搜档网
当前位置:搜档网 › 伺服驱动器测试报告

伺服驱动器测试报告

伺服驱动器测试报告
伺服驱动器测试报告

风电变桨交流伺服驱动器验证试验报告

型号:FAS45EA400X

一、试验目的:

对FAS45EA400X型驱动器进行全面形式实验,判断是否具备批量生产条件。

二、测试日期:

2010-9-20~2010-9-26

三、测试人员:

甘星伟、周阳申、廖建荣

四、仪器仪表:

示波器TDS1002B-SC 万用表UT58E 点温计K971758 调压器TDGC2-0.5 信号发生器SP1641B 试验取三台样品,一台置于-35℃低温箱,一台置于+55℃高温箱,一台常温测试。

五、测试项目

1.外观及尺寸检查

1.1.外观尺寸如图:

(驱动器外形尺寸图)

测试结果记录在图上

结论:合格

1.2.铭牌检查:

铭牌应包括以下内容:

型号:FAS45EA400X;

机号:*********

生产批次:***********

生产厂商:桂林星辰科技有限公司

结论:合格

2.常温测试:

由于被试电机与客户电机不同,做本组测试时,允许对电流环和速度环参数进行调整以获得满意效果

3.低温试验

4.高温测试

伺服驱动器维修

伺服驱动器维修篇1:伺服驱动器维修常见故障总结 伺服驱动器维修常见故障总结分析如下:1、伺服电机高速旋转时出现电机偏差计数器溢出错误,如何处理① 高速旋转时发生电机偏差计数器溢出错误;对策检查电机动力电缆和编码器电缆的配线是否正确,电缆是否有破损。② 输入较长指令脉冲时发生电机偏差计数器溢出错误;对策 a.增益设置太大,重新手动调整增益或使用自动调整增益功能; b.延长加减速时间; c.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负荷能力。③ 运行过程中发生电机偏差计数器溢出错误。对策 a.增大偏差计数器溢出水平设定值; b.减慢旋转速度; c.延长加减速时间; d.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负载能力。2、伺服电机在有脉冲输出时不运转,如何处理 ①监视控制器的脉冲输出当前值以及脉冲输出灯是否闪烁,确认指令脉冲已经执行并已经正常输出脉冲; ② 检查控制器到驱动器的控制电缆,动力电缆,编码器电缆是否配线错误,破损或者接触不良; ③检查带制动器的伺服电机其制动器是否已经打开; ④ 监视伺服驱动器的面板确认脉冲指令是否输入; ⑤ Run运行指令正常; ⑥控制模式务必选择位置控制模式; ⑦ 伺服驱动器设置的输入脉冲类型和指令脉冲的设置是否一致; ⑧ 确保正转侧驱动禁止,反转侧驱动禁止信号以及偏差计数器复位信号没有被输入,脱开负载并且空载运行正常,检查机械系统。3、伺服电机没有带负载报过载,如何处理 ① 如果是伺服Run(运行)信号一接入并且没有发脉冲的情况下发生 a.检查伺服电机动力电缆配线,检查是否有接触不良或电缆破损; b.如果是带制动器的伺服电机则务必将制动器打开; c.速度回路增益是否设置过大; d.速度回路的积分时间常数是否设置过小。② 如果伺服只是在运行过程中发生 a.位置回路增益是否设置过大; b.定位完成幅值是否设置过小; c.检查伺服电机轴上没有堵转,并重新调整机械。4、伺服电机运行时出现异常声音或抖动现象,如何处理 ①

