys.Lett.A15(2000)1511;Astrophys.and Space

Science283(2003)23.

[23]Bringley,T.:Mod.Phys.Lett.A17(2002)157.

[24]Som,M.M.and Raychaudhuri,A.K.:Proc.R.Soc.A304(1968)81;

Banerjee A.and Banerji,S.:J.Phys.A:Gen.Phys.1(1968)188.

[25]Raychaudhuri,A.K.and Thakurta,S.N.:Phys.Rev.D22(1980)802.

[26]Reboucas,M.J.and Tiomno,J.:Phys.Rev.D28(1985)1251.

[27]Reboucas,M.J.and Aman,J.E.:J.Math.Phys.28(1987)888.

[28]Reboucas,M.J.and Teixeira,A.:J.Math.Phys.33(1992)2885.

[29]Reboucas,M.J.and Aman,J.E.:J.Math.Phys.40(1999)4011.

[30]Misner,C.W.,Thorne,K.S.and Wheeler,J.A.:Gravitation(W.H.

Freeman,New York,1973)603.

12

[31]Cooperstock,F.I.and Sarracino,R.S.:J.Phys. A.:Math.Gen.

11(1978)877.

[32]Bondi,H.:Proceedings of the Royal Society of London A427(1990)249.

[33]Yang,I.C.and Radinschi,I.:gr-qc/0309130.

13

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

高三物理《能量守恒定律》公式总结

高三物理《能量守恒定律》公式总结 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律w+Q=ΔU{,w:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温

度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功w<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

(完整word版)高中物理能量守恒定律【高中物理能量守恒定律公式

高中物理能量守恒定律【高中物理能量守恒定律公式 在高中物理学习过程中,能量守恒属于一项极为重要的知识点,熟练掌握这一内容对于提高学生的物理知识分析能力有很大帮助,下面是小编给大家带来的高中物理能量守恒定律公式,希望对你有帮助。高中物理能量守恒定律公式 1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{,W:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-摄氏度} 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功W0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v 将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止。 能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能……。动能:物体由于有机械运动速度而具有的能量Ek=mv2/2 能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

大学物理习题第4单元 能量守恒定律

第四章 能量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是 (A) p E = k mg F 2)(2 μ- (B) p E =k mg F 2)(2 μ+ (C) K F E p 22 = (D) k mg F 2)(2μ-≤p E ≤ k mg F 2)(2 μ+ [ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953k j i F +--=,则此力在该位移过程中所作的功为 (A )-67 J (B )91 J (C )17 J (D )67 J [ C ]3.一个作直线运动的物体,其速度 v 与时间 t 的关系曲线如图所示。设时刻1t 至2t 间 外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则 (A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W [ C ]4.对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加。 (2) 质点运动经一闭合路径,保守力对质点作的功为零。 (3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。 在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的。 [ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。 二 填空题 1.质量为m 的物体,置于电梯内,电梯以 2 1 g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 mgh 2 1 - 。 2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为)1 31(R R GMm -。 3.二质点的质量各为1m 、2m ,当它们之间的距离由a 缩短到b 时,万有引力所做的功为 )1 1(21b a m Gm --。 4.保守力的特点是 ________略__________________________________;保守力的功与势能的关系式为______________________________略_____________________. 5.一弹簧原长m 1.00=l ,倔强系数N/m 50=k ,其一端固定在半径 为R =0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连,在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为 -0.207 J 。 6.有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功 A B C R v O 1 t 2t 3 t 4 t

高一物理能量守恒定律测试题

2.3 能量守恒定律第一课时 【素能综合检测】 1.(5分)在利用重物做自由落体运动探索动能与重力势能的转化和守恒的实验中,下列说法中正确的是() A.选重锤时稍重一些的比轻的好 B.选重锤时体积大一些的比小的好 C.实验时要用秒表计时,以便计算速度 D.打点计时器选用电磁打点计时器比电火花计时器要好 【解析】选A.选用的重锤宜重一些,可以使重力远远大于阻力,阻力可忽略不计,从而减小实验误差,故A正确;重锤的体积越大,下落时受空气阻力越大,实验误差就越大,故B 错误;不需用秒表计时,打点计时器就是计时仪器,比秒表计时更为精准,故C错误;电磁打点计时器的振针与纸带间有摩擦,电火花计时器对纸带的阻力较小,故应选电火花计时器,D错误. 3.(5分)如图1是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n点来验证机械能守恒定律.下面举一些计算n点速度的方法,其中正确的是()

