搜档网
当前位置:搜档网 › 复变函数与积分变换 复旦大学出版社 习题六答案

复变函数与积分变换 复旦大学出版社 习题六答案

复变函数与积分变换   复旦大学出版社   习题六答案
复变函数与积分变换   复旦大学出版社   习题六答案

习题六

1. 求映射1w z

=

下,下列曲线的像.

(1) 22x y ax += (0a ≠,为实数) 解:2

2

2

2

11i=+i i x y w u v

z x y x y x y

==

=

-

+++

2

2

1x x u x y

ax

a

=

==

+,

所以1w z

=

将22x y ax +=映成直线1u a

=.

(2) .y kx =(k 为实数) 解: 2

2

2

2

1i

x y w z

x y

x y

=

=-

++

2

22

2

2

2

x

y kx u v x y

x y

x y

=

=-

=-

+++

v ku

=-

故1w z

=

将y kx =映成直线v ku =-.

2. 下列区域在指定的映射下映成什么? (1)Im()0,

(1i)z w z

>=+;

解: (1i)(i )()i(+)w x y x y x y =+?+=-+

,.

20.u x y v x y u v y =-=+-=-<

所以Im()Re()w w >.

故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 0

=

.

解:设z =x +i y , x >0, 0

2

2

2

2

2

2

i i i(i )i

x y y x w z x iy

x y

x y

x y

-=

=

=

=

+

++++

Re(w )>0. Im(w )>0. 若w =u +i v , 则

2

2

2

2

,u v y x u v

u v

=

=

++

因为0

2

22

1101,()2

2

u u v u v

<<-

+>

+

故i w z

=

将Re(z )>0, 0

Re(w )>0,Im(w )>0, 12

12

w >

(以(12

,0)为圆心、12

为半径的圆)

3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转角arg w '=

π2

.

于是, 经过点i 且平行实轴正向的向量映成w 平面上过点-1,且方向垂直向上的向量.如图所示

.

4. 一个解析函数,所构成的映射在什么条件下具有伸缩率和旋转角的不变性?映射w =z 2

在z 平面上每一点都具有这个性质吗?

答:一个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.

5. 求将区域0

6. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az b w cz d

+=+(ad -bc ≠0)由11-→-.得

1a b b a c d

c d

-+-=

?=+--+

因为(1)a z c d

w cz d ++-=+, 即(1)(1)

1a z c z w cz d

++++=

+,

由11→代入上式,得22

a c a d

c d

+=?=+.

因此11(1)

(1)d c d c

d c w z z cz d

z +++=+=+?

++

d q

c

=,得

1(1)(1)/()

(1)(1)11

(1)(1)/()2

(1)(1)

1

w z q z q z q z a w z q z q z q z +++++++=

=

=?

-+++----

其中a 为复数.

反之也成立,故所求分式线性映射为111

1

w z a w z ++=?

--, a 为复数.

7. 若分式线性映射,az b w cz d

+=+将圆周|z |=1映射成直线则其余数应满足什么条件?

解:若az b w cz d

+=+将圆周|z |=1映成直线,则d z c

=-

映成w =∞.

而d z c

=-

落在单位圆周|z |=1,所以1d c

-=,|c |=|d |.

故系数应满足ad -bc ≠0,且|c |=|d |. 8. 试确定映射,11

z w z -=

+作用下,下列集合的像.

(1) Re()0z =; (2) |z |=2; (3) Im(z )>0. 解:(1) Re(z )=0是虚轴,即z =i y 代入得.

2

2

22

2

i 1(1i )12i i 1

111y y y y w y y y

y

----+=

=

=

+?

++++

写成参数方程为2211y u y

-+=+, 2

21y v y

=

+, y -∞<<+∞.

消去y 得,像曲线方程为单位圆,即

u 2+v 2=1.

(2) |z |=2.是一圆围,令i 2e ,02πz θ

θ=≤≤.代入得i i 2e 12e

1

w θθ

-=

+化为参数方程.

354cos u θ

=

+ 4sin 54cos u θθ

=

+ 02πθ≤≤

消去θ得,像曲线方程为一阿波罗斯圆.即

22

25

4()()33

u v -

+=

(3) 当Im(z )>0时,即11Im(

)01

1

w w z w w ++=-?<--,

令w =u +i v 得

2

2

1(1)i 2Im (

)Im (

)01

(1)i (1)w u v v w u v

u v

+++-==

<--+-+.