伺服驱动器维修检测以及方法

伺服驱动器维修检测以及方法 1、示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出; 故障原因:电流监控输出端没有与交流电源相隔离(变压器)。 处理方法:可以用直流电压表检测观察。 2、电机在一个方向上比另一个方向跑得快; (1) 故障原因:无刷电机的相位搞错。 处理方法:检测或查出正确的相位。 (2) 故障原因:在不用于测试时,测试/偏差开关打在测试位置。 处理方法:将测试/偏差开关打在偏差位置。 (3) 故障原因:偏差电位器位置不正确。 处理方法:重新设定。 3、电机失速; (1) 故障原因:速度反馈的极性搞错。 处理方法:可以尝试以下方法。 a. 如果可能,将位置反馈极性开关打到另一位置。(某些驱动器上可以) b. 如使用测速机,将驱动器上的TACH+和TACH-对调接入。 c. 如使用编码器,将驱动器上的ENC A和ENC B对调接入。 d. 如在HALL速度模式下,将驱动器上的HALL-1和HALL-3对调,再将Motor-A和Motor-B对调接好。 (2) 故障原因:编码器速度反馈时,编码器电源失电。 处理方法:检查连接5V编码器电源。确保该电源能提供足够的电流。如使用外部电源,确保该电压是对驱动器信号地的。 4、LED灯是绿的,但是电机不动; (1) 故障原因:一个或多个方向的电机禁止动作。 处理方法:检查+INHIBIT 和–INHIBIT 端口。 (2) 故障原因:命令信号不是对驱动器信号地的。 处理方法:将命令信号地和驱动器信号地相连。 5、上电后,驱动器的LED灯不亮; 故障原因:供电电压太低,小于最小电压值要求。 处理方法:检查并提高供电电压。 6、当电机转动时, LED灯闪烁; (1) 故障原因:HALL相位错误。 处理方法:检查电机相位设定开关(60°/120°)是否正确。多数无刷电机都是120°相差。 (2) 故障原因:HALL传感器故障 处理方法:当电机转动时检测Hall A, Hall B, Hall C的电压。电压值应该在5VDC和0之间。 7、LED灯始终保持红色; 故障原因:存在故障。 处理方法:原因: 过压、欠压、短路、过热、驱动器禁止、HALL无效。

伺服电机驱动器报告

电子课程设计 课题:伺服电机前端驱动器 指导老师:徐同一 班级: 08级集成 学号: 200800120030 姓名:董贇

伺服电机 伺服电机是一种传统的电机,又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。它是自动装置的执行元件。伺服电机的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小。去掉控制电压后,伺服电机就立即停止转动。 报告内容 一.电源 Q12和Q3采用集成稳压器7812和7805。用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压。 将外加21V输入供电电压经7812和7805后得到12V和5V电压,以给电路各部分提供工作电压,且以黄灯指示电路正常工作与否输入的9管脚为外接输入供电电压21V,经7812后得到12V电压,12V电压经7805后得到5V电压,且在7805的输出端接有LED指示灯(串联电阻R33以控制流过LED灯的电流,保护发光管),R32用于分压,防止7805过热损坏。MG11019是达林顿复合管,用于过流保护,R1,R2,R3构成电源电流取样电路,电源电流过大会使Q1导通。ZR1,

ZR2时压敏电阻,用于过压保护,防止电路故障时损坏后级电路,压敏电阻并联在交流侧电路中主要是起“限制电压超高”作用;当电源部分正常工作即7805正常输出5V电压时,黄灯点亮,若黄灯不亮则证明电源部分没有正常工作。在三极管升压电路中有一端是overcurrent,检测该点是否过流,有过流保护作用,5V电压经插座的1管脚和8管脚输出,5V和12V在2901、2902的电路中做供电电压,12V还作为芯片MC33030的供电电压接11脚。 二.H桥电路 H桥驱动电路 图1中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路” 是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H 中的横杠。如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图1 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图2所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

伺服驱动器怎样维修_伺服驱动器维修技巧

伺服驱动器怎样维修_伺服驱动器维修技巧 伺服驱动器的特点1、伺服驱动器软件程序主要包括主程序、中断服务程序、数据交换程序。 2、伺服驱动器主程序主要用来完成系统的初始化、LO接口控制信号、DSP内各个控制模块寄存器的设置等。 3、伺服驱动器所有的初始化工作完成后,主程序才进入等待状态,以及等待中断的发生,以便电流环与速度环的调节。 4、伺服驱动器所有的初始化工作完成后,主程序才进入等待状态,以及等待中断的发生,以便电流环与速度环的调节。 5、伺服驱动器初始化主要包括DsP内核的初始化、电流环与速度环周期设定、PWM初始化、四M启动、ADc初始化与启动、QEP初始化、矢量与永磁同步电机转子的初始位置初始化、多次伺服电机相电流采样、求出相电流的零偏移量、电流与速度P调节初始化等。 6、PWM定时中断程序有的用来对霍尔电流传感器采样A、B两相电流ia、ib进行采样、定标,以及根据磁场定向控制原理,计算转子磁场定向角,再角,再生成PWM信号对位置环与速度环进行控制。 7、功率驱动保护中断程序主要用于检测智能功率模块的故障输出。 8、光电编码器零脉冲捕获中断程序可实现对编码器反馈零脉冲精确确地捕获,从而可以得到交流永磁同步电机矢量变换定向角度的修正值。 9、数据交换程序主要包括与上位机的通信程序、EEPRoM参的读取、数码管显示程序等。参数的存储控制器键盘值。 伺服驱动器控制方式1、反馈补偿型开环控制开环系统的精度较低,这是由于伺服驱动器的步距误差、起停误差、机械系统的误差都会直接影响到定位精度。应采用补偿型进行改进,这种系统且有开环与闭环两者的优点,即具有开环的稳定性和闭环的精确性。不会因

