搜档网
当前位置:搜档网 › 常用热固性塑料的注塑成型工艺条件

常用热固性塑料的注塑成型工艺条件

常用热固性塑料的注塑成型工艺条件
常用热固性塑料的注塑成型工艺条件

常用热固性塑料的注塑成型工艺条件是什么?

(1) 酚醛塑料注塑成型工艺条件

酚醛塑料是热固性塑料中应用最多的一种注塑材料,一般多用木粉或纤维素做填充料。酚醛熔体流动性好,加热时间范围也

较宽。酚醛塑料品牌种类比较多,能用于注塑成型的酚醛粉料及其工艺性能参数见表1。

表1 酚醛注塑粉的工艺性能和注塑成型工艺参数

(2) 氨基塑料注塑成型工艺条件

氨基塑料中主要有脲甲醛、三聚氰胺甲醛和三聚氰胺酚醛,可用于注塑成型制品。这种原料要求塑化时加热时间短,所以应采用较高的注射速度。但高速注射成型又会引起制品有残留应力,使制品容易产生裂纹。这种原料的熔体固化条件要求较高,所以对机筒温度和成型模具温度范围应严格控制。脲甲醛和三聚氰胺甲醛塑料的注塑成型工艺参数见表3。

(3) 不饱和聚酯塑料注塑成型工艺条件

不饱和聚酯塑料用于注塑成型的品种有SMC和UP。这种原料的成型性及工艺性良好。具体注塑成型工艺参数见表3。

(4) 环氧树脂注塑料注塑成型工艺条件

环氧树脂熔料注射后在5?180°C范围内迅速或缓慢固化,这与选用的固化剂和环氧体系有关。制品的壁厚对固化时间影响小,成型后收缩率小,约为0.1%左右,但流动方向与垂直方向相差约3%。

玻璃纤维环氧注塑料和液体环氧注塑料的注塑成型工艺参数见表2。

表2环氧树脂注塑成型工艺参数

(5) DAP塑料注塑成型工艺条件

苯二甲酸二丙烯酯塑料可分为邻苯二甲酸二丙烯酯(DAP)和间苯二甲酸二丙烯酯(DAIP)。两种树脂中常加人玻璃纤维或无机填料增强,其成型工艺条件见表3。

表3 常用热固性塑料的注塑成型工艺参数

续表:

常用塑料注塑工艺参数表

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2) 2010-06-16 20:02:13| 分类:个人日记| 标签:|字号大中小订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg 为149~150℃;Tf为215~225℃;成型温度为250~310℃; 2、热稳定性较好,并随分子量的增大而提高。但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。 3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。 5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)。PC的典型干燥曲线台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定 1、常用品种及其熔点:q 品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010;尼龙-66/6/610q 熔点:尼龙n系列:尼龙-6 215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46 295 ℃;尼龙-66 255~265℃;尼龙-610 215~223℃;尼龙-1010 200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。 6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。 7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂); 8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。 10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。 2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30 ℃;3、应采用较大的注射速率和较高的注射压力; 4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定 PMMA树脂俗称“压克力”,国内著名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、 PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显著得多。故在成型时改变PMMA的流动性主要是从注射温度着手。但选用高料温时易受其它工艺参

注塑成型工艺条件调试规定

注塑成型工艺条件调试规定 1.0目的 制定本规定的目的,是对注塑工艺参数在设置、变更和记录、监督过程中可以标准化操作的部分进行规范,提高工艺参数的稳定性和再现性,减少注塑车间在换模、换料的生产切换过程中材料的损耗与工时的浪费,达到提高生产效率、稳定产品品质的目的。 2.0范围 适用注塑车间注塑机工艺参数的设置与管理 3.0职责 3.1调机员:正确的使用标准成型工艺,并对存在的问题及时向领班反馈,配合领班完成对异常情 况的处理。 3.2领班:正确的使用标准成型工艺,当因机器、模具、材料、运水等原因原标准成型工艺参数 不适用时,根据实际情况作出相应改变以保证生产的进行并配合在工艺改变后IPQC的品质确 认工作。并将工艺变更情况向主管汇报。 3.3主管:发布和认可标准成型工艺,确认工艺变更的正确性并完成相应记录。对不正确的工艺进 行修改并将原因告示领班和技术员,确保生产是在正常和经济的状态下进行。 4.0标准成型工艺参数的设置和调整的一般原理和注意事项 4.1设置成型参数的一般原理和注意事项。 4.1.1合模参数的设定。合模一般分为四段。 4.1.1.1慢速开始:为使机器平稳启动、合模应以慢速开始。 4.1.1.2快速到位:动模板在合模油缸推动下快速运动,以缩短工作周期。 4.1.1.3低压保护:油缸低压低速运动,以保护模具安全。对于三板模或有斜顶、铲机 结构的模具,动、定模接触时应适当降低速度和压力。 4.1.1.4高压合模:以所需的合模力锁紧模具。应选用最低而又不使成品产生毛边的合 模力,既能提高效率又能延长机器模具寿命。 4.1.2开模参数的设定。开模一般分为三段。 4.1.2.1慢速开模:为不使产品撕裂、变形,应以慢速开模开始。 4.1.2.2快速到位:模具一经打开,应转为快速开模到位,以缩短工作周期。但对于三 板模具、有斜顶滑块的模具,在动、定模分离时应适当设定速度和压力,减轻 对模具和机器的冲击和降低噪音。 4.1.2.3慢速终止:将到终点时,为防止惯性产生冲击,应由中速转为慢速终止。 4.1.3顶出和顶退参数的设置。要注意提高生产效率、保护模具和降低噪音。 4.1.3.1顶出应选用能使模具顶出机构正稳运动的最高速度。必须保证产品不能出现变 形、白化、撕裂等顶出动作导致的缺陷。 4.1.3.2顶退应选用能使顶出机构平稳复位的较低压力和较高速度。