即v >0,故Im(z )>0的像为Im(w )>0.

9. 求出一个将右半平面Re(z )>0映射成单位圆|w |<1的分式线性变换. 解:设映射将右半平面z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞, 所以所求分式线性变换形式为00

z z w k z z -=?

-其中k 为常数.

又因为00

z z w k z z -=?-,而虚轴上的点z 对应|w |=1,不妨设z =0,则

i 00

||1e

()z z w k k k z z θ

θ-=?

==?=∈-R

故000

e (R e()0)i z z w z z z θ-=?

>-.

10. 映射e 1i z w z

?αα-=?-?将||1z <映射成||1w <,实数?的几何意义显什么?

解:因为

2i i 2

2

(1)()()

1||

()e

e

(1)

(1)

z z w z z z ?

?

αααααα-----'=?

=?

-?-

从而2i i 2

2

2

1||

1()e e

(1||)

1||

w ?

?

αααα-'=?

=?

--

所以i 2arg ()arg e arg (1||)w ?αα?'=-?-= 故?表示i e 1z w z

θαα-=?

-在单位圆内α处的旋转角arg ()w α'.

11. 求将上半平面Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满足条件 (1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f

.

解:将上半平面Im(z )>0, 映为单位圆|w |<1的一般分式线性映射为w =k z z αα

-?-(Im(α)>0).

(1) 由f (i)=0得α=i ,又由arg (i)0f '=,即i 2

2i ()e (i)

f z z θ'=?

+,

πi ()

2

1(i)e

02

f θ-

'=

=,得π2

θ=

,所以

i i i

z w z -=?

+.

(2) 由f (1)=1,得k =11αα

--;由f

,得k

w =

12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满足条件: (1) f (12

)=0, f (-1)=1. (2) f (12

)=0, 1

2πarg ()2

f '=,

(3) f (a )=a , arg ()f a ?'=.

解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为 i e

1z w z

θ

αα-=-? , |α|<1.

(1) 由f (12

)=0,知12

α=.又由f (-1)=1,知

1i i i 2

1

2

1e

e (1)1e

1π1θ

θ

θ

θ--?

=-=?=-?=+

.

故122

21112

z z z w z --=-?

=

-

-.

(2) 由f (12

)=0,知12

α=,又i 2

54e (2)

z w z θ-'=?

-

i 112

2

4π()e arg ()3

2

f f θ

θ''=?==,

于是 π

2

1i 22

21e (

)i 12z z z w z

--==?

-

-.

(3) 先求=()z ξ?,使z =a 0ξ→=,arg ()a ?θ'=,且|z |<1映成|ξ|<1.

则可知 i =()=e 1z a z a z

θ

ξ?-?

-?

再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1. 先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且

arg ()arg(1/(0))0w g ψ''==,则

=()=

1w a w a w

ξψ--?.

因此,所求w 由等式给出.

i =e 11w a z a a w

a z

θ

--?

-?-?.

13. 求将顶点在0,1,i 的三角形式的内部映射为顶点依次为0,2,1+i 的三角形的内部的分式线性映射.

解:直接用交比不变性公式即可求得

02w w --∶1i 01i 2+-+-=

02z z --∶

i 0i 1

--

2

w w -.

1i 2

1i

+-+=

1

z

z -.

i 1i

-

4z (i 1)(1i)

w z -=

--+.

14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射. 解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交比不变性,有

2525-+∶2525---+=104104-+--∶104104

+-

故w =f (z )应为

55

z z -+∶

2525

---+=

44

w w +-∶

104105

+-

44

w w +-=55

z z --

+20w z

?=-

.

讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.又w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.

15.映射2

w z =将z 平面上的曲线2

21124x y ?

?-+= ??

?映射到w 平面上的什么曲线?

解:略.

16. 映射w =e z 将下列区域映为什么图形. (1) 直线网Re(z )=C 1,Im(z )=C 2;

(2) 带形区域Im(),02πz αβαβ<<≤<≤; (3) 半带形区域

Re()0,0Im(),02πz z αα><<≤≤.

解:(1) 令z =x +i y , Re(z )=C 1,

z =C 1+i y 1

i =e e C y w ??, Im(z )=C 2,则

z =x +i C 22

i =e e C x w ??