4.(4分)在“验证机械能守恒定律”的实验中 (1)将下列主要的实验步骤,按照实验的合理顺序把步骤前的序号填在题后横线上: A.用手提着纸带使重物静止在靠近打点计时器处; B.将纸带固定在重物上,让纸带穿过打点计时器的限位孔; C.取下纸带,在纸带上任选几点,测出它们与第一个点的距离,并算出重物在打下这几个点时的瞬时速度; D.接通电源,松开纸带,让重物自由下落; E.查出当地的重力加速度g的值,算出打下各计数点时的动能和相应的减少的重力势能,比较它们是否相等; F.把测量和计算得到的数据填入自己设计的表格里. 答:_____________. (2)动能值和相应重力势能的减少值相比,实际上哪个值应偏小些? 答:____________. 【解析】(1)实验的合理顺序应该是:BADCFE (2)由于重物和纸带都受阻力作用,即都要克服阻力做功,所以有机械能损失,即重物的动能值要小于相应重力势能的减少值. 答案:(1)BADCFE(2)动能值

高中物理分子动理论、能量守恒定律公式总结

高中物理分子动理论、能量守恒定律公式总结 1、阿伏加德罗常数A N =6.02×1023/mol ;分子直径数量级10-10 米 2、油膜法测分子直径S V d = {V :单分子油膜的体积(m 3),S :油膜表面积(m 2)} 3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4、分子间的引力和斥力(1)0r r <,斥引f f <,分子力F 表现为斥力;(2) 0r r >,斥引f f >, 分子力F 表现为引力;(3) 0r r =,斥引f f =; (4) 010r r >,0≈=斥引f f ,0≈分子力F ,0≈分子势能E 5、热力学第一定律U Q W ?=+{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q :物体吸收的热量(J),U ?:增加的内能(J),涉及到第一类永动机不可造出 6、热力学第二定 律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出} 7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)、布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)、温度是分子平均动能的标志; (3)、分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)、分子力做正功,分子势能减小,在0r 处斥引f f =且分子势能最小; (5)、气体膨胀,外界对气体做负功W<0;温度升高,内能增大0>?U ;吸收热量,0>Q (6)、物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)、0r 为分子处于平衡状态时,分子间的距离; (8)、其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。

大学物理物理知识点总结!!!!!!

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

高三物理能量守恒定律详尽讲义

高三物理能量守恒定律详尽讲义 考纲解读1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 1.[功能关系的理解]用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是() A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 答案 C 2.[能的转化与守恒定律的理解]如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中() 图1 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 答案AD 解析在X-37B由较低轨道飞到较高轨道的过程中,必须启动助推器,对X-37B做正功,X-37B的机械能增大,A对,B错.根据能量守恒定律,

C错.X-37B在确定轨道上绕地球做圆周运动,其动能和重力势能都不会发生变化,所以机械能不变,D对. 3.[能量守恒定律的应用]如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停 下来,则停下的位置到B的距离为() 图2 A.0.5 m B.0.25 m C.0.1 m D.0 答案 D 解析由mgh=μmgx,得x=3 m,而x d= 3 m 0.5 m=6,即3个来回后,小物块 恰停在B点,选项D正确. 一、几种常见的功能关系 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增.

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律” 一、填空题 1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。 2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-?=s m v ,方向与x F 相同,则当力x F 的冲量s N I ?=300时,物体的速度大小为: 。 3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。现以100N 的力打击它的下端点,打击时间为0.02s 时。若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。 4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-??s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。 5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。 6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动 学方程为3 243t t t x +-= (SI)。则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。 7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。 8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。 9、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F )43(+=作用下,无摩