热固性塑料件结构工艺性

热固性产品结构工艺性 1.1、概论 热固性成形材在尺寸安定性、表面硬度、抗蠕变、耐热力、绝缘性及抗化学性上皆有极佳的物性。有些甚至具有成形后之零收缩率,特别适用于需要极小公差之塑品。以下先对各种热固性材料做个简介: 1、酚醛树脂 使用于电线装置、汽车零组件(传动、点火、真空助煞板)、电气开关齿轮、马达启动器、洗衣机、电冰箱、烤面包机、炒锅把手、通信器材及计算机等。 2、尿素 用于电线、照相装置、家庭用电路断路器及色浆之应用等。 3、三聚氰胺 用于碗盘器皿、电器组件及对光稳定的色浆应用。 4、三聚氰胺-酚醛树脂 特别适于需要极佳电气性质及抗电弧性上之应用,如齿轮、马达启动器开关及须用对光稳定性之器具。 5、醇酸树脂 适用于在高温时需要高绝缘性及介电强度之应用,亦可用于汽车分电盘盖、转子、开关器外壳、断路器及色浆。 6、酸二丙烯酯(DAP) 此材料在长时间高温及高湿度下,仍保有极佳的电气性质,可应用于连接器及通信组装器材。 7、聚脂类 可以粒状、团状或板状成形各种电气、建筑、运输及医药等产品。产品之小可从1英寸到几百英寸。 以上所述之各种热固性成形材可以多种成形方法制成产品如下所列: ①、浸湿加工:补强玻纤遍布在成形模上,倒入液态树脂混合之,再予以加压加热成形之。 ②、团状成形材(BMC):混合了热固性材料、填充剂及补强玻纤,常先以押出法制成圆木状或长条状以利后续之压缩成形、树脂转换成形(须要精确之塑品厚度时)或射出成形。 ③、板状成形材(SMC):大多为不饱和聚脂与玻纤混合成为糊状于两PE膜中间,经输送带上之滚轮压挤成为片状,再做后续之加工成形,特别适用于大型品之制造。 ④、热塑性玻纤补强射出成形:其加工法为与射出成形类似,一般之玻纤含量为20%至40%。

常用塑料注塑工艺参数表样本

常见塑料注塑工艺参数表:

常见塑料注塑工艺参数( 2) -06-16 20:02:13| 分类: 个人日记 | 标签: |字号大中小订阅聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、 PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料, Tg为149~150℃; Tf为215~225℃; 成型温度为250~310℃; 2、热稳定性较好, 并随分子量的增大而提高。但PC高温下遇水易降解, 成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前, PC树脂必须进行充分干燥( 而且应当充分注意防止干燥过的物料再吸湿) 。干燥效果的快速检验法, 是在注塑机上采用”对空

注射”。3、熔体粘度高, 流动性较差, 其流动特性接近于牛顿流体, 熔体粘度受剪切速率影响较小, 而对温度的变化十分敏感, 在适宜的成型加工温度范围内调节加工温度, 能有效地控制PC的粘度。4、由于粘度高, 注射压力较高, 一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品, 为使熔体顺利、及时充模, 注射压力要适当提高至120~150MPa。保压压力为80~100MPa。5、成型时, 冷却固化快, 为延迟物料冷凝, 需控制模温为80~120℃。6、 PC分子主链中有大量苯环, 分子链的刚性大, 注塑中易产生较大的内应力, 使制品开裂或影响制品的尺寸稳定性; ( 在100℃以上作长时间热处理, 它的刚硬性增加, 内应力降低) 。PC的典型干燥曲线台湾奇美典型牌号加工参数: 十、 PA及玻纤增强PA注塑工艺特性与工艺参数设定1、常见品种及其熔点: q 品种: 尼龙-66; 尼龙-610; 尼龙-1010; 尼龙-1212; 尼龙-46尼龙-6; 尼龙-7; 尼龙-9; 尼龙-11; 尼龙-12; 尼龙-66/6、尼龙-66/610; 尼龙-6∕66∕1010; 尼龙-66/6/610q 熔点: 尼龙n系列: 尼龙-6 215~220℃; 尼龙-12为178℃; 尼龙m,n系列: 尼龙- 46 295 ℃; 尼龙-66 255~265℃; 尼龙-610 215~223℃; 尼龙-1010 200℃; 共缩聚尼龙: 由于分子链的规整性较差, 结晶性和熔点一般较低, 如尼龙-6∕66∕1010的熔点仅为155~175℃, 但其有较好的透明性和弹性。2、熔点高, 熔化范围窄( 约10℃) 。考虑到PA熔点高、热稳定性较差, 故加工温度不宜太高, 一般高于熔点30℃左右即可。3、吸湿性大, 且酰胺基易于高温水解, 引起分子量严重降低; ( 须严格干燥至含水量低于0.05%, 特别是回料使用时更应严格干燥, 必要时可添加”增粘剂”。) 4、熔体粘度低, 表观粘度对温度敏感, 由于熔体的冷却速率快, 要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流, 螺杆头应装有止逆环; 另外, 为防止喷嘴处熔体的”流涎”现象, 应选用自锁式喷嘴。5、注射PA时不需高的注射压力, 一般选取范围为70~100MPa, 一般不超过120MPa。注射速率宜略快些, 这样可防止因冷却速率快而造成波纹及充模不足等问题。6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。7、酰胺基在高温下