故=e z w 将直线Re(z )映成圆周1

e C

ρ=;直线Im(z )=C 2映为射线2C ?=.

(2) 令z =x +i y ,y αβ<<,则i i =e e e e ,z x y x y w y αβ+==?<<

故=e z w 将带形区域Im()z αβ<<映为arg()w αβ<<的张角为βα-的角形区域. (3) 令z =x +i y ,x >0,0

(0,0)e 1,0arg z

x

y

x

w x y w αα=?><<<

故=e z

w 将半带形区域Re(z )>0,0

|w |>1, 0arg w α<<(02πα≤≤).

17. 求将单位圆的外部|z |>1保形映射为全平面除去线段-1

=

将|z |>1映为|w 1|<1,再用分式线性映射.

1211i 1

w w w +=-?

-将|w 1|<1映为上半平面Im(w 2)>0, 然后用幂函数2

32w w =映为有割痕为正

实轴的全平面,最后用分式线性映射3311

w w w -=

+将区域映为有割痕[-1,1]的全平面.

故2

2

112

11322

2

2

132111111i 111111

1()11

211i 1111z

z z z w w w w w z w w z

w w ????++--?- ? ?----????===

=

=

+++????++-?++ ? ?--??

??

. 18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππIm ()2

2

z -<<

映射为半带

形区域πIm()πw -<<,Re(w )>0的映射.

解:用1e z w =将区域映为有割痕(0,1)的右半平面Re(w 1)>0;再用1211ln

1

w w w +=-将半平面

映为有割痕(-∞,-1]

的单位圆外域;又用3w =将区域映为去上半单位圆内部的上半平面;再用43ln w w =将区域映为半带形00;最后用42i πw w =-映为所求区域,故

e 1ln

e 1

z

z w +=-.

19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平面Im(w )>0的映射.

解:略.

20. 映射cos w z =将半带形区域00保形映射为∞平面上的什么区域. 解:

因为 1cos ()2iz

iz

w z e e

-==+

可以分解为

w 1=i z ,1

2e

w w =,322

11()2

w w w =

+

由于cos w z =在所给区域单叶解析,所以 (1) w 1=i z 将半带域旋转

π2

,映为0

(2) 1

2e w w =将区域映为单位圆的上半圆内部|w 2|<1,Im(w 2)>0. (3) 22

11()2w w w =

+

将区域映为下半平面Im(w )<0.

微积分第五章第六章习题答案

习题5.1 1.(1) sin x x ;3sin x (2)无穷多 ;常数(3)所有原函数(4)平行 2. 23x ;6x 3.(1)3223 x C --+(2)323sin 3x x e x C +-+(3)3132221(1565(2))15x x x x C -++-+ (4 2103)x x C -++ (5)4cos 3ln x x C -++(6)3 23 x x ex C +-+ (7) sin 22 x x C -+(8 )5cos x x C --+ 4. 3113y x =+ 5. 32()0.0000020.0034100C x x x x =-++;(500)1600;(400)(200)552C C C =-= 习题5.2 1.(1)1a (2)17(3)110(4)12-(5)112(6)12(7)2-(8)15(9)-(10)12 - 2. (1)515t e C + (2)41(32)8x C --+(3)1ln 122x C --+(4)231(23)2 x C --+ (5 )C -(6)ln ln ln x C +(7)111tan 11x C +(8)212 x e C --+ (9)ln cos ln sin x x C -++(10 )ln C -+(11)3sec sec 3 x x C -++ (12 )C (13)43ln 14x C --+(14)2sec 2 x C + (15 12arcsin 23x C + (16)229ln(9)22 x x C -++ (17 C (18)ln 2ln 133 x x C -+-+ (19)2()sin(2())4t t C ?ω?ωω++++ (20)3cos ()3t C ?ωω +-+ (21)cos 1cos5210x x C -+ (22)13sin sin 232x x C ++(23)11sin 2sin12424 x x C -+ 习题5.3 1.(1)arcsin ,,u x dv dx v x === (2),sin ,cos u x dv xdx v x ===-

概率论和数理统计 复旦大学 课后题答案4

4习题四 1.设随机变量X 的分布律为 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;82842 E X =-? +?+?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 故 ()0.58300.34010.07020.0073E X =? +?+?+?+?+? 0.501,= 5 2 ()[( )]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?= 3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2222 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则

