搜档网
当前位置:搜档网 › 1.1回归分析的基本思想及其初步应用(一)

1.1回归分析的基本思想及其初步应用(一)

1.1回归分析的基本思想及其初步应用(一)
1.1回归分析的基本思想及其初步应用(一)

1.1回归分析的基本思想及其初步应用(一)

第一章统计案例

第一课时

1.1回归分析的基本思想及其初步应用(一)

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.

教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.

教学难点:解释残差变量的含义,了解偏差平方和分解的思想.

教学过程:

一、复习准备:

1.提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?

2.复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据作散点图求回归直线方程利用方程进行预报.

二、讲授新课:

1.教学例题:

①例1从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:

编号12345678

身高/cm165165157170175165155170

体重/kg4857505464614359

求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.(分析思路教师演示学生整理)

第一步:作散点图第二步:求回归方程第三步:代值计算

②提问:身高为172cm的女大学生的体重一定是60.316kg吗?

不一定,但一般可以认为她的体重在60.316kg左右.

③解释线性回归模型与一次函数的不同

事实上,观察上述散点图,我们可以发现女大学生的体重和身高之间的关系并不能用一次函数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系).在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同.这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型,其中残差变量中包含体重不能由身高的线性函数解释的所有部分.当残差变量恒等于0时,线性回归模型就变成一次函数模型.因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.

2.相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组

数据就越好,此时建立的线性回归模型是有意义.

三.课时小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.

四、课外作业课时练习

应用回归分析第章课后习题答案

第6章 6.1 试举一个产生多重共线性的经济实例。 答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。 6.2多重共线性对回归参数的估计有何影响? 答:1、完全共线性下参数估计量不存在; 2、参数估计量经济含义不合理; 3、变量的显著性检验失去意义; 4、模型的预测功能失效。 6.3 具有严重多重共线性的回归方程能不能用来做经济预测? 答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。 6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系? 答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。 6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。将所得结果与逐步回归法所得的选元结果相比较。 5.9 在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。为了建立国家财政收入回归模型,我们以财政收入y(亿元)为因变量,自变量如下:x1为农业增加值(亿元),x2为工业增加值(亿元),x3为建筑业增加值(亿元),x4为人口数(万人),x5为社

应用回归分析,第8章课后习题参考答案

第8章 非线性回归 思考与练习参考答案 8.1 在非线性回归线性化时,对因变量作变换应注意什么问题? 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如: (1) 乘性误差项,模型形式为 e y AK L αβε =, (2) 加性误差项,模型形式为y AK L αβ ε = + 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表8.15 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图: 5000.00 4000.003000.002000.001000.00x 12.00 10.00 8.006.00 y

从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS 输出结果如下: Model Summ ary .981 .962 .942 .651 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x. ANOVA 42.571221.28650.160.001 1.6974.424 44.269 6 Regression Residual Total Sum of Squares df Mean Square F Sig.The independent variable is x. Coe fficients -.001.001-.449-.891.4234.47E -007.000 1.417 2.812.0485.843 1.324 4.414.012 x x ** 2 (Constant) B Std. E rror Unstandardized Coefficients Beta Standardized Coefficients t Sig. 从上表可以得到回归方程为:72? 5.8430.087 4.4710y x x -=-+? 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。 由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。 (2)指数曲线 Model Summ ary .970 .941 .929 .085 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x.

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用 1.回归分析 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型 (1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑n i =1 (x i -x )(y i -y )∑n i =1 (x i -x )2 ,a ^=y --b ^x -,其中x -=1 n ∑n i =1x i ,y -=1n ∑n i =1 y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量. [注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具. (2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^ 为基数,x 每增加1个单位,y 相应地平均增加b ^ 个单位. 3.刻画回归效果的方式 方式方法 计算公式 刻画效果 R 2 R 2=1-∑n i =1 (y i -y ^i )2 ∑n i =1 (y i -y )2 R 2越接近于1,表示回归的效果 越好 残差图 e ^ i 称为相应于点(x i ,y i )的残差,e ^ i =y i -y ^ i 残差点比较均匀地落在水平的 带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高 残差平方和 ∑n i =1 (y i -y ^i )2 残差平方和越小,模型的拟合效果越好 判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( ) (2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )

应用回归分析,第7章课后习题参考答案

第7章岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X|≈0,回归系数估计的方差就很大,估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X’X)-1为奇异时,给X’X加上一个正常数矩阵 D, 那么X’X+D接近奇异的程度就会比X′X接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k有哪几种方法? 答:最优 是依赖于未知参数 和 的,几种常见的选择方法是: 岭迹法:选择 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多;