【塑料橡胶制品】第章塑料注塑成型工艺

(塑料橡胶材料)第章塑料注塑成型工艺

第4章塑料注塑成型工艺 4.1注射工艺参数选择 试模目的之一是为正式生产寻找最佳的成型工艺条件,因此试模的工艺选择应该严格遵守注射工艺规程,按正常的生产条件试模,这样才会使模具中存在的问题得到充分暴露,试模结果对修模才有指导作用。工艺参数选择主要是温度、压力和时间的选择。首次选择各个工艺参数时可以根据经验值、一般成型理论提供的参考值或设计时的CAE模拟软件的给定值。 4.1.1温度 注射成型过程需要控制的有料筒温度、模具温度、喷嘴温度等。料筒和喷嘴温度决定熔体温度。 料筒温度的分布原则时从加料口到喷嘴由低到高的,这样能使塑料逐步塑化。料筒温度的选择与塑料特性的关系最大。每一种塑料有不同的流动温度()或熔点(),对非结晶塑料,料筒末端最高温度应高于;对结晶型塑料,料筒末端最高温度应高于,但它们都必须低于各自的分解温度,即料筒末端最高温度范围在~之间。对于~区间狭窄或热敏性易分解的塑料,料筒最高温度应偏低,比稍高即可;反之,对于~区间较宽或热稳定性较好的塑料,则可高些,即比高的多,因为这样有利于成型和提高生产效率。 喷嘴温度通常应略低于料筒的最高温度,这样可以防止熔体在喷嘴处“流涎”,对热敏性塑料还可以避免喷嘴处因高速摩擦热带来过度的温升而导致分解现象。 此外,料筒和喷嘴的温度选择,还应考虑高聚物的平均分子量及其分布,塑料配方的组成、制品的形状及其厚薄、注射机的种类,以及其他工艺条件等因素,综合考虑,以便确定最佳的数值。 模具温度对制品的外观质量内在的性能影响很大,同时也影响注射成

型的劳动效率。 热塑性塑料注射时,模具温度应低于料温,它是冷却定型过程。 模具温度的高低取决于塑料的特性(结晶与否)、制品的结构于尺寸、制品性能要求以及其他工艺条件。 无定型塑料熔体注入模腔后,不发生相转变,主要影响熔体粘度,影响充模速度。在顺利充模情况下,模温低可提高生产率。但对那些高粘度塑料,应采用较高模温,这样可调整制品冷却速率,以防止制品内外层温差过大而产生的凹痕、内应力和裂纹等缺陷。 结晶型塑料注入模腔后,随着温度下降会出现结晶,结晶速度和结晶构型又决定于模温。模温高、冷却慢,结晶度大,结晶完善,制品硬度大;反之,则结晶度低,制品较柔韧。某些结晶型塑料如聚烯烃类,其玻璃化温度较低,不宜采用高模温,因为会出现后结晶现象,从而引起制品的后收缩和性能变化。 厚壁塑件的内外冷却速度应尽可能一致,以防止因内外温差过大造成内应力及凹痕和缝隙,所以模温要高些。 4.1.2压力 注射过程的压力包括塑料塑化压力和注射压力,它们关系到塑料的塑化和模塑成型的质量。 塑化压力即背压。采用螺杆式注射机成型时,螺杆转动后退加料时熔体在螺杆头部所收到的压力称塑化压力,其大小可以通过液压系统中的溢流阀来调整。 注射过程塑化压力的大小是随螺杆的设计、注射机的种类及塑料的特性的不同而异的。如果这些情况和螺杆的转速都不变,若增大塑化压力会提高熔体的温度,但会减小塑化的能力,塑料塑化比较充分,熔体密度增大、有利于低分子的排除和提高塑化质量。 塑化压力的高低还与喷嘴种类及注射成型时加料的方式有关。一般操作中,塑化压力的大小应在保证制品质量的前提下越低越好,其具体数值随塑料品种而异。 注射压力即熔体注射入模的压力,以柱塞或螺杆头部对熔体塑料所施加的压力表示。 式中

成型工艺流程及条件介绍

成型工艺流程及条件介绍第一節成型工艺 1.成型工艺参数类型 (1). 注塑参数 a.注射量 b.计量行程 c.余料量 d.防诞量 e.螺杆转速 f.塑化量 g.预塑背压 h.注射压力和保压压力 i.注射速度 (2)合模参数 a.合模力 b.合模速度

c.合模行程. d.开模力 e.开模速度 f.开模行程 g.顶出压力 h.顶出速度 i.顶出行程 2.温控参数 a.烘料温度 b.料向与喷嘴温度 c.模具温度 d.油温 3.成型周期 a.循环周期 b.冷却时间 c.注射时间

d.保压时间 e.塑化时间 f.顶出及停留时间 g.低压保护时间 成型工艺参数的设定须根据产品的不同设置. 第二节成型条件设定 按成型步骤:可分为开锁模,加热,射出,顶出四个过程. 开锁模条件: 快速段中速度 低压高压速度 锁模条件设定: 1锁模一般分: 快速→中速→低压→高压 2.快锁模一般按模具情况分,如果是平面二板模具,快速锁模段可用较快速度,甚至于用到特快,当用到一般快速时,速度设到55-75%,完全平面模可设定到