(){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1().N N k k k P X k kP X k N N n E X N N ===== ===∑∑ 5.设随机变量X 的概率密度为 f (x )=?? ? ??≤≤-<≤.,0,21,2, 10,其他x x x x 求E (X ),D (X ). 【解】1 2 2 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ -4X . 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=?+?+= (2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立 1184568.=?-?= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ), D (2X -3Y ). 【解】(1) (32)3()2()3323 3. E X Y E X E Y -=-=?-?= (2) 2 2 (23)2()(3)412916192.D X Y D X DY -=+-=?+?= 8.设随机变量(X ,Y )的概率密度为

固体物理

1。晶体结构中,常见的考题是正格子和倒格子之间的相互关系, 布里渊区的特点及边界方程,原胞和晶胞的区别,晶面指数和晶向指数,面间距的计算,比如面心立方的倒格子是体心立方,算 晶体结构中a/c,求米勒指数,以及表面驰豫和重构等等, 拔高一点的话,可以考二维或三维的对称性操作,叫你写出点群, 空间群甚至磁群。也可以考原子形状因子和几何结构因子。 要特别注意x射线衍射得到的是倒空间中的照片。 再拔高一点,可以考你准长程序的作用范围。让你求 径向分布函数,回答测量非晶的实验方法,以及准晶 和非晶的问题(penrose堆砌等,一般是定性的问答题) 2。固体的结合是主要做化学键和弱的非键电磁相互作用 (注意不是弱相互作用!!)的计算,注意马德隆能的计算 和晶体结构中计算次序的画法,然后要牢记born-mayer势 和lenard-johns势等。并用它来计算一些物理量如分子间的 平衡位置,分子间力和弹性模量甚至摩擦力等,并不容易。 3。晶格动力学和晶格热力学是晶格理论的核心和灵魂。 求解一维单原子链最简单。一般考试时会让我们算质量不一样, 或弹性系数不一样,或两者都不一样的一维双原子链,还会要 我们回答声学波和光学波的特点,并让我们做色散关系的图的。 拔高一点的话,可以出带电荷的一维双原子链,以及二三维 和多原子链的情形,不过考的可能性不是太大,如果两节课 算不完的话。 双原子链可以退化为单原子链,这个很基本,几乎必考。 晶格振动谱有一本专著,就叫《晶格振动光谱学》,高教出的。 声子的正过程和倒逆过程是德文,这个记不住就对不住观众了, 一般会问他们之间的差别,那个过程对热导没有贡献。 计算晶体热容时,重点掌握debye模型和einstein模型,后者 最基本,前者考试考得最多。用德拜模型算态密度,零点能, 比热,声速以及其高低温极限是必考内容,注意死背debye积分 (由Reman积分和Zeta积分构成),一定要记得结果。 热膨胀是非线性作用的后果,会计算格林爱森常数。 4。晶体中的缺陷理论也很重要。 缺陷的分类,0,1,2维缺陷的实例; 小角晶界与刃位错,晶体生长与螺位错 之间的关系需要熟练掌握。可能还要掌握 伯格斯矢量,伯格斯定理和位错, 位错线的画法。这都是很基本的内容。 一般认为,扩散的主导因素是填隙原子。 扩散的分类和扩散方程的求解,可能会结合 点缺陷的寿命来出题。 有时也可能考考色心,主要是F心,画图或问答题。 以上讲的是晶格理论。一般认为 固体物理可以分为晶格理论(含理想晶格理论, 晶格结构,晶格动力学,晶格热力学以及

高等数学 复旦大学出版社 课后习题答案

1. 解: (1)相等. 因为两函数的定义域相同,都是实数集R ; x =知两函数的对应法则也相同;所以两函数相等. (2)相等. 因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 解: (1)要使函数有意义,必须 400x x -≥?? ≠? 即 40x x ≤?? ≠? 所以函数的定义域是(,0)(0,4]-∞U . (2)要使函数有意义,必须 30lg(1)010x x x +≥?? -≠??->? 即 301x x x ≥-?? ≠??

