搜档网
当前位置:搜档网 › 絮凝沉淀池计算书

絮凝沉淀池计算书

絮凝沉淀池计算书
絮凝沉淀池计算书

折板絮凝池计算书

折板絮凝工艺设计计算书 一、主要采用数据 1、水厂规模为40000m3/d,已经加自用水量,则净水处理总水量应为: Q设计 =40000=1666、67=0、463 2、设总絮凝时长为:T=17min 3、絮凝区有效尺寸: V 有效 = Q设计×T×60=234、6 4、絮凝池的布置: 将絮凝池分为两个并联的池,根据沉淀池的宽度10m,每个絮凝池的宽度为5m。且设其有效深度H=3、6m; 因此有,单个絮凝池的尺寸为13、0×5m×3、6m(长宽深)。单个流量Q=0、23m2 /s, 将每个絮凝池分为三段絮凝,第一段采用相对折板(第1~3格)、第二段采用平行折板(第3~6格)、第三段采用平行直板(第7~8格)。折板采用单通道。1~6格折板厚度采用0、06m。第7~8格为0、1m。 二、详细计算 一)第一絮凝段: 设通道宽度为B=1、4m,设计中间峰速v1=0、3m2 /s 1)、中间数据 ①中间峰距:b1 =Q/(v1 *B)= =0、55m ②中间谷距:b2 =0、55+0、355*2=1、26m 2)、侧边数据 ①侧边峰距:b3 = = = 0、885m ②侧边谷距:b4=0、885+0、355=1、240 3)、速度 ①中间谷距速度:v2 = Q/(b2 *B)= =0、130 m2 /s ②侧边峰距速度:v3 = Q/(b3 *B)= =0、186 m2 /s ③侧边谷距速度:v4 = Q/(b4 *B)= =0、132 m2 /s 4)、上下转弯数据 ①设上转弯高度:0、72m、 上转弯速度:v上= Q/(0、72*B)= =0、228 m2 /s ②设下转弯高度:0、90m 下转弯速度:v下= Q/(0、9*B)= =0、193 m2 /s 5)、水头损失 ⑴缩放损失

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1. 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD ,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h ,为两池并联设计。 2. 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质和处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上 规定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-2 3/2.18.0,中 心管流速不大于s mm /30,中心管下部应设喇叭口和反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450 。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0.025m/s ,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h ,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36 .040=?= ,取d 0=900mm ; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m ) 喇叭口的管径取中心管直径的1.35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口和反射板之间的缝隙 水流速度 v 1=0.02mm/s ,则有

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1、 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h,为两池并联设计。 2、 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质与处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上规 定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-23/2.18.0,中心管 流速不大于s mm /30,中心管下部应设喇叭口与反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0、025m/s,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36.040=?=,取d 0=900mm; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m) 喇叭口的管径取中心管直径的1、35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口与反射板之间的缝隙 水流速度 v 1=0、02mm/s,则有 m m d v Q h 2.0215 .102.014.336005086400113=???=?=π;

沉淀池设计计算

沉淀池 沉淀池是利用重力沉降作用将密度比水大的悬浮颗粒从水中去除的处理构筑物,是废水处理中应用最广泛的处理单元之一,可用于废水的处理、生物处理的后处理以及深度处理。在沉砂池应用沉淀原理可以去除水中的无机杂质,在初沉池应用沉淀原理可以去除水中的悬浮物和其他固体物,在二沉池应用沉淀原理可以去除生物处理出水中的活性污泥,在浓缩池应用沉淀原理分离污泥中的水分、使污泥得到浓缩,在深度处理领域对二沉池出水加絮凝剂混凝反应后应用沉淀原理可以去除水中的悬浮物。 沉淀池包括进水区、沉淀区、缓冲区、污泥区和出水区五个部分。进水区和出水区的作用是使水流均匀地流过沉淀池,避免短流和减少紊流对沉淀产生的不利影响,同时减少死水区、提高沉淀池的容积利用率;沉淀区也称澄清区,即沉淀池的工作区,是沉淀颗粒与废水分离的区域;污泥区是污泥贮存、浓缩和排出的区域;缓冲区则是分隔沉淀区和污泥区的水层区域,保证已经沉淀的颗粒不因水流搅动而再行浮起。 沉淀池的原理 沉淀池是利用水流中悬浮杂质颗粒向下沉淀速度大于水流向卜流动速度、或向下沉淀时间小于水流流出沉淀池的时间时能与水流分离的原理实现水的净化。 理想沉淀池的处理效率只与表面负荷有关,即与沉淀池的表面积有关,而与沉淀池的深度无关,池深只与污泥贮存的时间和数量及防止污泥受到冲刷等因素有关。而在实际连续运行的沉淀池中,由于水流从出水堰顶溢流会带来水流的上升流速,因此沉淀速度小于上升流速的颗粒会随水流走,沉淀速度等于卜-升流速的颗粒会悬浮在池中,只有沉淀速度大于上升流速的颗粒才会在池中沉淀下去。而沉淀颗粒在沉淀池中沉淀到池底的时间与水流在沉淀池的水力停留时间有关,即与池体的深度有关。 理论上讲,池体越浅,颗粒越容易到达池底,这正是斜管或斜板沉淀池等浅层沉淀池的理论依据所在。为了使沉淀池中略大于上升流速的颗粒沉淀下去和防止已沉淀下去的污泥受到进水水流的扰动而重新浮起,因而在沉淀区和污泥贮存区之间留有缓冲区,使这些沉淀池中略大于上升流速的颗粒或重新浮起的颗粒之间相互接触后,再次沉淀下去。 用沉淀池的类型 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。各自的优缺点和适用范围见表3—3。