FANUC 数控交流伺服驱动系统故障维修

FANUC 数控交流伺服驱动系统故障维修 1、FANUC 6M数控开机出现剧烈振动的故障维修 故障现象:一台配套FANUC 6M的加工中心,在机床搬迁后,首次开机时,机床出现剧烈振动,CRT显示401、430报警。 分析与处理过程:FANUC 6M数控系统CRT上显示401报警的含义是“X、Y、Z等进给轴驱动器的速度控制准备信号(VRDY信号OFF状态,即:速度控制单元没有准备好”;ALM430报警的含义是“停止时Z轴的位置跟随误差超过”。 根据以上故障现象,考虑到机床搬迁前工作正常,可以认为机床的剧烈振动,是引起X、Y、Z等进给轴驱动器的速度控制准备信号(VRDY信号)为“OFF”状态,且Z轴的跟随误差超过的根本原因。 分析机床搬迁前后的最大变化是输入电源发生了改变,因此,电源相序接反的可能性较大。检查电源进线,确认了相序连接错误;更改后,机床恢复正常。 2、FANUC 6ME数控运动失控的故障维修 故障现象:一台配套FANUC 6ME系统的加工中心,由于伺服电动机损伤,在更换了X 轴伺服电动机后,机床一接通电源,X轴电动机即高速转动,CNC发生ALM410报警并停机。 分析与处理过程:机床一接通三磊.X轴电动机即高速转动,CNC发生ALM410报警并停机的故障,在机床厂第一次开机调试时经常遇到,根据维修经验,故障原因通常是由于伺服电动机的电枢或测速反馈极性接反引起的。 考虑到本机床X轴电动机已经进行过维修,实际存在测速发电机极性接反的可能性,维修时将电动机与机械传动系统的连接脱开后(防止电动机冲击对传动系统带来的损伤),直接调换了测速发电机极性,通电后试验.机床恢复正常。 3、FANUC 6ME数控运动失控的故障维修 故障现象:一台配套FANUC 6ME系统、FANUC直流伺服驱动、SIEMENS1HU3076直流伺服电动机的进口加工中心,在机床大修后,机床一接通电源,X轴电动机即高速转动,CNC发生ALM410报警并停机。 分析与处理过程:故障分析处理过程同上,初步判定故障原因通常是由于伺服电动机的电枢或测速反馈极性接反引起的; 考虑到本机床大修时,将X轴电动机进行了重新安装,且SIEMENS lHU3076直流伺服电动机不带测速发电机,伺服电动机的实际转速反馈信号通过对编码器的F/V转换得到,因此故障最大可能的原因是电动机电枢线极性接反。 维修时在电动机与机械传动系统脱开后(防止电动机冲击对传动系统带来的损伤),直接调换了电动机电枢极性,通电后试验,机床恢复正常。

交流伺服电机试验报告

实验五交流伺服电机实验一、实验设备及仪器 被测电机铭牌参数: P N=25W, U N=220V, I N=0.55A,μN=2700rpm 使用设备规格(编号): 1.MEL系列电机系统教学实验台主控制屏(MEL-I、MEL-IIA、B);2.电机导轨及测功机、转速转矩测量(MEL-13); 3.交流伺服电动机M13; 4.三相可调电阻90Ω(MEL-04); 5.三相可调电阻900Ω(MEL-03); 6.隔离变压器和三相调压器(试验台右下角) 二.实验目的 1.掌握用实验方法配圆磁场。 2.掌握交流伺服电动机机械特性及调节特性的测量方法。

三.实验项目 1.观察伺服电动机有无“自转”现象。 2.测定交流伺服电动机采用幅值控制时的机械特性和调节特性。 三相调压器输出的线电压U uw经过开关S(MEL—05)接交流伺服电机的控制绕组。 G为测功机,通过航空插座与MEL—13相连。 1.观察交流伺服电动机有无“自转”现象 测功机和交流伺服电机暂不联接(联轴器脱开),调压器旋钮逆时针调到底,使输出位于最小位置。合上开关S。 接通交流电源,调节三相调压器,使输出电压增加,此时电机应启动运转,继续升高电压直到控制绕组U c=127V。 待电机空载运行稳定后,打开开关S,观察电机有无“自转”现象。 将控制电压相位改变180°电角度,观察电动机转向有无改变。 没有自转现象。 2.测定交流伺服电动机采用幅值控制时的机械特性和调节特性 (1)测定交流伺服电动机a=1(即U c=U N=220V)时的机械特性 把测功机和交流伺服电动机同轴联接,调节三相调压器,使U c=U cn=220V,保持U f、U c电