高等数学第六章答案

第六章 定积分的应用 第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16 . (2) 1 (3) 323. (4)32 3 . 2. 求由下列各曲线所围成的图形的面积: (1) 463 π-. (2) 3 ln 22-. (3)1 2e e +-. (4)b a - 3. 94 . 4. (1).1 213 (2).4 5. (1) πa 2. (2) 238 a π. (3)2 18a π. 6. (1)423π? ? (2) 54 π (3)2cos2ρθρθ==及 16 2 π + 7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2 x x y y x =和轴、向所围图形,绕轴及轴。

(2)22y x y 8x,x y ==和绕及轴。 (3)()2 2 x y 516,x +-=绕轴。 (4)xy=1和y=4x 、x=2、y=0,绕。 (5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。 2234824131,;(2),;(3)160;(4);(5)5a .52556 πππππππ() 8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积. 128 7x V π= . y V =645 π 9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332 105 a π 10.(1)证明 由平面图形0≤a ≤x ≤ b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ?=b a dx x xf V )(2π . 证明略。 (2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转 体的体积. 2 2π 11.计算底面是半径为R 的圆, 而垂直于底面上一条固定 直径的所有截面都是等边三角形的立体体积. 3 R . 12.计算曲线3 223 y x =上相应于38x ≤≤的一段弧的弧长。2123 13.计算曲线2 ln(1)y x =-上相应于102x ≤≤ 的一段弧的弧长。1ln 32 - 14.求星型线33 cos sin x a t y a t ?=?=? 的全长。6a

概率论与数理统计复旦大学出版社第二章课后答案(供参考)

概率论与数理统计习题二答案 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为 以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)1 33{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为 (2) 当0x <时,{}()0F x P X x =≤= 当01x ≤<时,{}{}22()035 F x P X x P X =≤=== 当12x ≤<时,{}{}{}34()0135 F x P X x P X P X =≤==+== 当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为 分布函数 3次射击中至少击中2次的概率为 4.(1) 设随机变量X 的分布律为 {}! k P x k a k λ==, 其中k =0,1,2,…,λ>0为常数,试确定常数a .

(2) 设随机变量X 的分布律为 {}a P x k N == , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b (1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+== 33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++222233 33C (0.6)0.4C (0.7)0.3(0.6)(0.7)+ (2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+== 312322 33(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑 道,根据题意有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松定理近似计算 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 13 p = 所以 4 451210 (4)C () 33243 P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率;

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率论与数理统计复旦大学出版社第四章课后答案

概率论 习题四 答案 1.设随机变量X 的分布律为 X -1 0 1 2 P 1/8 1/2 1/8 1/4 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;8 2842 E X =-?+? +?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 0 1 2 3 4 5 P 5905100 C 0.583C = 14 1090 5 100 C C 0.340C = 231090 5 100 C C 0.070C = 321090 5 100 C C 0.007C = 4110905100 C C 0C = 510 5 100 C 0C = 故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5 2 ()[()]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?=L 3.设随机变量X -1 0 1 P p 1 p 2 p 3 且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①, 又12331()(1)010.1E X p p p p p =-++=-=g g ……②, 222212313()(1)010.9E X p p p p p =-++=+=g g g ……③ 由①②③联立解得1230.4,0.1,0.5.p p p ===

《概率与统计》习题答案(复旦大学出版社)

习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律. 【解】 故所求分布律为 X 3 4 5 P 0.1 0.3 0.6 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求: (1) X的分布律; (2) X的分布函数并作图; (3) . 【解】 故X的分布律为 X 0 1 2 P (2)当x<0时,F(x)=P(X≤x)=0 当0≤x<1时,F(x)=P(X≤x)=P(X=0)= 当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)= 当x≥2时,F(x)=P(X≤x)=1 故X的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X表示击中目标的次数.则X=0,1,2,3. 故X的分布律为 X 0 1 2 3 P 0.008 0.096 0.384 0.512 分布函数

4.(1)设随机变量X的分布律为 P{X=k}= , 其中k=0,1,2,…,λ>0为常数,试确定常数a. (2)设随机变量X的分布律为 P{X=k}=a/N, k=1,2,…,N, 试确定常数a. 【解】(1)由分布律的性质知 故 (2) 由分布律的性质知 即 . 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1)两人投中次数相等的概率; (2)甲比乙投中次数多的概率. 【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7) (1) + (2) =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有 即 利用泊松近似 查表得N≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X表示出事故的次数,则X~b(1000,0.0001)