方差扩大因子法: ,其对角线元 是岭估计的方差扩大因子。要让 ; 残差平方和:满足 成立的最大的 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随着k的增加迅速趋近于零。像这样岭回归系数不稳定、震动趋于零的自变量,我们也可以予以剔除; 3. 去掉标准化岭回归系数很不稳定的自变量。如果有若干个岭回归系数不稳定,究竟去掉几个,去掉那几个,要根据去掉某个变量后重新进行岭回归分析的效果来确定。

应用回归分析第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定? 答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。 2. 等方差及不相关的假定条件为 ? ? ? ? ? ? ??????≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1, 0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。 3. 正态分布的假定条件为 ???=相互独立 n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。 4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。 在整个回归分析中,线性回归的统计模型最为重要。一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。因此,线性回归模型的理论和应用是本书研究的重点。 1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计; 2. 对回归方程及回归系数的种种假设进行检验; 3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。 2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。求1β的最小二 乘估计。 答:∑∑==-=-=n i n i i i i x y y E y Q 1 1 2112 1)())(()(ββ

《回归分析的基本思想及其初步应用》教学反思

《回归分析的基本思想及其初步应用》 教学反思 1、设计理念 《数学课程标准》明确指出:有效的数学学习活动不能单纯地模仿与记忆,动手实践、自主探索与合作交流,可以促进学生自主、全面、可持续的发展,是学生学习数学的重要方式.为使教学真正做到以学生为本,我对教材P2—P3的知识进行了适当地重组和加工,力求给学生提供研究、探讨的时间与空间,让学生充分经历“做数学”的过程,促使学生在自主中求知,在合作中获取,在探究中发展. 2、本节课的教法特点 通过分析教材和学生认知规律,创造性地使用教材,做到既重视教材,更重视学生.具体说来有以下改造: (1)创设生活情景.利用学生的“体检经验”设置问题,既没有脱离课本例题1的相关内容,又能激发学生对数学的亲切感,引发学生看个究竟的冲动,兴趣盎然地投入学习. (2)充分体现随机观念.课本上仅仅希望利用8组数据就要学生体会到统计的思想和后继课程中回归分析的必要性,实在是为难学

生了.在本课教学设计学生操作时强调“增多数据,加强比较”. 帮助学生体会“不同事件(如课本例1女大学生和高二女生)”,则统计结果不同、“同一事件(如都是高二女生),采样不同结果也不同”的基本事实. (3)教师的作用. 在这节课里,教师在学生操作结束后,利用更多数据的操作,形成一个与学生结果的对比,这一操作与展示为学生创造了新的思维增长点,引领学生进入更深层领悟. 本课教学以问题引导学习活动,通过恰时恰点地提出问题,提好问题,给学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动和有兴趣地学,逐步培养学生的问题意识,孕育创新精神.例如,在“结果的分析”中的问题4.”预测出的体重值都不同,那么它还有参考价值吗?”目的是让学生充分认识随机误差e的来源和对预报变量的影响,而这一问题的提出,立刻吸引学生细细体会随机观念,同时激发出学生的好奇心,提升深入探求的欲望. 3 合作、探究的学习方式 本节课的合作学习体现在两个方面:除了体现在每个小组内部成员之间,还体现在整堂课的教学结构上.小组成员内部提倡“不同的人作不同的事”,面对不同分组,学生可以自主选择的不同工作,

应用回归分析填空题和答案

应用回归分析填空题和答案

应用回归分析:填空 (1) 回归分析是处理变量间_______关系的一种数理统计方法,若变量间具有线性关系,则称相应的回归分析为____________;若变量间不具有线性关系,就称相应的回归分析为___________________。 (2) 现代统计学中研究统计关系的两个重要分支是_________和_____________。 (3) 回归模型的建立是基于回归变量的样本统计数据,常用的样本数据分为___ ___________________和______________________。 (4) 回归模型通常应用于______________________、____________________和_____________________等方面。 (5) 最小二乘法的基本特点是使回归值与_________________________平方和为最小,最小二乘法的理论依据是___________________________。 (6) 多元线性回归模型εβ+=X Y ,回归参数β的最小二乘估计为 β?=_________________________。 (7) 设线性回归模型参数向量β(p+1维)的最小二乘估计为β ?,c 为p+1维常数向量,则______________是____________的最小方差线性无偏估计。 (8) 在线性回归分析中,最小二乘估计的性质有______________; _____ _____________和____________________等。 (9) 多元线性回归模型n i x x y i ip p i i ,,2,1,110 =++++=εβββ,误差项()n i i ,,2,1, =ε需满足的markov Gauss -假设为: (a):________________________________________; (b):________________________________________; (c):_________________________________________。 (10) 对回归方程做显著性检验时,可以用P 值代替检验统计量值,作出拒绝或接受原假设的决定:当P_______α时,接受0H ;当P________α时,拒绝0H 。 (11) 在p 元线性回归中,确定随机变量y 与自变量12,,,p x x x 间是否有线性