伺服控制器的原理和维修

伺服控制器的原理和维修 近来有同行朋友探讨伺服器的维修,而大多维修界的前辈们,总把维修伺服器看得很神秘,很高深的样子,对技术是守口如瓶。我想在这里抛砖引玉,探讨伺服器的原理和维修。 我是一个搞工业控制设备维修的,专长是硬件维修。工业设备最初源起欧美,发扬于日本,所以无论理论也好,设计也罢,都绕不开国外这个词。在如今网络,软件,物联网,虚拟现实的今天,很多人对硬件维修人员,大多嗤之以鼻。以为就是个玩玩烙铁的体力活,没多少技术含量,其实硬件维修道路艰险且漫长,需要了解的实在很多。 硬件是工业控制设备中重中之重的课题,是虚实交互的桥梁,没这座桥一切都是空谈,是绕不开的执行工具,硬件质量的好坏,直接关系到处理结果。现在世界上顶级的工控设备生产商,都在向模块化生产靠拢。 什么是模块化呢?简单点说就是:把一个设备分拆为几个部分,每个部份,集成起来生产组合起来。这样的好处是,可尽量控制设备的故障范围,节省维护成本,同时拓展了用途。这点在需要联控的领域优势非常的明显。 很多人进入工业设备维修的领域,都是从修变频器开始的,也有人认为会修变频器就会修所有的工业控制设备,其实,这仅仅是一个开始。

当然,入门级变频器包括了强电/微电电路/反馈取样/本地远程控制等基本功能。通常用在要求运转精度不高的场合,比如供水,调速等场合。但一些精确控制场合就不同了,要知道工业控制的精髓就是,精确控制。没有精确度,纵使外观漂亮大气,吹得如何天花乱坠,你的产品还是低级产品。有精度要求的场合,比如我们常常乘坐的电梯,起重,造纸,冶金,纺织等有严格要求的场合,普通变频器就往往不能胜任了。这时,就要求伺服控制器登场了。 伺服控制器有那么神乎其神吗?也别把那东西想得那么复杂,伺服的基本条件是闭环控制。什么是闭环控制?无非就是和输出马达组合成一个环路,有反馈而已。变频器也有反馈,比如电流传感器就是。伺服的反馈要求更苛刻一些,要求电机每转动一下的位置信息主控制板都要知道。通俗点说就是:快了就慢下来,慢了就加快一点。这个说起来容易做起来难,要知道动态,惯性,负载变化都在瞬息万变,马达那边出了什么幺蛾子,控制器马上就知道,而且要做出对应的处理措施,这并不是一件容易的事。 于是第二个问题就出来了,那就是响应问题。所谓的响应,就如人与人之间的对话,一问一答。马达运行起来那是每分钟几千转的问题,这就是所谓的高速响应。马达的编码器担负起和主控板之间的对话。编码器制造商按要求将编码器演算成脉冲,马达转一圈,很可能编码器就输出了几千个脉冲,这个脉冲以原始位置为起点,每一个脉冲代表一个位置。你也可以这样理解,编码器每圈输出的脉冲越多,定位越准确,误差越小。当然以上说的指示一个概念,实际的软件算法,

伺服系统的参数调整和性能指标试验

伺服系统的参数调整和性能指标试验 1 伺服系统的参数调整理论基础 伺服系统包括三个反馈回路(位置回路、速度回路以及电流回路)。最内环回路的反应速度最快,中间环节的反应速度必须高于最外环。假使未遵守此原则,将会造成震动或反应不良。伺服驱动器的设计可确保电流回路具备良好的反应效能。用户只需调整位置回路与速度回路增益。 伺服系统方块图包括位置、速度以及电流回路,如图1所示。 图1 伺服系统方块图 一般而言,位置回路的反应不能高于速度回路的反应。因此,若要增加位置回路的增益,必须先增加速度回路增益。如果只增加位置回路的增益,震动将会造成速度指令及定位时间增加,而非减少。 如果位置回路反应比速度回路反应还快,由于速度回路反应较慢,位置回路输出的速度指令无法跟上位置回路。因此就无法达到平滑的线性加速或减速,而且,位置回路会继续累计偏差,增加速度指令。这样,电机速度会超过,位置回路会尝试减少速度指令输出量。但是,速度回路反应会变得很差,电机将赶不上速度指令。速度指令会如图2振动。要是发生这种情形,就必须减少位置回路增益或增加速度回路增益,以防速度指令振动。 图2 速度指令 位置回路增益不可超过机械系统的自然频率,否则会产生较大的振荡。例如,机械系统若是连接机器人,由于机器的机械构造采用减低波动的齿轮,而机械系统的自然频率为10~20Hz,因此其刚性很低。此时可将位置回路增益设定为10至20(1/s)。 如果机械构造系统是晶片安装机、IC黏合机或高精度工具机械,系统的自然频率为70Hz以上。因此,可将位置回路增益设定为70(1/s)或更高。 需要很快的反应时,不只是要确保采用的伺服系统(控制器、伺服驱动器、电机以及编码器)的反应,而且也必须确保机械系统具备高刚性。

fanuc伺服驱动器的常见故障(1)