微积分-第六章练习题答案

第六单练习题 一、选择题 1、在球x 2+y 2+z 2-2z =0内部的点是( C ) A 、(0,0,0) B 、(0,0,-2) C 、111,,222?? ??? D 、111,,222?? -- ??? 2、点(1,1,1)关于xy 平面的对称点是( B ) A 、(-1,1,1) B 、(1,1,-1) C 、(-1,-1,-1) D 、(1,-1,1) 3、设函数z =f (x ,y )在点(x 0,y 0)处存在对x ,y 的偏导数,则00(,)x f x y '=( B ) A 、00000 (2,)(,)lim x f x x y f x y x ?→-?-? B 、00000(,)(,) lim x f x y f x x y x ?→--?? C 、00000 (,)(,) lim x f x x y y f x y x ?→+?+?-? D 、0000(,)(,)lim x x f x y f x y x x →-- 4、函数z =f (x ,y )在点(x 0,y 0)处可微的充分条件是( D ) A 、f (x ,y )在点(x 0,y 0)处连续 B 、f (x ,y )在点(x 0,y 0)处存在偏导数 C 、00000 lim (,)(,)0x y z f x y x f x y y ρ→''???-?-?=?? D 、00000(,)(,)lim 0x y z f x y x f x y y ρρ→''?-?-???=???? 其中ρ=5、已知函数22(,)f x y x y x y +-=-,则 (,)(,) f x y f x y x y ??+=??( B ) A 、22x y - B 、x y + C 、22x y + D 、x y - 6、平行于z 轴且过点(1,2,3)和(-1,4,5)的平面方程是( A ). A 、03=-+y x B 、03=++y x C 、01=+-z y D 、5=z 7、二元函数224),(y x y x f z +==在点(0,0)处( D ) A 、连续、偏导数不存在 B 、不连续、偏导数存在 C 、连续,偏导数存在但不可微 D 、可微 8、若可微函数),(y x f z =在点),(000y x P 有极值,则( C ). A 、两个偏导数都大于零 B 、两个偏导数都小于零 C 、两个偏导数在点),(000y x P 的值都等于零

高等数学课后习题答案第六章

习题6-2 1. 求图6-21 中各画斜线部分的面积: (1) 解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 6 1 ]2132[)(1022310=-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A , 解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e . (3) 解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3 32 ]2)3[(1 32=--=?-dx x x A . (4) 解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 3 32 |)313()32(31323 12=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 22 1 x y =与x 2+y 2=8(两部分都要计算); 解: 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A 34238cos 16402+=-=?ππ tdt . 3 4 6)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2;

解: 所求的面积为 ?-=-=2 12ln 2 3)1(dx x x A . (3) y =e x , y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1021 )(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

21世纪大学实用英语综合教程4册答案_复旦大学出版社

Unit 1 5. Fill in the blanks with the words given below. Change the forms where n ecessary. 1. forbade 2. mourning 3. charge 4. accumulate 5. begged 6. declared 7. n arrow 8. penniless 9. unioading 10. stolen 11. absenee 12. faithfully 6. Fill in the blanks with the expressions given below. Change the forms where n ecessary. 1. a good deal of 2. speak of 3. lea ning on 4. stood on his feet 5. at (the) most 6. both …and 7. counted out 8. with the help of 9. heard of 10. be blessed with 10. Tran slate the followi ng sen ten ces into En glish. 1. Driven by a strong will, he eventually fulfilled the task he had undertaken. 2. He promised to write to me as soon as he got there, but nothing has bee n heard of him so far. 3. The boss has n ever bee n so pleased with any employee before. The young man is a real find. 4. With the help of the doctors and nurses, the patient was able to stand on his feet once more and soon resumed work ing. 5. The old man? _s wrinkled face spoke of the hardships he had endured in his life. 6. When she recovered somewhat, she leaned on the window watching the children play on the lawn. Unit 2 5. Fill in the blanks with the words given below. Change the forms where n ecessary. 1. statistics 2. versions 3. legal 4. adventurous 5. fate 6. indeed 7. chatting 8. online 9. owed 10. I nternet 11.Hopefully 12. expe nses 6. Fill in the blanks with the expressions given below. Change the forms where necessary. I. insisted on 2. gave …notice 3. base ???on 4. from the beginning 5. in the middle of