80-90%,如果用到特快就只能设定在45-55%,压力则可设定 于50-75%,位置段视产品的深浅(或长短)不同,一般是开模 宽度的1/3. 3.中速段,在快速段结束后即转换成中速,中速的位置一般 是到模板(包括三板模,二板模)合在一块为止,具体长度应 视模板板间隔,速度一般设置在30%-50%间,压力则是 20%-45%间. 4.低压设定,低速设定一般是在模板接触的一瞬间,具体位 置就设在机台显示屏显示的一瞬间的数字为准,这个数字一般是以这点为标准,,即于此点则起不了高压,高于此点则大,轻易起高压.设定的速度一般是15%-25%,视乎不同机种而定,压力一般设定于1-2%,有些机则可设于5-15%,也是视乎不同机种不同. 5.高压设定,按一般机台而言,高压位置机台在出厂时都已 作了设定,相对来讲,是不可以随便更改的,比如震雄机在 50P.速度相对低压略高,大约在30-35%左右,而压力则视乎 模具而定,可在55-85%中取,比如完全平面之新模,模具排气良好,甚至于设在55%即可,如果是滑块较多,原来生产时毛 边也较多,甚至于可设在90%还略显不足. 加热工艺条件设定

注塑材料特性

ABC是什么ABS树脂吧! 一、PBT:聚对苯二甲酸丁二醇酯 聚对苯二甲酸丁二醇酯,英文名polybutylece terephthalate(简称PBT),属于聚酯系列,是由丁二醇glycol)与对苯二甲酸(PTA)或者对苯二甲酸酯(DMT)聚缩合而成,并经由混炼程序制成的乳白色半透明到不透明、结晶型热塑性聚酯树脂。与PET一起统称为热塑性聚酯,或饱和聚酯。 PBT理化特性 PBT为乳白色半透明到不透明、结晶型热塑性聚酯。具有高耐热性、韧性、耐疲劳性,自润滑、低摩擦系数,耐候性、吸水率低,仅为%,在潮湿环境中仍保持各种物性(包括电性能),电绝缘性,但体积电阻、介电损耗大。耐热水、碱类、酸类、油类、但易受卤化烃侵蚀,耐水解性差,低温下可迅速结晶,成型性良好。缺点是缺口冲击强度低,成型收缩率大。故大部分采用玻璃纤维增强或无机填充改性,其拉伸强度、弯曲强度可提高一倍以上,热变形温度也大幅提高。可以在140℃下长期工作,玻纤增强后制品纵、横向收缩率不一致,易使制品发生翘曲。 PBT加工工艺 PBT又可称为热塑性聚酯塑料,为适用于不同加工业者使用,一般多少会加入添加剂,或与其它塑料掺混,随着添加物比例不同,可制造不同规格的产品。由于PBT具有耐热性、耐候性、耐药品性、电气特性佳、吸水性小、光泽良好,广泛应用于电子电器、汽车零件、机械、家用品等,而PBT产品又与PPE、PC、POM、PA等共称为五大泛用工程塑料。 PBT 结晶速度快,最适宜加工方法为注塑,其他方法还有挤出、吹塑、涂覆和各种二次加工成型,成型前需预干燥,水分含量要降至%。 PBT的注塑工艺特性与工艺参数的设定: PBT的聚合工艺成熟、成本较低,成型加工容易。未改性PBT性能不佳,实际应用要对PBT进行改性,其中,玻璃纤维增强改性牌号占PBT的70%以上。 1 PBT的工艺特性 PBT具有明显的熔点,熔点为225~235℃,是结晶型材料,结晶度可达40%。 PBT熔体的粘度受温度的影响不如剪切应力那么大,因此,在注塑中,注射压力对PBT熔体流动性影响是明显。 PBT在熔融状态下流动性好,粘度低,仅次于尼龙,在成型易发生“流延”现象。 PBT成型制品各向异性。PBT在高温下遇水易降解。 2 注塑机 选用螺杆式注塑机时。应考虑如下几点。 ①制品的用料量应控制在注塑机额定最大注射量的30%~80%。不宜用大注塑机生产小制品。 ②应选用渐变型三段螺杆,长径比为15~20,压缩比为~。 ③应选用自锁式喷嘴,并带有加热控温装置。 ④在成型阻燃级PBT时,注塑机的有关部件应经防腐处理。 3 制品与模具设计 ①制品的厚度不宜太厚,PBT对缺口很敏感,因此,制品的直角等过渡处应采用圆弧连接。 ②未改性PBT的成型收缩率较大,在%~%,模具要有一定的脱模斜度。 ③模具需要设排气孔或排气槽。