FANUC交流速度控制单元有多种规格,早期的交流伺服为模拟式,目前一般都使用数字式伺服,在数控机床中,常用的规格型号有以下几种: 1)与FANUC交流伺服电动机AC0、5、10、20M、20、30、30R等配套的模拟式交流速度控制单元。它是FANUC最早的AC伺服产品,速度控制单元采用正弦波PWM控制,大功率晶体管驱动。在结构形式上,可以分单轴独立型、双轴一体型、三轴一体型三种基本结构。单轴独立型速度控制单元,常用的型号有 A06B-6050-H102/H103/H104/H113等;双轴一体型速度控制单元,常用的型号有A06B-6050-H201/H202/H203等;三轴一体型速度控制单元,常用的型号有A06B-6050-H401/H402/H403/H404等,多与FANUC 11、0A、0B等系统配套使用。 2)与FANUC交流S (L、T)系列伺服电动机配套的S (L、C)系列数字式交流伺服驱动器,它是FANUC中期的AC伺服产品,驱动器采用全数字正弦波PWM控制,IGBT驱动。其中,S系列用量最广,规格最全;L 系列只有单轴型结构,常用的型号有A06B-6058-H001-H007/H102/H103等;C系列有单轴型、双轴型两种结构,常用的单轴型有A06B-6066-H002-H006等规格,常用的双轴型有A06B-6066-H222~H224/H233、H234、H244等规格。 作为常用规格,S系列有单轴型、双轴型、三轴型三种结构,常用的单轴型有 A06B-6058-H001~H007/H023/H025等;常用的双轴型有A06B-6058-H221~H231/H251-H253等规格;常用的三轴型有A06B-6058-H331-H334等规格;多与FANUC 0C、11、15系统配套使用。 3)与FANUC α/αC/αM/αL系列伺服电动机配套的FANUC α系列数字式交流伺服驱动器,它是FANUC 当前常用的AC伺服产品,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。FANUC α系列数字式交流速度控制单元有如下两种基本结构形式: ①各驱动公用电源模块(PSM)、伺服驱动单元(SVM)为模块化安装的结构形式,驱动器可以是单轴型、双轴型与三轴型三种结构。常用的单轴型有A06B-6079-H101~H106等,常用的双轴型有 A06B-6079-H201~H208等规格,常用的三轴型有A06B-6079/6080-H301~H307等规格,多与FANUC 0C、15A/B、16A/B、18A、20、21系统配套使用。 ②电源与驱动器一体化(SVU型)的结构形式,各驱动器单元可以独立安装,有单轴型、双轴型两种结构,常用的单轴型有A06B-6089-H10l~H106等规格,常用的双轴型有A06B-6089-H201~H210等规格,多与FANUC 0C、0D、15A/B、16A/B、18A、20、21系统配套使用。 4)与FANUC β系列伺服电动机配套的FANUC β系列数字式交流伺服驱动器,它亦是FANUC当前常用的AC伺服产品,采用电源与驱动器一体化(SVU型)的结构,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。可以使用PWM接口、I/OLink接口,亦可以采用光缆接口。型号为 A06B-6093-H101~H104/H151~H154//H111-H114,多与FANUC 0TD、PM01等经济型数控系统配套使用。 5)与FANUC αi系列伺服电动机配套的FANUCα i系列伺服驱动器是FANUC公司的最新产品,它在FANUC α系列的基础上作了性能改进。产品通过特殊的磁路设计与精密的电流控制以及精密的编码器速度反馈,使转矩波动极小,加速性能优异,可靠性极高。电动机内装有脉冲/转极高精度的编码器,作为速度、位置检测器件,使系统的速度、位置控制达到了极高的精度。 α i系列驱动器由电源模块(PSM)、伺服驱动器(SVM)、主轴驱动器(SPM)等组成,伺服驱动与主轴驱动共用电源模块,组成伺服/主轴一体化的结构。伺服驱动模块有单轴型、双轴型、三轴型三种基本规格。标准型(FANUC αi系列)为200VAC输入,常用的单轴型有A06B-6114-H103~H109等,双轴型有 A06B-6114-H201-H211等,三轴型有A06B-6114-H301~H304等。高电压输入型(FANUC α i(HV)系列)为400VAC 输入,常用的单轴型有A06B--6124-H102~H109等,双轴型有A06B-6124-H201-H211等,目前尚无三轴型结构。FANUC αi系列交流数字伺服配套的数控系统主要有FANUC 0i、FANUC 15i/150i、 FANUC16i/18i/l60i/180i/20i/21i等。