概率论与数理统计习题答案(廖茂新复旦版)

习 题 一 1.设A ,B ,C 为三个事件,用A ,B ,C 的运算式表示下列事件: (1) A 发生而B 与C 都不发生; (2) A ,B ,C 至少有一个事件发生; (3) A ,B ,C 至少有两个事件发生; (4) A ,B ,C 恰好有两个事件发生; (5) A ,B 至少有一个发生而C 不发生; (6) A ,B ,C 都不发生. 解:(1)A C B 或A -B -C 或A -(B ∪C ). (2)A ∪B ∪C . (3)(AB )∪(AC )∪(BC ). (4)(AB C )∪(AC B )∪(BC A ). (5)(A ∪B )C . (6)C B A 或C B A . 2.对于任意事件A ,B ,C ,证明下列关系式: (1)(A +B ) (A +B )(A + B )(A +B )= ?; (2)AB +A B +A B +A B AB -= AB ; (3)A -(B +C )= (A-B )-C . 证明:略. 3.设A ,B 为两事件,P (A )=0.5,P (B )=0.3,P (AB )=0.1,求: (1) A 发生但B 不发生的概率; (2) A ,B 都不发生的概率; (3) 至少有一个事件不发生的概率. 解(1) P (A B )=P (A -B )=P (A -AB )=P (A )-P (AB )=0.4; (2) P (B A )=P (B A )=1-P (A ∪B )=1-0.7=0.3; (3) P (A ∪B )=P (AB )=1-P (AB )=1-0.1=0.9. 4.调查某单位得知。购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%。求下列事件的概率。 (1)至少购买一种电器的; (2)至多购买一种电器的; (3)三种电器都没购买的.

复旦固体物理讲义-32缺陷问题及电子态特征

本讲要解决的问题及所涉概念 ?缺陷(点缺陷、面缺陷)问题的特点 *晶体的平移周期性在某区域内被破坏 *但大部分区域原子排列仍然有序 #点缺陷除了点之外 #面缺陷(表面、界面)如把垂直于面的方向看作 一维,那也相当于点缺陷 ?缺陷的电子态特征 *束缚态 *共振态 http://10.107.0.68/~jgche/缺陷及其电子态特征1

第32讲、缺陷及其电子态特征 1.周期性破缺问题 *缺陷(点缺陷、表面和界面) 2.定性描写——周期性破缺体系电子态特征 *束缚态(bound states) *共振态(resonances) 3.定量描写 *模型方法 #集团模型(cluster) #薄片模型(slab),超原胞模型(supercell) *微扰(格林函数)方法 4.方法比较 http://10.107.0.68/~jgche/缺陷及其电子态特征2

1、周期性破缺问题 ?Bloch定理在固体物理学基础理论中的重要地位——能带理论,晶格动力学,… *Bloch定理基础——晶体的三维平移周期性 ?点缺陷、表面、界面等周期性破缺体系*无序也是周期性被破坏 *点缺陷、表面、界面,虽然三维周期性已经被破 坏,但并不是完全无序 *与完整周期性体系相比,三维平移周期性仅在一个 较小的范围内被破坏——其余部分仍然有序 #点缺陷:除了点,其他地方仍然有序 #表面、界面问题:除了垂直面方向,平行于面的 二维周期性仍保持 http://10.107.0.68/~jgche/缺陷及其电子态特征3

2、定性描写——周期性破缺体系电子态特征 ?缺陷引起的电子态有什么特征? ?局域态,定域在缺陷附近! *束缚态 *共振态 *通过表面这个周期性破缺系统(对称性在垂直于表 面方向被破坏)的例子来认识这个问题 http://10.107.0.68/~jgche/缺陷及其电子态特征6

高等数学课后习题答案第六章(可编辑修改word版)