折板絮凝池计算例题1

3.2 折板絮凝池 3.2.1 设计流量 Q= 4.5×104×1.08/86400=0.562m 3/s 3.2.2 絮凝反应时间 T=15min ,分三部分,反应时间各占5min 。 3.2.3 池子体积 V=QT=0.562×15×60=505.8 m 3 3.2.4 池子面积 池深取4.2m (有效水深H=3.9m ),则 A=V/H=505.8/3.9=129.7 m 2 考虑折板厚度、隔墙在池内占面积系数1.05,则 池子面积A=1.05×129.7=136.2 m 2 3.2.5 池长 池宽B=11.4m (与后述平流沉淀池等宽) L=A/B=136.2/11.4=12m 3.2.6 采用平流式布置折板,分三段,即为相对折板、平行折板和平行直板。第一、二段采用120度折板,规格为l ×b=4130×800mm ,厚为50mm ,钢筋混凝土制,第三段采用直板,厚为50mm ,钢筋混凝土制。 3.2.6.1 相对折板 取波峰流速v 1=0.35m/s ,波谷流速v 2=0.15m/s 峰宽A=m v v v b 6.02 cos 2212=-α 谷宽B=2bcos 2 α+A=1.4m 折板的通道拐弯处的过水断面面积为通道过水断面的1.2—1.5倍,按此原则对折板进行凑整计算,核算后,确定折板数量为7.5×2×4=60块。 折板的通道拐弯处宽S 1=1.2×0.562/3.9×0.35=0.49m 则1800拐弯处流速v 0=0.562/3.9×0.49=0.29m/s 渐放段水损h 1=0.5 m g v v 0026.08 .9215.035.05.022 22221=?-?=- 渐缩段水损h 2=[1+0.1- ()][()]m g v F F 0057.06 .1935.04.16 .01.0122221221 =-+= 每个1800拐弯处水损h i =3m g v 0129.06.1929.0322 20=?= ∑h=n(h 1 +h 2)+ ∑h i =3×7×(0.0026+0.0057)+2×0.0129=0.20m 3.2.6.2 平行折板 取板间流速v=0.185m/s ,折板间距B=1.4m 折板数量为6.5×2×2=26块 折板的通道拐弯处宽S 2=1.5×0.562/3.9×0.185=1.2m

折板絮凝池计算例题

例1-2 设计水量为Q = 10万m 3/d ,自用水系数为1.08。 解:(1)设一组由两个絮凝池组成 则单池设计流量为 h m Q /625.03600 24208.1101034=????= (2)絮凝池所需要容积及絮凝池总体积尺寸确定 1)絮凝时间T = 13min 2)絮凝池所需要净容积 V= 2QT = 2×0.625×13×60 = 975m 3 3)絮凝池隔墙,配水间,折板所占容积按30%计算,则絮凝池的实际体积为1.3V 4)单个絮凝池的净容积 V = QT = 487.5 m 3 5)参照已设计的平流沉淀池尺寸,池宽L=12.50m ,有效水深H=3.5+H 1+H 2,其中 的H 1为絮凝池水头损失,H 2为絮凝池至沉淀池水头损失 则有效水深H=3.5+0.4+0.1=4.0m 超高0.3m ,泥斗高0.6m 则单个絮凝池的池宽m H L V B 75.95 .120.45 .487=?=?= ,取B=9.75m (3)进水管计算 1)设一条进水管,其设计流量Q=1.25m 3/s=1250L/s 取流速v=1.11m/s 选管径DN1200,一条进水管承担两个絮凝池 (4)配水间的设计 配水间净长取5.7m ,净宽取2.5m 其进入一个絮凝池的流速v=0.7m/s ,则D=1.06m,相对来说取深为2m 配水间尺寸V=2.5×5.7×2.0m 3 (5)分室分格计算 1)絮凝池采用多通道折板絮凝池,里面安装折板箱,为平行折板 分四档,每档流速分别为 v 1=0.3m/s ; v 2=0.25m/s ; v 3=0.20m/s ; v 4=0.15m/s 2)第一档计算 第一档分为8格,每格宽1.3m 则每格净长 60.13.13.0625.0=?==vB Q L m 则长L=1.60m 实际流速

计算说明书 2017042385813

n d Q 4.42 1184.0h =计算说明书 水厂的设计水量Q 设计 水厂自用水量的大小取决于给水处理方法、构筑物型式以及原水水质等因素,一般采用最高日用水量的5%~10%,这里取5%。根据城市用水量状况,为10万吨/日的供水量,所以 Q 供水=1000003 m /d=4166.73 m /h=1157.4L/S 而水厂的处理水量则要加上自用水量 Q 设计=Q 供水*(1+0.05) =1050003m /d =43753m /h =1215.3L/S =1.2153m /S 混合工艺设计计算 考虑设絮凝池2座,混合采用管式混合。设水厂进水管投药口至絮凝池的距离为50米。进水管采用两条, 设计流量为Q=96300/24/2=0.5573/m s 。 进水管采用钢管,直径为DN800,查设计手册1册,设计流速为1.11m/s ,1000i=1.8m ,混合管段的水头损失50 1.8 0.091000 h iL m ?== ≈。小于管式混合水头损失要求为0.3-0.4m 。这说明仅靠进水管内流速不能达到充分混合的要求。故需在进水管内装设管道混合器,本设计推荐采用管式静态混合器,管式静态混合器示意图见图4.3。 1. 设计参数: 采用玻璃钢管式静态混合器(如图4.3),近期采用2个。 每组混合器处理水量为0.608m 3/s ,水厂进水管投药口至絮凝池的距离为10m ,,进水管采用两条DN800钢管。 2. 设计计算: 管式静态混合器的水头损失一般小于0.5米,根据水头损失计算公式