伺服电机测试步骤

伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。在伺服电机投入使用之前,需要对伺服电机进行一些测试,以确保其能正常安全地工作。下面就给大家介绍一下伺服电机的测试步骤是怎样。 首先,先测试一下电机,任何电路也不用连接,把电机的三根线任意两根短路在一起,用手转动电机轴,感觉起来有阻力,那就OK。 第二步,把驱动器按图纸接上电源(例如用了调压器,从100V调到220V,怕驱动器是100V的),通电,驱动器正常,有错误信息显示,对照说明书,是显示了编码器有故障的错误,这个也正常,还没有连接编码器呢。 第三步,接上编码器,再开机,没有任何错误显示了。 第四步,按照说明书上设置驱动器。例如设置了“速度控制模式”,然后旋动电位器,电机没有转动。按说明书上的说明,调整拨动开关,最后把“Servo-ON”拨动以后,电机一下子锁定了,OK!然后旋动电位器,使SPR/TRQR输入引脚有电压,好!电机转动起来了。伺服驱动器上的转数达到

了1000、2000、3000最后可到4000多转。说明书上推荐是3000转的,再高速可能会有些问题。 第五步,重新设置了伺服驱动器,改成“位置控制模式”,把运动控制卡(或者使用MACH3,连接电脑并行口)接到脉冲、方向接口上,电机也转动了!按照500Kpps的输出速率,驱动器上显示出了3000rpm。正反转都可自行控制。 最后,再调节一下运动控制卡,和做的小连接板。板子上的LED阵列是为了测试输出用的,插座是连接两相编码器的,另一个插座是输出脉冲/方向的,开关、按钮是测试I/O输入的。 以上就是关于伺服电机测试步骤的相关信息,如果缺少专业的检测人员,建议购置一台专门用于伺服电机的测试系统既可以节省人力成本,又可以提高检测效率保证质量。ZDT-I 伺服电机测试系统采用模块化设计,依据国内外最新测试标准,结合用户测试需求,完成伺服电机性能测试。

伺服驱动器的过流故障与过电压故障,伺服驱动器的常见故障维修

伺服驱动器的过流故障与过电压故障,伺服驱动器的常见故障维修目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。 随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。 驱动器调试过程过电压过电流是两个比较常见的故障,下面就这两个故障做些分析,更好的帮助调试人掌握故障的基理及产生的原因,能够较快的了解故障点排除故障,让设备能尽早投入运行。 1、过电压故障:这里所指的电压常指直流母线电压,图一是常见市场驱动器主回路电路,P和N之间的电压就是直流母线电压。 直流母线电压的读取,驱动器CPU无法读取很高的电压,所以必需得通过电路转化将高电压转化为CPU可以读取的低电压,常见的有变压器输出读取法和电阻降压读取法,见图二,图三。 从上述原理图分析,过电压产生第一种是种种原因造成的驱动器C和D之间电压高于额

富士伺服驱动器的常用故障代码及其检查与维护

富士伺服驱动器的常用故障代码及其检查与维护 一、检查 1、警报检出内容 (图1) (按键面板的7段LED显示器以0.5秒的间隔闪烁。) 2、警报检出时的动作 (1)在检出的同时自由运转

(图2)(2)以最大转矩减速,停止后自由运转 (图3) 二、维护 1、过电流 【显示】 (图4) 【检出内容】

主回路晶体的输出电流超过规定值。 【要因与处置】 (图5)伺服马达的动力沛县有可能漏电或短路。 通常,对地间有数MΩ以上,线圈之间的电阻值均衡。 2、过速度 【显示】 (图6) 【检出内容】 伺服马达的回转速度超过最高速度的1.1倍。 【要因与处置】 (图7)马达的回转速度有可能出现峰突。

(图8) 3、过电压 【显示】 (图9) 【检出内容】 伺服驱动器内部的直流中间电压比上限值大。 【要因与处置】 (图10)可以在按键面板的监视模式确认内部的中间电压。 On 16:直流中间电压(最大值)On 17:直流中间电压(最小值) 约在420V时检出电压。 4、编码器异常