常用塑料汇总

第六节常用塑料 一、热塑性塑料 (一)聚乙烯(PE) 1.基本特性 聚乙烯塑料由乙烯单体经聚合而成, 按聚合时采用的生产压力的高低可分为高压、中压和低压聚乙烯三种。 低压聚乙烯又称高密度聚乙烯(HDPE),具有较高的刚性、强度和硬度。但柔韧性、透明性较差。 高压聚乙烯低又称低密度聚乙烯(LDPE),具有较好的柔软性、耐寒性、耐冲击性,但耐热、耐光、耐氧化能力差、易老化。 聚乙烯无毒、无味、外观上是白色蜡状固体,微显角质状,柔而韧,比水轻,除薄膜外,其它制品皆不透明,有一定的机械强度,但与其他塑料相比除冲击强度较高外,其它力学性能绝对值在塑料材料中都是较低的。聚乙烯有优异的介电绝缘性,介电性能稳定;化学稳定性好,能耐稀硫酸、稀硝酸及其他任何浓度的酸、碱、盐的侵蚀;除苯及汽油外,一般不溶于有机溶剂;其透水气性能较差,而透氧气、二氧化碳及许多有机物质蒸气的性能好;聚乙烯是分子链仅由碳氢两种元素组成的高分子烷属链烃,极易燃烧,氧指数仅17.4,是最易燃烧的塑料品种之一。聚乙烯制品受到日光照射时,制品最终老化变脆。聚乙烯的耐低温性能较好,在-60℃下仍具有较好的力学性能,但其使用温度不高,一般LDPE的使用温度在80℃左右,HDPE的使用温度在100℃左右。 2.应用 聚乙烯是产量最大,应用最广的塑料品种,高密度聚乙烯可用于制造塑料管、各种型材、单丝以及承载不高的零件,如齿轮、轴承等;低密度聚乙烯常用作塑料薄膜、软管于制、塑料瓶以及电气工业的绝缘零件和电线电缆包皮等。 3.成型特点 聚乙烯的成型加工都是在熔融状态下进行的,成型时,收缩率大,在流动方向与垂直方向上的收缩差异大,易产生变形和产生缩孔;成型时的熔体温度一般约高出聚乙烯熔融温度30~50摄氏度。它可采用多种成型加工,可以注塑、挤出、中空吹塑、薄膜压延、大型中空制品滚塑、发泡成型等。聚乙烯质软易脱模,制品有浅的侧凹时可强行脱模。 (二)聚氯乙烯(PVC) 1.基本特性 聚氯乙烯树脂是白色或淡黄色的坚硬粉末,纯聚合物的透气性和透湿率都较低。硬聚氯乙烯不含或少含增塑剂,有较好的抗拉、抗弯、抗压和抗冲击性能;软聚氯乙烯含有较多的增塑剂,柔软性、断裂伸长率较好,但硬度、抗拉强度较低。聚氯乙烯有较好的电气绝缘性

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

常用塑料注塑成型缺陷及解决方案设计

第一章注塑成型缺陷及解决方法 第一节欠注 一.名词解释 熔料进入型腔后没有充填完全,导致产品缺料叫做欠注或短射。如图所示。 二. 故障分析及排除方法: 1.设备选型不当。在选用注塑设备时,注塑机的最大注射量必须大于塑件重量。在验核时,注射总量(包括塑件、浇道及飞边)不能超出注射机塑化量的85%。 2. 供料不足,加料口底部可能有“架桥”现象。可适当增加射料杆注射行程,增加供料量。 3. 原料流动性能太差。应设法改善模具浇注系统的滞流缺陷,如合理设置浇道位置、扩大浇口、流道和注料口尺寸以及采用较大的喷嘴等。同时,可在原料配方中增加适量助剂,改善树脂的流动性能。 4. 润滑剂超量。应减少润滑剂用量及调整料筒与射料杆间隙,修复设备。 5.冷料杂质阻塞流道。应将喷嘴拆卸清理或扩大模具冷料穴和流道的截面。 6. 浇注系统设计不合理。设计浇注系统时,要注意浇口平衡,各型腔塑件的重量要与浇口大小成正比,是各型腔能同时充满,浇口位置要选择在厚壁部位,也可采用分流道平衡布置的设计方案。若浇口或流道小、薄、长,熔料的压力在流动过程中沿程损失太大,流动受阻,容易产生填充不良。对此应扩大流道截面和浇口面积,必要时可采用多点进料的方法。 图5-1 制品缺料示意图

7. 模具排气不良。应检查有无冷料穴,或其位置是否正确,对于型腔较深的模具,应在欠注部位增设排气沟槽或排气孔,在合理面上,可开设0.02-0.04mm,宽度为5-10mm的排气槽,排气孔应设置在型腔的最终充填处。使用水分及易挥发物含量超标的原料时也会产生大量气体,导致模具排气不良,此时应对原料进行干燥及清除易挥发物。此外,在模具系统的工艺操作方面,可通过提高模具温度,降低注射速度、减小浇注系统流动阻力,以及减小合模力,加大模具间隙等辅助措施改善排气不良。 8. 模具温度太低。开机前必须将模具预热至工艺要求的温度。刚开机时,应适当节制模具冷却剂的通过量。若模具温度升不上去,应检查模具冷却系统设计是否合理。 9. 熔料温度太低。在适当的成型围,料温与充模长度接近于正比例关系,低温熔料的流动性能下降,式的充模长度减短。应注意将料筒加热到仪表温度后还需恒温一段时间才能开机。如果为了防止熔料分解不得不采取低温注射时,可适当延长注射循环时间,克服欠注。 10. 喷嘴温度太低。在开模时应使喷嘴与模具分离。减少模温对喷嘴温度的影响,使喷嘴处的温度保持在工艺要求的围。 11. 注射压力或保压不足。注射压力与充模长度接近于正比例关系,注射压力太小,充模长度短,型腔充填不满。对此,可通过减慢射料杆前进速度,适当延长注射时间等办法来提高注射压力。 12. 注射速度太慢。注射速度与充模速度直接相关。如果注射速度太慢,熔料充模缓慢,而低速流动的熔体很容易冷却,使其流动性能进一步下降产生欠注。对此,应适当提高注射速度。 13. 塑件结构设计不合理。当塑件厚度与长度不成比例,形体十分复杂且成 图5-2 流道过细而凝固 图5-3 困气产生背压阻料