式中,h ——水头损失(m ) Q ——处理水量(m 3/s ) d ——管道直径(m ) n ——混合单元(个) 本次设计中,采用两条铸铁输水管道由水源地向给水厂输水,其中原水流速不小于0.6m/s ,在技术上最高流速限定在2.5~3.0m/s 的范围内。此外还需要根据当地的经济条件,考虑管网造价和经营管理费用等因素,来选出合适的经济流速。本次设计中经济流速取1.25[1]m/s ,每条输水管的输水流量为0.608m3/s 。 则输水管径 d= 14 .325.1608 .04v 4??= πQ =0.787m 。 n d Q 4.421184.0h =<0.5m ,故2 4 .41184.05.0n Q d ?< 设计中取d=0.8m ,Q=0.608m 3/s 。 2 4 .41184.05.0n Q d ?<=4.28 水力条件符合。 选DN800内装4个混合单元的静态混合器。加药点设于靠近水流方向的第一个混合单元,投药管插入管径的1/4处,且投药管上多处开孔,使药液均匀分布。 (3)混合器选择: 查设备手册选用管式静态混合器,规格DN800。静态混合器采用4节,静态混合器总长4100mm ,管外径为820mm ,质量1249kg ,投药口直径65mm 。 原水 管道 药剂 混合单元体 静态混合器 管道

竖流式沉淀池

竖流式沉淀池 设计概述 因本次设计的设计流量不大,拟采用竖流式沉淀池. 设计参数 ①池的直径或池的边长不大于8m ,通常为4~7m 。 ②池径与有效水深之比不大于3。 ③中心管管内流速不大于30mm/s。 ④中心管下端应设于喇叭口和反射板,反射板距地面不小于,喇叭口直径及高度为中心管直径的 倍,反射板直径为喇叭口直径的 倍,反射板表面与水平面的倾角为17°。 ⑤中心管下端至反射板表面之间的缝隙高在~ 范围内时,缝隙中污水流速,初次沉淀池中不大于30mm/s ,二沉池不大于20mm/s 。 ⑥池径小于7m 时,溢流沿周边流出,池径大于7m 时,应增设幅流式集水支渠。 ⑦排泥管下端距池底不大于,上端超出水面不小于。 ⑧浮渣挡板距集水槽~,淹没深度~。 设计计算 ⑴ 中心管面积 设中心管流速=m/s,采用池数n=2,则每池最大设计流量为 s m n Q q /029.02 058.03max max === 则中心管面积 20max 96.003 .0029.0m v q f === ⑵ 沉淀部分有效面积 设表面负荷q1=)/(2 3h m m ,则上升流速

s m h m u v /0007.0/52.20=== 2max 43.410007 .0029.0m v q A === ⑶ 沉淀池直径 ()()m m f A D 835.714 .396.043.4144<=+?=+= π ⑷ 沉淀池有效水深 设沉淀时间T =h,则 m vT h 78.336005.10007.036002=??=?= ⑸ 较核池径水深比 39.178 .335.72<==h D ∴符合要求 (6)校核集水槽每米出水堰的过水负荷 S L S L D q q /9.2/26.1100035.7029.0max 0<=??==ππ ∴符合要求 ⑹ 中心管直径 m f d 11.114 .396.0440=?==π ⑺ 中心管喇叭口下缘至反射板的垂直距离 m d v q h 31.05 .114.302.0029.011max 3=??=??=π 式中: h3 ——中心管喇叭口下缘至反射板的垂直距离,m v1 ——污水由中心管喇叭口与反射板之间缝隙流处的流速,m/s d1 —— 喇叭口直径; d1==×=m ⑻ 污泥斗及污泥斗高度 取α=60°,截头直径1 d =m,则