高中物理《能量守恒定律》教案

能量守恒定律 本节课的设计,教材继续沿用了前几节的课程模式,先由生活中的实例引出研究问题,然后用实验加以证实,让学生接受这个物理事实.接着再从理论上推导、证明,从而得出结论. 这节课教材是从生活中骑自行车上坡的实例入手,引出动能和重力势能在此过程中是在相互转化的.接着通过实验来证实这个转化过程中的守恒结论.最后提出了自然界中最普遍、最基本的规律之一能量转化和守恒定律. 机械能守恒定律是能量守恒定律的一个特例,要使学生对定律的得出、含义、适用条件有一个明确的认识,这是能够用该定律解决力学问题的基础. 各种不同形式的能相互转化和守恒的规律,贯穿在整个物理学中,是物理学的基本规律之一.能量守恒定律是学习各种不同形式的能量转化规律的起点,也是运动学和动力学知识的进一步综合和展开的重要基础.所以这一节知识是本章重要的一节. 机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能. 分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一.在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的.在讨论物体系统的机械能时,应先确定参考平面. 教学重点1.理解机械能守恒定律的内容; 2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式; 3.理解能量转化和守恒定律. 教学难点1.从能的转化和功能关系出发理解机械能守恒的条件; 2.能正确判断研究对象在所经历的过程中机械能是否守恒. 教具准备自制投影片、CAI课件、重物、电磁打点计时器以及纸带、复写纸片、低压电源及两根导线、铁架台和铁夹、刻度尺、小夹子. 课时安排1课时 三维目标 一、知识与技能 1.知道什么是机械能,知道物体的动能和势能可以相互转化; 2.理解机械能守恒定律的内容; 3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式; 4.理解能量守恒定律,能列举、分析生活中能量转化和守恒的例子. 二、过程与方法 1.初步学会从能量转化和守恒的观点解释现象、分析问题; 2.通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法. 三、情感态度与价值观 1.通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题; 2.通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度. 教学过程 导入新课 [实验演示] 动能与势能的相互转化 教师活动:演示实验1:如下图,用细线、小球、带有标尺的铁架台等做实验.

高中物理考试热力学定律与能量守恒定律

选修3-3 第3讲 一、选择题 1.有关“温度”的概念,下列说法中正确的是( ) A.温度反映了每个分子热运动的剧烈程度 B.温度是分子平均动能的标志 C.一定质量的某种物质,内能增加,温度一定升高 D.温度较高的物体,每个分子的动能一定比温度较低的物体分子的动能大 [答案] B [解析] 温度是分子平均动能的标志,但不能反映每个分子的运动情况,所以A、D错误,由ΔU=Q+W可知C错,故选项B正确. 2.第二类永动机不可能制成,这是因为( ) A.违背了能量守恒定律 B.热量总是从高温物体传递到低温物体 C.机械能不能全部转变为内能 D.内能不能全部转化为机械能,同时不引起其他变化 [答案] D [解析] 第二类永动机的设想虽然符合能量守恒定律,但是违背了能量转化中有些过程是不可逆的规律,所以不可能制成,选项D正确. 3.(2010·重庆)给旱区送水的消防车停于水平地面.在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体( ) A.从外界吸热B.对外界做负功 C.分子平均动能减小D.内能增加 [答案] A [解析] 该题考查了热力学定律,由于车胎内温度保持不变,故分子的平均动能不变,内能不变,放水过程中体积增大对外做功,由热力学第一定律可知,胎内气体吸热.A选项正确. 4.如图所示,两相同的容器装同体积的水和水银,A、B两球完全 相同,分别浸没在水和水银的同一深度,A、B两球用同一种特殊的材料 制成,当温度稍升高时,球的体积会明显变大.如果开始时水和水银的 温度相同,且两液体同时缓慢地升高同一值,两球膨胀后,体积相等, 则( ) A.A球吸收的热量较多 B.B球吸收的热量较多

高考物理动量守恒定律解题技巧及练习题

高考物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

高中物理的能量守恒定律知识点

高中物理的能量守恒定律知识点 能量守恒定律也称能的转化与守恒定律。 其内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体;在转化或转移的过程中,能量的总量不变。 高中物理都研究了哪些形式的能量? 研究能量守恒定律,要搞明白咱们主要研究哪些能量呢? 从解高中物理题的角度来分析,我们主要分析的是这五种形式的能量: 动能、弹性势能、重力势能、内能、电势能。 注:内能包括摩擦生热与焦耳热两种形式,高中不考磁能。动能、弹性势能、重力势能这三种形式能量之和称之为机械能。 当然,上述五种形式的能量,是力学与电磁学常考到的。 选修内容中的机械振动也是具有能量的,还有光子能量,核能等等,这些都不在本文讨论范围内,不过同学们需要知道,光电效应方程与波尔能级方程也