尼龙 注塑成型工艺

華僑大学 课程名称:增强增韧尼龙66汽车专用料姓名:彭儒 学号:0814122029 专业:08高分子二班 任课教师:钱浩

前言: 尼龙是结晶型塑料,品种颇多,已达到130多种,应用于注塑加工的有尼龙6、尼龙66、尼龙610、尼龙1010以及共聚性尼龙、超韧性尼龙、玻璃纤维增强尼龙、矿物增强尼龙等等。世界市场中,应用量最大的是尼龙66。 尼龙最早在1889年首先由Gabriel和Maass 两人合成制得,但系统的研究并最终实现工业化实在1929年,由美国杜邦公司的Carothers着手进行的。1931年Carothers申请了第一篇尼龙专利,1935年首先制得尼龙66,1939年实现工业化。尼龙66的应用领域一般在汽车、电子电器、化工设备、机械设备等方面。从最终用途看,汽车行业消耗的尼龙66占第一位,电子电器占第二位。大约有88%的尼龙66通过注射成型加工成各种制件,约12%的尼龙66则通过挤出、吹塑等成型加工成相应的制品。 由于尼龙66优良的耐热性、耐化学药品性、强度和加工方便等,因而在汽车工业得到了大量应用,目前几乎已能用于汽车的所有部位,如发动机部位,电器部位和车体部位。发动机部位包括进气系统和燃油系统,如发动机气缸盖罩、节气门、空气滤清器机器外壳,车用空气喇叭、车用空调软管、冷却风扇及其外壳、进水管、刹车油罐及灌盖,等等。车体部位零部件有:汽车挡泥板、后视镜架、保险杠、仪表盘、行李架、车门手柄、雨刷支架、安全带扣搭、车内各种装饰件等等。车内电器方面如电控门窗、连接器、保鲜盒、电缆扎线等。 工艺特点: ⑴吸水性尼龙66较易吸湿,如果长时间暴露在空气下,会吸收大气中的水分。吸水后会发生体积膨胀,影响制品的尺寸精度,如在注塑前吸收过量的水分时,其制作的外国外观和力学性质都会受损。

常用热固性塑料-电木粉的基本特点

热固性塑料(电木粉PF)注塑成型的特点 热塑性聚合物在成型中基本上是一种形态转化的物理过程。而热固性聚合物在成型中不仅有物理状态的变化,还有化学变化,并且是不可逆的。热固性聚合物在未交联前与热塑性聚合物相似,都是线型聚合物。但热固性聚合物在分子链中带有反应基团或反应活点,成型时分子链通过自带的反应基团的作用或反应活点与交联剂(硬化剂)的作用而发生交联,使线型变成体型结构。对于热固性聚合物的这种交联反应,粘度反映了它的固化程度。 一.影响粘度的因素 在极值之前的一段时间内,聚合物的热固化反应不占优势,由松驰的结晶,粘度随时间的增加而减小。在极值之后,交联固化反应占优势,聚合物相对分子量增大很快,而使粘度增大。 2.热固性塑料的粘度对成型温度的关系: 当成型温度在极值之前时,粘度主要取决于材料的物理变化,即随着温度的升高而减小,在极值之后,粘度因交联固化反应占优势而快速升高。 对于热固性塑料的注射正是利用这一点:在低于极值点的温度下,材料在注射机料筒内达到流动态(粘度低),以便注模;在大于极值点的温度下,材料可在模腔内固化成型。 3.随着剪切速率的增加,物料的粘度会降低,但由于物料的磨擦生热而使交联反应的活化能降低,从而加速了交联固化反应速率,又使物料的粘度迅速增加。 二.成型工艺 1.温度 塑料从料斗进入料筒后,一定要逐步受热塑化,温度分布不宜过分激烈。因为温度的突变,会引起熔料粘度的变化。见图所示热固性塑料在注塑过程中温度对粘

度的变化。注射时,塑料在喷嘴处流速很高,这样因磨擦生热而使塑料温升很快。对射击熔料的温度最好控制在120~130℃,因为这时熔料呈现出最好的流动性,并接近于硬化的“临界塑性”的状态。所以,各段温度的分布见表: 2.压力 一般情况下,注射压力应高一些,压力越高,收缩率越小,其制品的机械强度和电性能都较好。压力越高,流速就越快,产生的磨擦热越多,固化时间就可缩短。但是,注射压力高会引起制品内应力的增加,飞边增多和脱模困难。 注射速度与注射压力正比。它会直接影响充模时熔体的流态,从而影响到制品的质量,见图。 保压压力通常比注射压力要低一些。 3.固化时间随模温的增加而减少,与制品的壁厚成正比,形状复杂的制品需适当延长固化时间。 4.各注塑条件对制品性能的影响见下图: 5.在注塑时,由于热固性塑料是通过缩聚反应或加聚反应等化学方法来实现交联,反应时需放出低分子物,所以需考滤排气的问题。