【显示】 (图11) 【检出内容】 伺服马达内部的编码器可能已损坏。 【要因与处置】 (图12)编码器内部的CPU是以自我诊断的结果来检出警报的。 这时,伺服驱动器马达之间正在进行通信。 5、控制电流异常 【显示】 (图13) 【检出内容】 伺服驱动器内部的控制电源发生异常,有损坏的可能性。 【要因与处置】

(图14)6、记忆体异常 【显示】 (图15) 【检出内容】 保存在伺服驱动器EEPROM内部的参数内容已损坏。 【要因与处置】 (图16)发生记忆体异常时,请执行参数的初始化。 执行初始化之后仍然会检出记忆体异常时,必须更换驱动器。 7、回生晶体过热 【显示】 (图17) 【检出内容】

七大方法解析伺服驱动器如何测试检修

七大方法解析伺服驱动器如何测试检修 伺服系统包括伺服驱动器和伺服电机,驱动器利用精密的反馈结合高速数字信号处理器DSP,控制IGBT产生精确电流输出,用来驱动三相永磁同步交流伺服电机达到精确调速和定位等功能。和普通电机相比,由于交流伺服驱动器内部有许多保护功能,且电机无电刷和换向器,因此工作可靠,维护和保养工作量也相对较小。 为了延长伺服系统的工作寿命,在使用过程中需注意以下问题。对于系统的使用环境,需考虑到温度、湿度、粉尘、振动及输入电压这五个要素。定期清理数控装置的散热通风系统。应经常检查数控装置上各冷却风扇工作是否正常。应视车间环境状况,每半年或一个季度检查清扫一次。 当数控机床长期闲置不用时,也应定期对数控系统进行维护保养。首先,应经常给数控系统通电,在机床锁住不动的情况下,让其空载运行。在空气湿度较大的梅雨季节应该天天通电,利用电器元件本身发热驱走数控柜内的潮气,以保证电子部件的性能稳定可靠。实践证明,经常停置不用的机床,过了梅雨天后,一开机往往容易发生各种故障。 由于运动控制系统最终用户的工作条件和企业一线工程技术支撑能力的限制,常常使得机电系统不能够得到良好的设备管理,轻则缩短机电一体化设备的生命周期,重则由于设备故障降低产能造成经济效益的损失。 伺服驱动器是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。那么对伺服驱动器如何测试检修,以下是一些方法: 1、示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出 故障原因:电流监控输出端没有与交流电源相隔离(变压器) 处理方法:可以用直流电压表检测观察。 2、电机在一个方向上比另一个方向跑得快

直流伺服电机实验报告

实验六直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A ,μN =1600rpm 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。

2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。 2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

取三次测量的平均值作为实际冷态电阻值Ra=3 13 2a a a R R R ++。 表中Ra=(R a1+R a2+R a3)/3; R aref =Ra*a ref θ++235235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref =Ra a ref θθ++235235 式中R aref ——换算到基准工作温度时电枢绕组电阻。(Ω) R a ——电枢绕组的实际冷态电阻。(Ω) θref ——基准工作温度,对于E 级绝缘为75℃。 θa ——实际冷态时电枢绕组的温度。(℃) 2.测直流伺服电动机的机械特性

伺服驱动器的工作模式与伺服驱动器的测试方法

伺服驱动器的工作模式与伺服驱动器的测试方法 伺服驱动器是用来控制伺服电机的一种控制器,伺服驱动器其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分。目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM )为核心设计的驱动电路,IPM 内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。 功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM 电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC 的过程。整流单元(AC-DC )主要的拓扑电路是三相全桥不控整流电路。伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的高端。随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。 伺服驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。尤其是应用于控制交流永磁同步电机的伺服驱动器已经成为国内外研究热点。当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置 3 闭环控制算法。该算法中速度闭环设计合理与否,对于整个伺服控制系统,特别是速度控制性能的发挥起到关键作用。在伺服驱动器速度闭环中,电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,与其对应的常用测速方法为M/T 测速法。M/T 测速法虽然具有一定的测量精度

伺服电机可以维修吗-常见伺服电机的13种故障及维修知识汇总

伺服电机可以维修吗?常见伺服电机的13种故障及维修知识汇总伺服电机原理伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似。其定子上装有两个位置互差90度的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有起动转矩大、运行范围较广、无自转现象三个显著特点。 伺服电机可以维修吗伺服电机是可以维修的,伺服电机的维修可以说是相对复杂的,但伺服电机因为长期连续不断使用或者使用者操作不当,会经常发生电机故障。伺服电机的维