都是能量守恒定律的推导。 能量守恒定律的公式 E1=E2 即,初始态的总能量,等于末态的总能量。 或者说,能量守恒定律,就是说上文提到的五种形式的能量之和是恒定的。 机械能守恒定律与能量守恒定律关系 机械能守恒定律是能的转化与守恒定律的特殊形式。两者大多都是针对系统进行分析的。 (1)在只有重力、弹力做功时,系统对应的只有动能、弹簧弹性势能、重力势能三种形式能量之间的变化。 (2)在有重力、弹簧弹力、静电场力、摩擦力、安培力等等,众多形式的力做功时,系统对应的有动能、弹簧弹性势能、重力势能、电势能、摩擦热、焦耳热等等众多形式的能量变化,而这些能量也是守恒的。 从上述对比中不难看出,机械能守恒是能量守恒的一种特例。 因此,在熟练掌握能的转化与守恒定律内容的基础上,我们可以使用能量守恒来解决机械能守恒的问题。 或者说,能量守恒掌握的非常棒了,我们就可以

《大学物理学》动量守恒和能量守恒定律部分练习题

《大学物理学》动量守恒和能量守恒定律部分练习题 一、选择题 1. 用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。在铁锤敲打第一次时,能把钉子敲入 1.00cm 。如果铁锤第二次敲打的速度与第一次完全相同,那么第二次敲入多深为 ( ) (A ) 0.41cm ; (B ) 0.50cm ; (C ) 0.73cm ; (D ) 1.00cm 。 【提示:首先设阻力为f k x =,第一次敲入的深度为x 0,第二次为?x ,考虑到两次敲入所用的功相等,则0 000x x x x kxd x kxd x +?=??】 2.一质量为0.02 kg 的子弹以200m/s 的速率射入一固定墙 壁内,设子弹所受阻力与其进入墙壁的深度x 的关系如图 所示,则该子弹能进入墙壁的深度为 ( ) (A )0.02m ; (B ) 0.04 m ; (C ) 0.21m ; (D )0 .23m 。 【提示:先写出阻力与深度的关系53100.022100.02 x x F x ?≤=??>?,利用212W mv =有0.0253200.021102100.02(200)2 x xd x d x +?=????,求得0.21x m =】 3.对于质点组有以下几种说法: (1)质点组总动量的改变与内力无关; (2)质点组总动能的改变与内力无关; (3)质点组机械能的改变与保守内力无关。 对上述说法判断正确的是 ( ) (A ) 只有(1)是正确的; (B )(1)、(2)是正确的; (C )(1)、(3)是正确的; (D )(2)、(3)是正确的。 【提示:(1)见书P55,只有外力才对系统的动量变化有贡献;(2)见书P74,质点系动能的增量等于作用于质点系的一切外力作的功与一切内力作的功之和;(3)见书P75,质点系机械能的增量等于外力与非保守内力作功之和】 4.有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则 ( ) (A )物块到达斜面底端时的动量相等; (B ) 物块到达斜面底端时的动能相等; (C )物块和斜面(以及地球)组成的系统,机械能不守恒; (D )物块和斜面组成的系统水平方向上动量守恒。 【提示:首先要明白的是物块从斜面上下滑到底部时,斜面也在地面上滑动。(A )动量是矢量;(B )两斜面最后获得的动能不同,所以,两物块到达斜面底端的动能也不同;(C )物块和斜面(以及地球)组成的系统,没有外力或非保守内力作功,则机械能守恒;(D )系统水平方向上无外力作用,故系统水平方向上动量守恒】 5.对功的概念有以下几种说法: (1)保守力作正功时,系统内相应的势能增加; (2)质点运动经一闭合路径,保守力对质点作的功为零; (3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。 对上述说法判断正确的是 ( ) (A )(1)、(2)是正确的; (B )(2)、(3)是正确的; (C )只有(2)是正确的; (D ) 只有(3)是正确的。 【提示:(1)保守力作正功时,相应的势能应降低;(2)为保守力的定义;(3)非保守内力作功的代数和不为零】 6.如图所示,质量分别为m 1和m 2的物体A 和B , 置于光滑桌面上,A 和B 之间连有一轻弹簧,另有 一有质量为m 1和m 2的物体C 和D 分别置于物体A 和B 之上,且物体A 和C 、B 和D 之间的摩擦系数

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2 t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 32 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C --= )(22 22y y k v v o o -+=

(整理)大学物理授课教案 第三章 动量守恒和能量守恒定律.