常用塑料的注塑工艺

常用塑料的注塑工艺 —、聚乙烯-PE 1物理特性:一般常用聚乙烯为高密聚乙烯(HDPE )密度0.95熔点130C,低密聚乙烯(LDPE) 密度0.92熔点120C。 2.工艺特性: ①结晶型聚合物,有明显的熔点,软化温度范围窄(3—5C) ②注塑压力的变化对聚乙烯的流动性的影响比料筒温度的影响要明显,所以在注塑成型时先 从注塑压力方面考虑。但过高的剪切速率会出现熔体破裂现象,在制品表面出现毛糙、斑纹 等熔体破裂现象? ③乙烯吸水性低,含水小于0.01%,生产时可以不进行干燥处理?如储藏不当引起水分过量可在70-80C温度下干燥1-2h。 ④收缩率大且方向性明显,制品易翘曲变形。HDPE收缩率1.5-5%丄DPE收缩率2-5%收缩率一般视制品壁厚而定,制品壁厚越大收缩率越大。 ⑤聚乙烯对注塑机无特殊要求,一般均可使用。 3.制品与模具 ①制品制品的壁厚与熔体的流动长度有关,而聚乙烯的流动性又随密度的不同有所不 同,因此在选择制品厚度时需充分考虑流动比,低密聚乙烯的流长比为280:1,高密度聚乙 烯的流长比为230:1。在选择制品的壁厚时,应考率收缩率的影响,从有利于熔体流动、减少制品收缩的角度出发,一般聚乙烯的壁厚应在1-3.5mm之间。 ②模具的排气孔槽深度应控制在0.03mm以下。 4.树脂准备 注塑用的聚乙烯为了保证制品有一定的机械强度,通常选用熔体指数稍底的品级,而对于强 度要求不高、薄壁、长流程的制品,熔体指数相应选择大些,熔体指数(Ml )是在温度为190C,负荷为2160g下,10分钟内熔体通过孔径为 2.1mm,长度为8mm孔的克数。熔体指数值越小,树脂的分子量就越大,流动性就越差。 5.成型工艺 ①注塑温度注塑温度应根据注塑制品实际情况来确定,一般低密聚乙烯料筒温度在 160-220C之间,高密聚乙烯在175-240C之间。在料筒温度分布上喷嘴和加料段温度低一些,比计量段和压缩段低20C左右,如果加料段温度过高,有可能造成物料粘附在螺杆上,造成加料不畅。高的料筒温度可以改善熔体的流动性,但能造成制品大的收缩。 ②注塑压力和注塑速度 一般聚乙烯对注塑压力和注塑速度无特殊要求,一般选择视制品情况而定,但大的注射速度会造成熔体破裂现象。 ③模具温度模具温度的高低对聚乙烯制品有较大的影响,即模具温度高,熔体冷却速度慢,制品的结晶度高,硬度、刚性均有提高,但制品的收缩相应加大,易出现缩痕。模具温度低,熔体冷却速度快,所得制品结晶度低,透明性增加,呈现柔韧性,但相应内应力增 加,收缩的各向异性明显,易出现翘曲变形。通常低密聚乙烯的模具温度为35-55高密聚乙

最新塑料件成型工艺以及处理方法

各种塑料材料注塑工艺 一.各种塑料的原料料温 塑料型号原料温度 ABS180-240 HIPS180-220 PC+ABS200-245 PA66260-300 PA66+GP285-320 PMMA200-245 PC280-320 PS180-220 POM165-200 PP180-220 PBT220-280 二.各种塑料件异常的处理方法: A:气纹 1.浇口位置: a.提高模具温度; b.提高料管温度; c.降低浇口位置的射速,射压;对于水口较长较细的产品,可用分断式处理,一段用中速中压射水口;二段用慢速低压射胶口气纹位置. B:缺料 1.当缺料形成时,首先查看产品剂量够不够. a.当产品骨位厚的部位缺料,则后模模温过高,排气不良形成 方法:1.降低模温 2.降低射压射速. b.当产品骨位薄的部位缺料,则是塑料流速不够快形成 方法:1.提高料管温度 2.提高射压射速. c.当产品由于包封位置缺料 方法:1.改善排气 2.射低射速 2.当生产中的产品有缺料形成 a.首先检查机嘴是否漏胶,阻塞; b.料管温度是否异常; c.模具温度是否有变化. C.料花 1.查看烘料温度是否正常; 2.看料管温度是否有异常,料管温度是否设定过高导至胶料分解; 3.射嘴孔径是否过小,射出时胶料在高压高速的状况下分解.(可退炮管查看料块射出时是否有棉絮状气泡). 2.当产品表面出现不规则料花时,则处理胶料当产品表面出现有规则小块料花时,在查看确认胶料无异常情况下,可用调机改善,找出料花段剂量位置,降低射压射速和改善排气均有改善。

PC注射压力:尽可能地使用高注射压力。 PP注射压力:可大到1800bar 什么是结晶性塑料?结晶性塑料有明显的熔点,固体时分子呈规则排列。规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。 三、结晶对塑料性能的影响 1)力学性能结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差 、结晶性塑料对注塑机和模具有什么要求. 2)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相应提高。 3)结晶性塑料熔点范围窄,为防止射咀温度降低时胶料结晶堵塞射咀,射咀孔径应适当加大,并加装能单独控制射咀温度的发热圈。 4)由于模具温度对结晶度有重要影响,所以模具水路应尽可能多,保证成型时模具温度均匀。 5)结晶性在结晶过程中发生较大的体积收缩,引起较大的成型收缩率,因此在模具设计中要认真考虑其成型收缩率. 6)由于各向异性显著,内应力大,在模具设计中要注意浇口的位置和大小,加强筋和位置与大小,否则容易发生翘曲变形,而后要靠成型工艺去改善是相当困难的。 7)结晶度与塑件壁厚有关,壁厚冷却慢结晶度高,收缩大,易发生缩孔、气孔,因此模具设计中要注意控制塑件壁厚的控制. 四、结晶性塑料的成型工艺 1)冷却时释放出的热量大,要充分冷却,高模温成型时注意冷却时间的控制。 2)熔态与固态时的比重差大,成型收缩大,易发生缩孔、气孔,要注意保压压力的设定。 3)模温低时,冷却快,结晶度低,收缩小,透明度高。结晶度与塑件壁厚有关,塑件壁厚大时冷却慢结晶度高,收缩大,物性好,所以结晶性塑料应按要求必须控制模温。 4)各向异性显著,内应力大,脱模后未结晶折分子有继续结晶化的倾向,处于能量不平衡状态,易发生变形、翘曲,应适当提高料温和模具温度,中等的注射压力和注射速度。在市场上,塑料种类很多,但是做塑料的人一般只知道分为工程塑料和日用塑料两类。实质上,塑料有结晶塑料和非结晶塑料之分。结晶塑料:尼龙、丙烯、乙烯、聚甲醛等等;非结晶塑料:聚碳、ABS、透苯、氯乙烯等等。聚合物结晶的影响因素可以分两部分:内部结构的规整性,以及外部的浓度、溶剂、温度等。结构越规整,越容易结晶,反之则越不容易,成为无定型聚合物。结构因素是最主要的。要提高聚合物的结晶取向,从结构来说,可以:增加分子链的对称性;增加分子链的立体规整性;增加重复单元的排列有序性,即无规共聚;增加分子链内含的氢键;降低分子链的支化度或交联度;从外部因素来看,可以在工厂实施的方法:退火,缓慢降温可以提高结晶度;注意应力的影响。如橡胶和纤维,应力条件下就加速结晶。 溶剂的选择。良溶剂中不易结晶。 PP是一种半结晶性材料 POM是结晶性材料 PE-LD是半结晶材料