折板絮凝池

折板絮凝池 本设计采用折板絮凝池。折板絮凝池是在絮凝池内,放置一定数量的折板,水流沿折板上、下流动,经过无数次折转,促进颗粒絮凝。这种絮凝池因对水质水量适应性强,停留时间短,絮凝效果好,又能节约絮凝药剂,因此选用次絮凝池。 设计计算: 1.单组絮凝池有效容积 Q=30000/24=1250m3/h V=QT=1250*12/4/60=62.5m3 2.絮凝池长度 取 H’=3.25m,B=6.0m L’=V/H’/B=62.5/3.04/6=3.25m 絮凝池长度方向用隔墙分成三段,首段和中段均为1.0米,末段格宽为2.0米,隔墙厚为0.15米,则絮凝池总长度为 L=3.25+5*0.15=4.0m 2.各段分隔数 与沉淀池组合的絮凝池池宽为24.0米,用三道隔墙分成四组,每组池宽为B’=[24-3*0.15]/4=5.8875m 首段分成10格则每格长度 L 1 =2[5.8875-4*0.15]/10=1.06m 首段每格面积为 f1=1.0*1.06=1.06m2 通过首段单格的平均流速为 v1=1250/3600/4/1.06=0.082m/s 中段分为8格,末段分为7格,则中段和末段的各格格长、面积、平均流速分别为 L2=1.36m f2=1.36m2 v2=0.064m/s L3=0.71m f3=1.42m2 v3=0.061m/s 3.水头损失计算 相对折板 取v 1=0.14m/s v 2 =0.27m/s h 1=0.5*(v 1 2-v 2 2)/2g=0.00136m 渐缩段水头损失 取F 1=0.56m2 F 2 =1.06m2 h 2=[1+0.1-(F 1 /F2)2]v 2 /2g=0.00082m h=0.312m 平行折板

沉淀池设计与计算

第六节、普通沉淀池 沉淀池可分为普通沉淀池和浅层沉淀池两大类。按照水在池内的总体流向,普通沉淀池又有平流式、竖流式和辐流式三种型式。 普通沉淀池可分为入流区、沉降区、出流区、污泥区和缓冲区5个功能区。入流区和出流区的作用是进行配水和集水,使水流均匀地分布在各个过流断面上,为提高容积利用、系数和固体颗粒的沉降提供尽可能稳定的水力条件。沉降区是可沉颗粒与水分离的区域。污泥区是泥渣贮存、浓缩和排放的区域。缓冲层是分隔沉降区和污泥区的水层,防止泥渣受水流冲刷而重新浮起。以上各部分相互联系,构成一个有机整体,以达到设计要求的处理能力和沉降效率。 一、平流沉淀池 在平流沉淀池内,水是按水平方向流过沉降区并完成沉降过程的。图3-16是没有链带式刮泥机的平流沉淀池。废水由进水槽经淹没孔口进入池内。在孔口后面设有挡板或穿孔整流墙,用来消能稳流,使进水沿过流断面均匀分布。在沉淀池末端没有溢流堰(或淹没孔口)和集水槽,澄清水溢过堰口,经集水槽排出。在溢流堰前也设有挡板,用以阻隔浮渣,浮渣通过可转动的排演管收集和排除。池体下部靠进水端有泥斗,斗壁倾角为50°~60°,池底以0.01~0.02的坡度坡向泥斗。当刮泥机的链带由电机驱动缓慢转动时,嵌在链带上的刮泥板就将池底的沉泥向前推入泥斗,而位于水面的刮板则将浮渣推向池尾的排渣管。泥斗内设有排泥管,开启排泥阀时,泥渣便在静水压力作用下由排泥管排出池外。[显示图片] 链带式刮泥机的缺点是链带的支承和驱动件都浸没于水中,易锈蚀,难保养。为此,可改用桥式行车刮泥机,这种刮泥机不但运行灵活,而且保养维修都比较方便。对于较小的平流沉淀池,也可以不设刮泥设备,而在沿池的长度方向设置多个泥斗,每个泥斗各自单独排泥,既不相互干扰,也有利于保证污泥浓度。 沉淀池的设计包括功能构造设计和结构尺寸设计。前者是指确定各功能分区构件的结构形式,以满足各自功能的实现;后者是指确定沉淀池的整体尺寸和各构件的相对位置。设计良好的沉淀池应满足以下三个基本要求;有足够的沉降分离面积:有结构合理的人流相出流放置能均匀布水和集水;有尺寸适宝、性能良好的污泥和浮渣的收集和排放设备。 进行沉淀池设计的基本依据是废水流量、水中悬浮固体浓度和性质以及处理后的水质要求。因此,必须确定有关设计参数,其中包括沉降效率、沉降速度(或表面负荷)、沉降时间、水在池内的平均流速以及泥渣容重和含水率等。这些参数一般需要通过试验取得;若无条件,也可根据相似的运行资料,因地制宜地选用经验数据。以-萨按功能分区介绍设计和计算方法。 1.入流区和出流区的设计 入流和出流区设计的基本要求,是使废水尽可能均匀地分布在沉降区的各个过流断面,既有利于沉降,也使出水中不挟带过多的悬浮物。

竖流式沉淀池的设计

竖流式沉淀池的设计 一、前言 竖流式沉淀池又称立式沉淀池,是池中废水竖向流动的沉淀池。池体平面图形为圆形或方形,水由设在池中心的进水管自上而下进入池内(管中流速应小于30mm/s),管下设伞形挡板使废水在池中均匀分布后沿整个过水断面缓慢上升(对于生活污水一般为0、5-0、7mm/s,沉淀时间采用1-1、5h),悬浮物沉降进入池底锥形沉泥斗中,澄清水从池四周沿周边溢流堰流出。堰前设挡板及浮渣槽以截留浮渣保证出水水质。池的一边靠池壁设排泥管(直径大于200mm)靠静水压将泥定期排出。竖流式沉淀池的优点是占地面积小,排泥容易,缺点是深度大,施工困难,造价高。常用于处理水量小于20000m3/d的污水处理厂。 理论依据:竖流式沉淀池中,水流方向与颗粒沉淀方向相反,其截留速度与水流上升速度相等,上升速度等于沉降速度的颗粒将悬浮在混合液中形成一层悬浮层,对上升的颗粒进行拦截和过滤。因而竖流式沉淀池的效率比平流式沉淀池要高。 二、设计内容:某小区的生活污水量为7000 m3/d,变化系数为1、65 ,CODCr450 mg/l,BOD5220 mg/l,SS370 mg/l,采用二级处理,处理后污水排入三类水体。通过上述参数设计该污水处理厂的生物处理工艺的初次沉淀池。