1 1 2 2 1 2 1 1 2 2 1 2 1 2 习题六 1. 指出下列各微分方程的阶数: (1)一阶 (2)二阶 (3)三阶 (4)一阶 2. 指出下列各题中的函数是否为所给微分方程的解: (1)xy ' = 2 y , y = 5x 2 ; 解:由 y = 5x 2 得 y ' = 10x 代入方程得 x ?10x = 2 ? 5x 2 = 10x 2 故是方程的解. (2) y ' + y = 0, y = 3sin x - 4 cos x ; 解: y ' = 3cos x + 4 s in x ; y ' = -3sin x + 4 cos x 代入方程得 故是方程的解. -3sin x + 4 cos x + 3sin x - 4 cos x = 0 . (3) y ' - 2 y ' + y = 0, y = x 2e x ; 解: y ' = 2x e x + x 2e x = (2x + x 2 )e x , 代入方程得 2e x ≠ 0 . 故不是方程的解. (4) y ' - (+ ) y ' + y = 0, y ' = (2 + 4x + x 2 )e x y = C e 1x + C e 2 x . 1 2 1 2 1 2 y ' = C e 1x + C e 2 x , y ' = C 2e x 1 + C 2e 2 x 解: 1 1 2 2 1 1 2 2 代入方程得 C 2e 1x + C 2e 2 x - (+ )(C e 1x + C e 2 x ) + (C e 1x + C e 2 x ) = 0. 故是方程的解. 3. 在下列各题中,验证所给二元方程为所给微分方程的解: (1)(x - 2 y ) y ' = 2x - y , x 2 - xy + y 2 = C ; 证:方程 x 2 - xy + y 2 = C 两端对 x 求导: 2x - y - xy ' + 2 yy ' = 0 y ' = 2x - y 得 x - 2 y 代入微分方程,等式恒成立.故是微分方程的解. (2)(xy - x ) y ' + xy '2 + yy ' - 2 y ' = 0, y = ln(xy ). 证:方程 y = ln(xy ) 两端对 x 求导: y ' = 1 + 1 y ' x y (*) y ' = 得 y x ( y -1) . (*)式两端对 x 再求导得

概率论和数理统计_复旦大学_课后题答案6.

6习题六 1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之 差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100 ~(0,1) X Z N = 即 60 ~(0,1)15/10 X Z N -= (|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-< 2[1(2)]2(10.9772)0.0456.=-Φ=-= 2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】 ~(0,1) X Z N = (2.2 6.2)P X P Z <<=<< 210.95,=Φ-= 则Φ,故>1.96, 即n >24.01,所以n 至少应取25  3.设某厂生产的灯泡的使用寿命X ~N (1000,σ2) (单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果, 只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=1002 1000 ~(8) 100/3X X t t -= = 10621000 (1062)()( 1.86)0.05100/3 P X P t P t ->=> =>= 4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1) X Z N =,由P (|X -μ|>4)=0.02得

P |Z |>4(σ/n )=0.02, 故210.02σ?? ??-Φ=?? ? ??????? , 即0.99.σ??Φ= ? ??? 查表得 2.33,σ = 所以 5.43.2.33 σ= = 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本, S 2为其样本方差,且P (S 2>a )=0.1,求a 之值. 【解】22 22299~(9),()0.11616S a P S a P χχχ? ?=>=> ?? ?.= 查表得 914.684,16 a = 所以 14.68416 26.105.9 a ?== 6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量 Y = ∑∑==-n i i i i X X n 6 25 1 2)15(,n >5 服从何种分布? 【解】 25 2 2 2 2 221 1 ~(5),~(5i n i i i i X X X χχχ=== =∑∑)n -且12 χ与22 χ相互独立. 所以 2122/5~(5,5)/5 X Y F X n n =-- 7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于 0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310), Y ~N (20, 3 15 ),且X 与Y 相互独立. 则33~0, (0,0.5),1015X Y N N ?? -+= ???

《概率论与数理统计》习题答案(复旦大学出版社)4

1 习题四 1.设随机变量X 的分布律为 求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;8 2 8 4 2 E X =-? +?+?+?= (2) 2 2 2 2 2 11115()(1)012;8 2 8 4 4E X =-?+?+?+? = (3) 1(23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 故 ()0.58300.34010.07020.0073E X =?+?+?+?+?+? 0.501, = 5 2 ()[( )]i i i D X x E X P == -∑

2 2 2 2 (00.501)0.583(1 0.501)0.340(50.501) 0.432. =-?+-?++- ?= 3.设随机变量X 的分布律为 且已知E (X )=0.1,E (X 2)=0.9,求P 1,P 23【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2 2 2 2 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则 (){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1(). N N k k k P X k k P X k N N n E X N N === == == = ∑ ∑

相关主题