注塑成型的基本知识及常见不良

注塑成型的基本知识及常见不良 (结合本公司设备进行) 一、注塑的基本原理: 1将原料预热,去除原料中的水份(预加工); 2.原料进入料筒进行加热,(固体原料变为液体),压注入模具里; 3?经冷却(液体变为固体)后出模,去除飞边、退火等加工后变为成品。 螺杆式注射机的模塑原理:先动模与定模全模,注射油缸活塞推动螺杆按要求的注射压力和注射速度将已塑化的塑料经喷嘴及模具的浇注系统射入型腔,当塑料充满型腔后,螺杆继续对塑料保持一定压力,促使塑料补充塑件冷却收缩所需之料,同时阻止塑料倒流。经一定时间的保压后,注射油缸活塞压力消失,螺杆开始转动,这时,由料斗落入料筒的塑料在料筒中塑化。当模具型腔内的塑件(部品)冷却定型后,模具打开,在模具推出机构的作用下(顶针),塑件由模具型腔中脱出。 二、注塑的基本操作: 本公司有全自动和半自动两种形式。 1.关安全门---- 自动锁模------- 射台前进——射胶------ 溶胶 ----- 倒索 再循循------ 开安全门------ 顶针顶出 ---- 开模----- 射台后退呻 「1?热固性塑料:在受热或其他条件作用下,能固化成不熔,不熔性物料;塑料V 2 .热塑性塑料:在特定的温度范围内能反复加热软化和冷却凝固。 三、常用塑料及性能 1.常用热固性塑料:酚醛、氨基(三聚氰胺、脲醛)、聚邻苯=甲酸丙烯酯(DAP)、硅酮、环 氧村脂、玻璃纤维增强塑料等。 2.常用热塑性塑料:硬聚氯乙烯、软聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、丁苯橡胶改性聚苯 乙烯、聚苯乙烯改性有机玻璃、苯乙烯-丙烯腈共聚物、苯乙烯-丁=烯-丙烯腈共聚物 (ABS )、聚酰胺(尼龙)、聚甲醛、聚碳酸酯、氯化聚醚、聚砜、聚苯醚、氟塑料、醋酸纤维素、聚酰亚胺等。 公司常用:ABS (苯乙烯-丁=烯-丙烯腈共聚物)、POM (聚甲醛)、PPS(聚苯硫醚)、PA (聚酰胺) 四、注塑部品的常见不良:

常用塑料模具零部件材料解析

6.4 常用塑料模具零部件材料 塑料注射模具结构比较复杂,一套完整的模具有各种各样的零件,各个零件在模具中所处的位置、作用不同,对材料的性能要求就有所不同。合理选择模具零件的材料,是生产高质量模具、提高效率、降低成本的基础。 6.4.1塑料注射模具对材料的基本要求 对于塑料注射模具,模具零件材料的基本要求如下。 1. 具有良好的机械加工性能 塑料注射模具零件的生产,大部分由机械加工完成。良好的机械加工性能是实现高速加工的必要条件。良好的机械加工性能能够延长加工刀具的寿命,提高切削性能,减小表面粗糙度值,以获得高精度的模具零件。 2.具有足够的表面硬度和耐磨性 塑料制品的表面粗糙度和尺寸精度、模具的使用寿命等,都与模具表面的粗糙度、硬度和耐磨性有直接的关系。因此,要求塑料注射模具的成型表面有足够的硬度,其淬火硬度应不低于55 HRC,以便获得较高的耐磨性,延长模具的使用寿命。 3. 具有足够的强度和韧性 由于塑料注射模具在成型过程中反复受到压应力(注射机的锁模力)和拉应力(注射模型腔的注射压力)的作用,特别是大中型和结构形状复杂的注射模具,要求其模具零件材料必须有高的强度和良好的韧性,以满足使用要求。 4. 具有良好的抛光性能 为了获得高光洁表面的塑料制品,要求模具成型零件表面的粗糙度值小,因而要求对成型零件表面进行抛光以减小其表面粗糙度值。为保证抛光效果,模具材料不应有气孔、杂质等缺陷。 5.具有良好的热处理工艺性 模具材料经常依靠热处理来达到必要的硬度,这就要求材料具有较好的淬硬性和淬透性。塑料注射模具的零件往往形状较复杂,淬火后进行加工较为困难,甚至根本无法加工,因此模具零件应尽量选择热处理变形小的材料,以减少热处理后的加工量。 6.具有良好的耐腐蚀性

相关主题