三、竖流式沉淀池的工作原理在竖流式沉淀池中,污水是从下向上以流速v作竖向流动,废水中的悬浮颗粒有以下三种运动状态:①当颗粒沉速u>v时,则颗粒将以u-v的差值向下沉淀,颗粒得以去除;②当u=v时,则颗粒处于随遇状态,不下沉亦不上升;③当u

絮凝形式比较

1.1絮凝工艺简介 絮凝工艺的基本要求是,原水与药剂经混合后,通过絮凝设备应形成肉眼可见的大的密实絮凝体。絮凝池形式较多,概括起来分成两大类:水力搅拌式和机械搅拌式。考虑到机械絮凝池维修工作量大、能耗高,本技改工程拟采用水力絮凝池。水力絮凝工艺主要有以下几种:微涡流絮凝工艺/隔板工艺、折板工艺及网格工艺等,相关工艺简述如下: 1.1.1微涡流絮凝工艺简介 水的涡旋流动增加流速梯度,促进水中胶体亚微扩散与絮体碰撞,提高絮凝效率。涡流尺寸越小,越接近絮体尺寸(毫米级),效果越显著。隔板等絮凝池为大涡流(米级),折板等絮凝池为中涡流(分米级),网格絮凝池为小涡流(厘米级)。而微涡流絮凝工艺,其产生微涡流的数量和效果均优于网格絮凝池,絮凝效率较传统工艺提高一倍以上。 微涡流絮凝工艺的核心是微涡流絮凝器,其为空心球体结构,表面开有小孔,当水流以适当的流速穿过小孔,在壳体内外表面处产生大量的小涡流,同时因壳体流速较小,形成絮凝泥渣层,泥渣层对水流的扰动产生微涡流。 微涡流絮凝工艺的特点是: ①絮凝效率高,与传统工艺相比产水量可提高50~100%; ②反应时间短,只要5~8分钟,是传统工艺的1/3/~1/2; ③絮体质量高,有利于提高沉淀效率; ④水量水质变化适应能力强,可适应负荷50~120%范围内变化; ⑤出水质量稳定,絮凝剂消耗降低10~20%,滤池反洗水节约30%以上; ⑥安装简单,维护方便,改造只需少量土建改动,微涡流絮凝器直接投入使用,施工周期短,且絮凝器不易堵塞,便于清洗,寿命长。 1.1.2隔板絮凝工艺简介 隔板絮凝池是应用历史悠久、目前仍常应用的一种水力搅拌絮凝池,有往复式和回转式两种。后者是在前者的基础上加以改进而成。在往复式隔板絮凝池内,水流作180度转弯,局部水头损失较大,而这部分能量消耗往往对絮凝效果作用不大。因为180度的急剧转弯会使絮体有破碎可能,特别在絮凝后期。回转式隔板絮凝池内水流作90度转弯,局部水头损失大为减小,絮凝效果也有所提高。 隔板絮凝池通常用于大、中型水厂,因水量过小时,隔板间距过狭不便施工和维修。 隔板絮凝池优点是构造简单,管理方便。 缺点是流量变化大者,絮凝效果不稳定,与折板及网格絮凝池相比,因水流条件不甚理想,能量消耗(即水头损失)中的无效部分比例较大,故需较长絮凝时间,池子容积较大。 1.1.3折板絮凝工艺简介 折板絮凝池是在隔板絮凝池基础上发展起来的,目前已得到广泛应用。 折板絮凝池是利用在池中加设一些扰流单元以达到絮凝所要求的紊流状态,是能量损失得到充分利用,停留时间缩短,折板絮凝有多种形式,可以波峰对波谷平行安装,称“同波折板”;也可波峰相对安装,称“异波折板”。按水流通过折板间隙数,又分为“单通道”和“多通道”。折板絮凝池可布置成竖流或平流式。

竖流式沉淀池设计计算

竖流式沉淀池设计计算 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。 设置沉淀池的一般要求有哪些 (1)沉淀池的个数或分格数一般不少于2个,为使每个池子的人流量均等,要在人流口处设置调节阀,以便调整流量。池子的超高不能小于0.3m,缓冲层为0.3m~0.5m。 (2)一般沉淀池的停留时间不能小于1h,有效水深多为2~4m(辐流式沉淀池指周边水深),当表面负荷一定时,有效水深与沉淀时间之比也为定值。 (3)沉淀池采用机械方式排泥时,可以间歇排泥或连续排泥。不用机械