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧 随着市场的发展和国内功率电子技术、微电子技术、计算机技术及控制原理等技术的进步,国内数控系统、交流伺服驱动器及伺服电动机这两年有了较大的 发展,在某些应用领域打破了国外的垄断局面。笔者因多年从事数控技术工作,使用了多套日本安川、松下、三洋等数字伺服,但最近因国产伺服性价比好,使 用了一些数控技术公司生产的交流伺服驱动及电动机,对使用中某些方面总结了一些简单实用的技巧。 1KNDSD100基本性能 1.1基本功能 SD100采用国际上先进的数字信号处理器(DSP)TM320(S240)、大规模可编程门阵列(FPGA)、日本三菱的新一代智能化功率模块(1PM),集成度高,体积小,具有超速、过流、过载、主电源过压欠压、编码器异常和位置超差等保护功能。 与步进电动机相比,交流伺服电动机无失步现象。伺服电动机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。调速比宽1:5000,转矩恒定,1 r和2000r的扭矩基本一样,从低速到高速都具有稳定的转矩特性和很快的响应特性。采用全数字控制,控制简单灵活。用户通过参数修改可以对伺服的工作方式、运行特性作出适当的设置。目前价格仅比步进电动机高2000~3000元。 1.2参数调整 SD100为用户提供了丰富的用户参数0~59个,报警参数1~32个,监视方式(电动机转速,位置偏差等)22个。用户可以根据不同的现场情况调整参数,以达到最佳控制效果。几种常用的参数的含义是: (1)“0”号为密码参数,出厂值315,用户改变型号必须将此密码改为

385。" (2)“1”号为型号代码,对应同系列不同功率级别的驱动器和电动机。 (3)“4”号为控制方式选择,改变此参数可设置驱动器的控制方式。其中,“0”为位置控制方式;“1”为速度控制方式;“2”为试运行控制方式;“3”为JOG控制方式;“4”为编码器调零方式;“5”为开环控制方式(用户测试电压及编码器);“6”为转矩控制方式。 (4)“5”号为速度比例增益,出厂值为 150。"此设置值越大,增益越高,刚度越高。参数设置根据具体的伺服驱动型号和负载情况设定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡情况下,应尽量设定较大些。 (5)“6”号为速度积分时间常数,出厂值为 20。"此设定值越小,积分速度越快,太小轻易产生超调,太大使响应变慢。参数设置根据具体的伺服驱动型号和负载确定。一般情况下,负载惯量越大,设定值越大。 (6)“40”、“4l”号为加减速时间常数,出厂设定为 0。"此设定值表示电动机以0~100r/min转速所需的加速时间或减速时间。加减速特性呈线性。 (7)“9”号为位置比例增益,出厂没定为 40。"此设置值越大,增益越高,刚度越高,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值根据具体的伺服驱动型号和负载情况而定。 2 KNDSD100的参数设置技巧 SD100伺服驱动器和凯恩帝数控系统相配时,只需设定表1中的参数,其余参数,一般情况下,不用修改。电子齿轮比的设置如下:

伺服系统个人实验报告

实验一: SIMOTION和TCPU 配置 1.SIMOTION 配置 实验目的 1.掌握SIMOTION 设备和S120的工程配置 2.能够在电脑端控制电机的启停 实验设备 编程电脑一台、SIMOTION D425 设备一套、PLC+S120 设备一套 实验内容 A.创建项目并组态硬件 一、创建项目 在桌面上双击打开“SIMOTION SCOUT”,启动SCOUT 软件。 输入工程的名字,选择工程的路径,点击OK。 双击导航中的“Insert SIMOTION device”条目插入一个新设备,在Decive 中选择SIMOTIOND,在Device characteristic 中选择D425,在SIMOTION version 中选择V4.3 版本,勾选Open HW Config。

设置编程电脑与SIMOTION 的连接方式,根据实际硬件的连线选择。选择以太网连接Ethernet IE1-OP(X120 端口),TCP/IP(AUto)协议。 二、网络组态 工程创建完成之后,会得到下图的画面,对网络进行组态。双击图中的蓝色条状区域X120 IE1-OP,设置SIOMTION 的IP 地址 点击按钮Properties,修改SIMOTION 的IP 地址 修改IP 地址,保证此处的IP 地址与编程电脑的IP 地址在一个网段内。

三、激活路由 1.设置路由 点击“Configure network”,进行设置路由操作。 双击上图右侧的PG/PC(1),设置IP 地址。IP 地址要和编程电脑的IP地址一致。 2.保存路由和下载路由 按下图所示,点击工具栏中的保存与编译按钮,没有错误后,再点击下载按钮,下载NetPro 组态到SIOMTION 中,使编程电脑可以和SIMOTION 中集成的驱动器通讯。

相关主题