第三章 动量守恒和能量守恒定律 §1-1质点和质点系的动量定理 一、质点的动量定理 1、动量 质点的质量m 与其速度v 的乘积称为质点的动量,记为P 。 (3-1) 说明:⑴P 是矢量,方向与v 相同 ⑵P 是瞬时量 ⑶P 是相对量 ⑷坐标和动量是描述物体状态的参量 2、冲量 牛顿第二定律原始形式 )(v m dt d F = 由此有)(v m d dt F = 积分: 1221 21p p P d dt F p p t t -==?? (3-2) 定义:?21 t t dt F 称为在21t t -时间内力F 对质点的冲量。 记为 (3-3) 说明:⑴I 是矢量 ⑵I 是过程量 ⑶I 是力对时间的积累效应 ⑷I 的分量式 ??? ????===???2 12121t t z z t t y y t t x x dt F I dt F I dt F I

∵ ??? ? ???=-=-=-???2 121 21)()()(12121 2t t z z t t y y t t x x dt F t t F dt F t t F dt F t t F (3-4) ∴分量式(3—4)可写成 ??? ??-=-=-=) ()()(121212t t F I t t F I t t F I z z y y x x (3-5) x F 、y F 、z F 是在21t t -时间内x F 、y F 、z F 平均值。 3、质点的动量定理 由上知 12p p I -= (3-6) 结论:质点所受合力的冲量=质点动量的增量,称此为质点的动量定理。 说明:⑴I 与12p p -同方向 ⑵分量式??? ??-=-=-=z 1z 2z y 1y 2y x 1x 2x p p I p p I p p I (3-7) ⑶过程量可用状态量表示,使问题得到简化 ⑷成立条件:惯性系 ⑸动量原理对碰撞问题很有用 二、质点系的动量定理 概念:系统:指一组质点 内力:系统内质点间作用力 外力:系统外物体对系统内质点作用力 设系统含n 个质点,第i 个质点的质量和速度分别为i m 、i v ,对于第i 个质点受合内力为内i F ,受合外力为外i F ,由牛顿第二定律有 dt v m d F F i i i i ) ( =+内外 对上式求和,有 ∑∑∑∑======+n 1 i i i n 1i i i n 1i i n 1i i )v m (dt d dt )v m (d F F 内 外 因为内力是一对一对的作用力与反作用力组成,故0=合内力F , 有 P dt d F =合外力 (3-8) 结论:系统受的合外力等于系统动量的变化,这就是质点系的动量定理。 式(3-8)可表示如下

高二物理能量守恒定律的典型例题

能量守恒定律的典型例题 [例1]试分析子弹从枪膛中飞出过程中能的转化. [分析]发射子弹的过程是:火药爆炸产生高温高压气体,气体推动子弹从枪口飞出. [答]火药的化学能→通过燃烧转化为燃气的内能→子弹的动能. [例2]核电站利用原子能发电,试说明从燃料铀在核反应堆中到发电机发出电的过程中的能的转化. [分析]所谓原子能发电,是利用原子反应堆产生大量的热,通过热交换器加热水,形成高温高压的蒸汽,然后推动蒸汽轮机,带动发电机发电. [答]能的转化过程是:核能→水的内能→汽轮机的机械能→发电机的电能. [说明] 在能的转化过程中,任何热机都不可避免要被废气带走一些热量,所以结合量守恒定律可得到结论:

不消耗能量,对外做功的机器(称为第一类永动机)是不可能的; 把工作物质(蒸汽或燃气)的能量全部转化为机械能(称第二类永动机)也是不可能的. 【例3】将一个金属球加热到某一温度,问在下列两种情况下,哪一种需要的热量多些?(1)将金属球用一根金属丝挂着(2)将金属球放在水平支承面上(假设金属丝和支承物都不吸收热量)A.情况(1)中球吸收的热量多些 B.情况(2)中球吸收的热量多些 C.两情况中球吸收的热量一样多 D.无法确定 [误解]选(C)。 [正确解答]选(B)。 [错因分析与解题指导]小球由于受热体积要膨胀。由于小球体积的膨胀,球的重心位置也会变化。如图所示,在情况(1)中,球受热后重心降低,重力对球做功,小球重力势能减小。而在情况(2)中,