排泥时,应每日排泥,初沉池的静水头不应小于1.5m,二沉池的静水头,生物膜法后不应小于1.2m,活性污泥法后不应小于0.9m。 (4)采用多斗排泥时,每个泥斗均应没单独的排泥管和阀门,排泥管的直径不能小于200mm。污泥斗的斜壁与水平面的倾角,采用方斗时不能小于60°,采用圆斗时不能小于55 (5)当采用重力排泥时,污泥斗的排泥管一般采用铸铁管,其下端伸入斗内,顶端敞口伸出水面,以便于疏通,在水面以下1.5~2.0m处,由排泥管接出水平排泥管,污泥借静水压力由此管排出池外。 (6)使用穿孔排泥管排泥时,排泥管长度应在15m以内,排泥管管径150~200mm,孔径15~25mm,孔眼内流速4~5m/s,孔眼总面积与管截面积的比值为0.6~0.8,孔眼向下成45°~60°交错排列。为防止排泥管堵塞,应设压力水冲洗管,根据堵塞情况及时疏通。

(7)进水管有压力时,应设置配水井,进水管由配水井池壁接人,且应将进水管的进口弯头朝向井底。沉淀池进、出水区均应设置整流设施,同时具备刮渣设施。 (8)沉淀池的出水整流措施通常为溢流式集水槽,出水堰可用三角堰、孔眼等形式,普遍采用的是直角锯齿形三角堰,堰口齿深通常为50mm,齿距为200mm左右,正常水面应当位于齿高的1/2处。堰口设置可调式堰板上下移动机构,在必要时可以调整。 (9)沉淀池最大出水负荷,初沉池不宜大于2.9L/(s·m),二沉池不宜大于1.7 L/(s·m)。在出水堰前必须设置收集与排除浮渣的措施,如果使用机械排泥,排渣和排泥可以综合考虑。

课程设计计算书1---副本

】 (二)计算书 1. 加药间 溶液池 溶液池的容积W 2 417bn Q = 2αW W 2:溶液池容积(m 3); Q :处理水量(m 3 /h ); α:混凝剂最大投加量(mg/L ),设计中取30mg/L . b :混合浓度(%),混凝剂溶液一般采用5-20,设计中采用12; n :每日调制次数,设计中取n=2; 329.27m =2 x 12 x 4173092 x 30=W 溶液池设置两个,以便交替使用,保证连续投药。总深H =H 1+H 2+H 3=1++=。形状采用矩形,H 1为有效高度,取1m ;H 2为安全高度,取;H 3为贮渣深度,取。 溶液池取正方形,边长为F 1/2=2=,取。所以溶液池尺寸为长×宽×高=××=,则溶液池实际容积为 池旁设工作台,宽~,池底坡度为。底部设置DN100mm 放空管,采用硬聚氯乙烯塑料管,池内壁用环氧树脂进行防腐处理。沿地面接入药剂稀释用给水管DN80mm 一条,于两池分设放水阀门,按1h 放满考虑。 溶解池 ; 溶解池的容积W 1 321m 78.2=x9.273.0=0.3W =W 溶解池取正方形,有效水深H 1=,则 面积F = W 1/H 1,即边长a = F 1/2=,取 溶解池深度H =H 1+H 2+H 3=1++=,其中H 2为超高,设为;H 3为贮渣深度,取。 溶解池形状为矩形,则其尺寸为:长×宽×高=××=。溶解池设为两个。 溶解池放水时间为10分钟,则放水量为:s L t W q /6.4=10 ×601000 ×78.2=60=1

查水力计算表得放水管管径d 0=50mm ,采用塑料给水管;溶解池底部设管径d=100mm 的排渣管一根。 《 投药管 投药管流量: q = S L W /21.0=60 ×60×241000 ×2×27.960 ×60×241000 ×2×2= 查水力计算表得投药管管径d =30mm ,实际流速为s 溶解池搅拌设备 溶解池搅拌设备采用中心固定式平桨板式搅拌机。 计量投加设备 混凝剂的湿投方式分为重力投加和压力投加两种类型,重力投加方式有泵前投加和高位溶液池重力投加;压力投加方式有水射投加和计量泵投加。计量设备有孔口计量,浮杯计量,定量投药箱和转子流量计。本设计采用耐酸泵和转子流量计配合投加。 计量泵每小时投加药量: & h /m 39.0=24 27.9=24w = q 31 式中:1W ——溶液池容积(m3) 耐腐蚀液下立式泵型号25FYS-16选用2台,一备一用. 药剂仓库的设计计算 混合剂为聚合氯化铝,每袋质量为25kg ,每袋规格为××最大投加量为30mg/L ,水厂设计水量为:67670m 3/d =2820m 3/h ,药剂堆放高度,药剂储存期为30d ,则 聚合氯化铝的袋数为:袋2.2671=10x 10x 2510x 30x 20047x 30= 3 33 N ;取2672袋 药剂可以堆七层高,则堆放面积为:A = ) -1(e H NV = 2m 7.55=2.0-1×5.12 .0×25.0×5.0×2672)(,取为56m 。房内留有宽的过道,考虑到远期 发展,同时考虑到卸货,所以库房设计尺寸为:×6m 药库层高设,顶部设置电动单梁悬挂起重机。药库与加药间之间采用单轨吊

竖流折板絮凝原理及其工艺设计

竖流折板絮凝原理及其工艺设计Ξ 刘 强 (南昌有色冶金设计研究院,南昌市,330002) 〔摘 要〕从水力学方面分析了净水厂中竖流折板絮凝池的基本原理,阐述了竖流折板絮凝池的工艺特点及其工艺设计。 〔关键词〕折板絮凝原理 工艺特点 工艺设计 1 前言 在给水净水厂的水质净化过程中,混凝反应是一个十分重要的环节,它的完善程度对净水的后续处理影响很大。同时,它又是一个复杂的物理化学过程,一般可分为混合和絮凝两个阶段。在混合阶段,通过快速混合设备使无机盐混凝剂能迅速而均匀地扩散于水中,以创造良好的水解和聚合条件;同时,胶体脱稳随即完成并借颗粒的布朗运动和紊动水流进行凝聚,在此阶段不要求形成大的絮凝体。而在絮凝阶段,水在水力或机械搅拌下产生流体运动,造成水中颗粒碰撞从而形成具有良好沉淀性能的大的密实絮凝体。 絮凝池形式较多,分水力搅拌式和机械搅拌式两大类,水力搅拌式有隔板絮凝池、折板絮凝池、穿孔旋流絮凝池、网格絮凝池等。如何提高絮凝过程的效率,缩短絮凝时间,以减小絮凝池的容积,是絮凝池设计的一个重要课题。而竖流折板絮凝工艺就是近年来在我国得到广泛应用的有效、可行、适用范围较广的一种高效能水力絮凝方式。2 竖流折板絮凝的工作原理 竖流折板絮凝池是在竖流隔板絮凝池基础上发展起来的,它是将竖流隔板絮凝池的平板隔板改成具有一定角度的折板。其基本工作原理是,通过在絮凝池内设置一定数量的折板,加入絮凝剂并经充分混合的水流进入上下翻腾的夹间通道,通过折板间形成的缩放或拐弯造成边界层分离现象,并产生附壁紊流耗能,在絮凝池内沿程输入微量而足够的能量,增加水流内部颗粒的相对运动、相互碰撞,有效地提高输入能量的利用率和容积使用率,以缩短絮凝时间,提高絮凝体的沉降性能,从而达到絮凝的效果。 折板絮凝按折板组合形式,可分为同波折板和异波折板两种类型(如图1所示),两种折板絮凝类型的水动力学条件稍有不同,以下将详细阐述。 211 竖流同波折板絮凝 折板可以波峰对波谷平行安装,称同 第20卷第2期有 色 冶 金 设 计 与 研 究 1999年 6 月 Ξ收稿日期:1998-11-20

沉淀池设计计算设计参数

平流式沉淀池的基本要求有哪些 平流式沉淀池表面形状一般为长方形,水流在进水区经过消能和整流进入沉淀区后,缓慢水平流动,水中可沉悬浮物逐渐沉向池底,沉淀区出水溢过堰口,通过出水槽排出池外。平流式沉 淀池基本要求如下: (1)平流式沉淀池的长度多为30~50m,池宽多为5~10m,沉淀区有效水深一般不超过3m,多为2.5~3.0m。为保证水流在池内的均匀分布,一般长宽比不小于4:1,长深比为8~12。 (2)采用机械刮泥时,在沉淀池的进水端设有污泥斗,池底的纵向污泥斗坡度不能小于0.01,一般为0.01~0.02。刮泥机的行进速度不能大于1.2m/min,一般为0.6~0.9m /min。 (3)平流式沉淀池作为初沉池时,表面负荷为1~3m3/(m·h),最大水平流速为7mm/s;作为二沉池时,最大水平流速为5mm/s。 (4)人口要有整流措施,常用的人流方式有溢流堰一穿孔整流墙(板)式、底孑L人流一挡板组合式、淹没孔人流一挡板组合式和淹没孔人流一穿孔整流墙(板)组合式等四种。使用穿孔整流墙(板)式时,整流墙上的开孔总面积为过水断面的6%~20%,孔口处流速为0.15~0.2m/s,孔口应当做成渐扩形状。 (5)在进出口处均应设置挡板,高出水面0.1~0.15m。进口处挡板淹没深度不应小于0.25m,一般为0.5~1.0m;出口处挡板淹没深度一般为0.3~0.4m。进口处挡板距进水口0.5~1.0m,出口处挡板距出水堰板0.25~0.5m。 (6)平流式沉淀池容积较小时,可使用穿孔管排泥。穿孔管大多布置在集泥斗内,也可布置在水平池底上。沉淀池采用多斗排泥时,泥斗平面呈方形或近于方形的矩形,排数一般不能超过两排。大型平流式沉淀池一般都设置刮泥机,将池底污泥从出水端刮向进水端的污泥斗,同时将浮渣刮向出水端的集渣槽。 (7)平流式沉淀池非机械排泥时缓冲层高度为0.5m,使用机械排泥时缓冲层上缘宜高出刮泥板0.3m。 例:某城市污水处理厂的最大设计流量Q=0.2m3/s,设计人数N=10万人,沉淀时间t=1.5h。采用链带式机刮泥,求平流式沉淀池各部分尺寸。 1.池子的总表面积 设表面负荷q'=2m3/m2.h A=Q*3600/q=360m2 2.沉淀部分有效水深h2=q't=2*1.5= 3.0m 3.沉淀部分有效容积V=Qt*3600=1080m3 4.池长设水平流速u=3.7mm/s L=3.7*1.5*3600/1000=20m 5.池子总宽度B=A/L=360/20=18m 6.池子个数,设每格池宽b=4.5m,n=B/b=18/4.5=4个 7.校核长宽比,长深比长宽比:L/B=20/4.5=4.4>4 (符合要求) 长深比:L/h2=20/2.4=8.3 (符合要求) 8.污泥部分所需的总容积