球受热后重心升高。球克服重力做功,重力势能增大。可见,情况( 1)中球所需的热量较少。 造成[误解]的根本原因,是忽略了球的内能与机械能的转变过程。这是因为内能的变化是明确告诉的,而重力势能的变化则是隐蔽的。在解题时必须注意某些隐蔽条件及其变化。 [例4]用质量M=0.5kg的铁锤,去打击质量m=2kg的铁块。铁锤以v=12m/s的速度与铁块接触,打击以后铁锤的速度立即变为零。设每次打击产生的热量中有η=50%被铁块吸收,共打击n=50次,则铁块温度升高多少?已知铁的比热C=460J/kg℃。 [分析] 铁锤打击过程中能的转换及分配关系为 据此,即可列式算出△t. [解答]铁锤打击n=50次共产生热量:

高一物理能量守恒定律练习题

第3节能量守恒定律测试 1、下列关于机械能守恒的说法中,正确的是() A .做匀速直线运动的物体的机械能一定守恒 B .做匀变速运动的物体的机械能不可能守恒 C .如果没有摩擦力和介质阻力,运动物体的机械能一定守恒 D .物体只发生动能和势能的相互转换时,物体的机械能守恒 2、试以竖直上抛运动为例,证明机械能守恒.设一个 质量为m 的物体,从离地h i 处以初速v i 竖直上抛,上 升至 h 2高处速度为V 2,如图7-7-1所示. 3、在下列情况中,物体的机械能守恒的是(不计空气阻 力)() A .推出的铅球在空中运动的过程中 B .沿着光滑斜面匀加速下滑的物体 C .被起重机匀速吊起的物体 D .细绳的一端系一小球,绳的另一端固定,使小球在竖直平面 内做圆周运动 4、如图7-7-2所示,某人以拉力F 将物体沿斜面拉下,拉力大小等 于摩擦力,则下列说法中正确的是() A .物体做匀速运动 B .合外力对物体做功等于零 C .物体的机械能保持不变 |卽才 陀一 87-7-1

D.物体机械能减小5、下列关于物体机械能守恒的说法中,正确的是() A .运动的物体,若受合外力为零,则其机械能一定守恒 B .运动的物体,若受合外力不为零,则其机械能一定不守恒 C.合外力对物体不做功,物体的机械能一定守恒 D .运动的物体,若受合外力不为零,其机械能有可能守恒 6、当物体克服重力做功时,物体的() A .重力势能一定减少,机械能可能不变 B .重力势能一定增加,机械能一定增加 C.重力势能一定增加,动能可能不变 D .重力势能一定减少,动能可能减少 7、物体在空中以9. 8m/s2的加速度加速下降,则运动过程中物体 的机械能() A .增大 B .减小C.不变D .上述均有可能 &如图7-7-3所示,物体沿光滑半圆形凹面从A 点滑至B点的过程中,物体受力和力的作用,其中只 有力做功,重力势能,动能,但两者之和. 9、竖直向上将子弹射出,子弹在上升过程中,子弹的动能,重力势能.在最高点时子弹的动能为,重力势能达。由于空气阻力的存在, 最高点时的重力势能于射击时的初动能,子弹的机械能。 10、一质量为m的皮球,从不同高度自由落下时反弹起来后能上升的最大高度是原来的,现将该球从高为h处竖直向下抛出,要使它反弹到h

大学物理物理知识点总结!!!!!

大学物理物理知识点总 结!!!!! This manuscript was revised by the office on December 10, 2020.

第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?==?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==

ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ 分量式为 02 0cos ()1sin ()2 αα==-?? ???水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度ds v dt = 切向加速度t dv a dt = (速率随时间变化率) 法向加速度2 n v a R =(速度方向随时间变化率)。 2.角量:角位移θ(单位rad )、角速度d dt θ ω= (单位1rad s -?) 角速度22d d dt dt θω α==(单位2rad s -?) 3.线量与角量关系:2 = t n s R v R a R a R θωαω===、 、、 4.匀变速率圆周运动:

相关主题