普通快滤池和往复式折板絮凝池设计计算书

普通快滤池和往复式折 板絮凝池设计计算书-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

普通快滤池设计计算书 1. 设计数据 设计规模 近期360000/m d 滤速 8/v m h = 冲洗强度 215/s m q L =? 冲洗时间 6min 水厂自用水量 5% 2.设计计算 滤池面积及尺寸 设计水量 31.056000063000m /Q d =?= 滤池工作时间 24h ,冲洗周期 12h 滤池实际工作时间 24240.123.812T h =-? =(式中只考虑反冲洗停用时间,不考虑排放初滤水) 滤池面积 263000330.88823.8 Q F m vT ===? 采用滤池数 8N =,布置成对称双行排列 每个滤池面积 2330.8841.368F f m N = == 采用滤池尺寸 1:2=B L 左右 采用尺寸 9L m =, 4.6B m = 校核强制滤速 889.14/181Nv v m h N ?= ==--强 滤池高度 支承层高度 10.45H m = 滤料层高度 20.7H m = 砂面上水深 32H m =

超高(干弦)40.3H m = 滤池总高 12340.450.720.3 3.45H H H H H m =+++=+++= 配水系统(每只滤池) 2.3.1干管 干管流量 · 41.3615620.4/g q f g L s ==?= 采用管径 800g d mm =(干管埋入池底,顶部设滤头或开孔布置) 干管始端流速 1.23/g v m s = 2.3.2支管 支管中心间距 0.25z a m = 每池支管数 922720.25z z L n a =? =?=根(每侧36根) 每根支管长 4.60.80.3 1.752 z l m --== 每根支管进口流量 620.48.62/72 g z z q q L s n = == 采用管径 80z d mm = 支管始端流速 1.72/z v m s = 2.3.3孔口布置 支管孔口总面积与滤池面积比(开孔比)0.25%α= 孔口总面积 20.25%41.360.1034k F f m α=?=?= 孔口流速 0.62046/0.1034 k v m s == 孔口直径 9k d mm = 每个孔口面积 225263.6 6.36104k k f d mm m π-= ?==? 孔口总数 250.103416266.3610 k k k F N m f -==≈?个 每根支管孔口数 16262372k k z N n n = =≈个

折板絮凝池-V型滤池制水原理

折板絮凝池-V型滤池制水原理简介

悬浮物:这些微粒主要是由泥沙、黏土、原生动物、藻类、细菌、病毒以 及高分子有机物等组成,常常悬浮在水流之中,产生水的浑浊现象。这些微粒很不稳定,可以通过沉淀和过滤而除去。(导致浑浊、气味等来源) 胶体:许多分子和离子的集合物。水中的有机胶体物质主要是植物或动物 的肢体腐烂和分解而生成的腐殖物。其中以湖泊水中的腐殖质含量最多,因此常常使水呈黄绿色或褐色。由于胶体物质的微粒小,重量轻,单位体积所具有的表面积很大,故其表面具有较大的吸附能力,常常吸附着多量的离子而带电。同类胶体因带有同性的电荷相互排斥,它们在水中不能相互黏合而处于稳定状态。所以,胶体颗粒不能藉重力自行沉降而去除。 混凝基本原理:破坏胶体稳定性,使胶体与细微悬浮物脱稳并聚集成絮凝体而随重力沉淀。(如下图所示) 混凝的通用原理:先让絮凝剂与原水充分混合,尽量加大水流翻转效果, 慢慢结成矾花(大量絮凝体结合在一起)后,逐渐减小水流混合效果,防止矾花被打散。 混凝过程,并不仅仅包括混凝池,在整个平流层过程,混凝依然在继续。

絮凝池混合方式主要有两种: 1.静态管道混合器:不用维护,直接埋地下,有水头损失(如下图所示) 2.反应池搅拌机:混合效果好,设备需维护(如下图所示)

絮凝池原理:天然水中的悬浮物质及肢体物质的粒径非常细小。为去除这 些物质通常借助于混凝的手段,也就是说在原水中加入适当的混凝剂,经过充分混和,使胶体稳定性被坏 (脱稳)并与混凝剂水介后的聚合物相吸附,使颗粒具有絮凝性能。而絮凝池的目的就是创造合适的水力条件使这种具有絮凝性能的颗粒在相互接触中聚集,以形成较大的絮凝体(絮粒)。“絮凝”,简单来说,就是使水或液体中悬浮微粒集聚变大,或形成絮团,从而加快粒子的聚沉,达到固-液分离的目的,这一现象或操作称作絮凝。通常絮凝的实施靠添加适当的絮凝剂,其作用是吸附微粒,在微粒间“架桥”,从而促进集聚。 折板絮凝池指的是水流以一定流速在折板之间通过而完成絮凝过程的构筑物。按照水流方向可将折板絮凝池分为竖流式和平流式。根据折板布置方式不同又分为同波折板和异波折板两种形式。按水流通过折板间隙数,又分为单通道和多通道。 海沧水厂絮凝池,如图所示的线路,一共八条。每条共九格装有折板。 前三格宽1400,中间三格宽2000,后面三格宽2300,折板前三格异向,中间三格同向,最后三格直板(如下图所示)。

相关主题