回归分析及独立性检验的基本知识点及习题集锦

回归分析的基本知识点及习题 本周题目:回归分析的基本思想及其初步应用 本周重点: (1)通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤;了解线性回归模型与函数模型的区别; (2)尝试做散点图,求回归直线方程; (3)能用所学的知识对实际问题进行回归分析,体会回归分析的实际价值与基本思想;了解判断刻画回归模型拟合好坏的方法――相关指数和残差分析。 本周难点: (1)求回归直线方程,会用所学的知识对实际问题进行回归分析. (2)掌握回归分析的实际价值与基本思想. (3)能运用自己所学的知识对具体案例进行检验与说明. (4)残差变量的解释; (5)偏差平方和分解的思想; 本周内容: 一、基础知识梳理 1.回归直线: 如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 求回归直线方程的一般步骤: ①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→ ③写出回归直线方程,并利用回归直线方程进行预测说明. 2.回归分析: 对具有相关关系的两个变量进行统计分析的一种常用方法。 建立回归模型的基本步骤是: ①确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; ②画好确定好的解释变量和预报变量的散点图,观察它们之间的关系(线性关系). ③由经验确定回归方程的类型. ④按一定规则估计回归方程中的参数(最小二乘法); ⑤得出结论后在分析残差图是否异常,若存在异常,则检验数据是否有误,后模型是否合适等. 3.利用统计方法解决实际问题的基本步骤: (1)提出问题; (2)收集数据; (3)分析整理数据; (4)进行预测或决策。 4.残差变量的主要来源: (1)用线性回归模型近似真实模型(真实模型是客观存在的,通常我们并不知道真实模型到底是什么)所引起的误差。 可能存在非线性的函数能够更好地描述与之间的关系,但是现在却用线性函数来表述这种关系,结果就会产生误差。这 种由于模型近似所引起的误差包含在中。 (2)忽略了某些因素的影响。影响变量的因素不只变量一个,可能还包含其他许多因素(例如在描述身高和体重 关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),但通常它们每一个因素的影响可能都是比较小的,它们的影响都体现在中。 (3)观测误差。由于测量工具等原因,得到的的观测值一般是有误差的(比如一个人的体重是确定的数,不同的秤可 能会得到不同的观测值,它们与真实值之间存在误差),这样的误差也包含在中。 上面三项误差越小,说明我们的回归模型的拟合效果越好。

应用回归分析,第4章课后习题参考答案

第4章违背基本假设的情况 思考与练习参考答案 4.1 试举例说明产生异方差的原因。 答:例4.1:截面资料下研究居民家庭的储蓄行为 Y i=β0+β1X i+εi 其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。 由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。 例4.2:以某一行业的企业为样本建立企业生产函数模型 Y i=A iβ1K iβ2L iβ3eεi 被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。 4.2 异方差带来的后果有哪些? 答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果: 1、参数估计量非有效 2、变量的显著性检验失去意义 3、回归方程的应用效果极不理想 总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。 4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。 答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差

的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。 加权最小二乘法的方法: 4.4简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法。 答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数i w ,以调整各项在平方和中的作用,加权最小二乘的离差平方和为: ∑=----=n i ip p i i i p w x x y w Q 1211010)( ),,,(ββββββ (2) 加权最小二乘估计就是寻找参数p βββ,,,10 的估计值pw w w βββ?,,?,?10 使式(2)的离差平方和w Q 达极小。所得加权最小二乘经验回归方程记做 22011 1 ???()()N N w i i i i i i i i Q w y y w y x ββ===-=--∑∑22 __ 1 _ 2 _ _ 02 222 ()() ?()?1 11 1 ,i i N w i i i w i w i w w w w w kx i i i i m i i i m i w x x y y x x y x w kx x kx w x σβββσσ==---=-= = ===∑∑1N i =1 1表示=或

应用回归分析课后答案

应用回归分析课后答案 第二章一元线性回归 解答:EXCEL结果: SUMMARY OUTPUT 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值5 方差分析 df SS MS F Significance F 回归分析125 残差3 总计410 Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限%上限% Intercept X Variable 15 RESIDUAL OUTPUT 观测值预测Y残差 1 2 3 4 5 SPSS结果:(1)散点图为:

(2)x 与y 之间大致呈线性关系。 (3)设回归方程为01y x ββ∧ ∧ ∧ =+ 1β∧ = 12 2 1 7()n i i i n i i x y n x y x n x -- =- =-=-∑∑ 0120731y x ββ-∧- =-=-?=- 17y x ∧ ∴=-+可得回归方程为 (4)22 n i=1 1()n-2i i y y σ∧∧=-∑ 2 n 01i=1 1(())n-2i y x ββ∧∧=-+∑ =222 22 13???+?+???+?+??? (10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1 169049363 110/3= ++++= 1 330 6.13 σ∧=≈ (5)由于2 11(, )xx N L σββ∧ :

t σ ∧ == 服从自由度为n-2的t分布。因而 /2 |(2)1 P t n α α σ ?? ?? <-=- ?? ?? 也即: 1/211/2 (p t t αα βββ ∧∧ ∧∧ -<<+=1α - 可得 1 95% β∧的置信度为的置信区间为(7-2.3537+2.353即为:(,) 2 2 00 1() (,()) xx x N n L ββσ - ∧ + : t ∧∧ == 服从自由度为n-2的t分布。因而 /2 (2)1 P t n α α ∧ ?? ?? ?? <-=- ?? ?? ?? ?? ?? 即 0/200/2 ()1 pβσββσα ∧∧∧∧ -<<+=- 可得 1 95%7.77,5.77 β∧- 的置信度为的置信区间为() (6)x与y的决定系数 2 21 2 1 () 490/6000.817 () n i i n i i y y r y y ∧- = - = - ==≈ - ∑ ∑ (7)

总结:线性回归分析的基本步骤

总结:线性回归分析的基本 步骤 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。

如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。

应用回归分析试题套

应用回归分析试题(一) 1、对于一元线性回归y 0i X i i(i 1,2,..., n),E(J 0 , var( J cov( i, j) 0(i j),下列说法错误的是 (A) 0,1的最小一乘估计? '0, ?都是无偏估计; (B) 0,1的最小一乘估计? 0, Q ?对y,y2,... ,y n是线性的; (C) 0,1的最小一乘估计 ? , ?之间是相关的; (D)若误差服从正态分布,0,1的最小二乘估计和极大似然估计是不一样的 2、在回归分析中若诊断出异方差,常通过方差稳定化变化对因变量进行变换.如果误差方差与因变量y的期望成正比,则可通过下列哪种变换将方差常数化 1 (A) - ;(B) “ ;(C) ln( y 1) ;(D) In y. y 、 3、下列说法错误的是 (A) 强影响点不一定是异常值; (B) 在多元回归中,回归系数显着性的t检验与回归方程显着性的F检验是等价的; (C) 一般情况下,一个定性变量有k类可能的取值时,需要引入k-1个0-1型自变量; (D) 异常值的识别与特定的模型有关. 4、下面给岀了4个残差图,哪个图形表示误差序列是自相关的 (A) (B) (C) (D) 5、下列哪个岭迹图表示在某一具体实例中最小二乘估计是适用的 (A) (B) (C)(D) 二、填空题(每空2分,共20分)

2 2 1、考虑模型y X ,var( ) I n,其中X : n p,秩为p,0不一定

已知,则 ? ________________ , var ( ?) _________ ,若 服从正态分布,则 2、下表给岀了四变量模型的回归结果: 则残差平方和= ___________ ,总的观察值个数 = ___________ ,回归平方和的自由度 = ________ . 3、已知因变量 y 与自变量X i ,X 2, X 3,X 4,下表给岀了所有可能回归模型的 AIC 值,则最 优子集是 _______________________ . 4、 在诊断自相关现象时,若 DW 0.66,则误差序列的自相关系数 的估计值= _______ ,若 存在自相关现象,常用的处理方法有迭代法、 _____________ 、科克伦-奥克特迭代法. 5、 设因变量y 与自变量X 的观察值分别为 y 「y 2,..., y n 和x 1, x 2 ,..., x n ,则以x *为折点的折 线模型可表示为 ________________________ . 三、(共45分)研究货运总量y (万吨)与工业总产值x 1 (亿元)、农业总产值x 2 (亿元)、 居民非商品支岀X 3 (亿元)的线性回归关系.观察数据及残差值e i 、学生化残差SRE i 、删除 学生化残差SRE (i )、库克距离D i 、杠杆值ch ii 见表 (n P)?2 ___________ ,其中?2是2的无偏估计

应用回归分析试题二

应用回归分析试题(二) 一、选择题 1. 在对两个变量x , y 进行线性回归分析时,有下列步骤: ①对所求出的回归直线方程作出解释;②收集数据(X i 、),1,2,…, n ;③ 求线性回归方程;④求未知参数; ⑤根据所搜集的数据绘制 散点图。 如果根据可行性要求能够作出变量x ,y 具有线性相关结论,则在下列 操作中正确的是(D ) A .①②⑤③④ B .③②④⑤① C .②④③①⑤ D .②⑤④③① 2. 下列说法中正确的是(B ) A .任何两个变量都具有相关关系 B .人的知识与其年龄具有相关关系 C .散点图中的各点是分散的没有规律 D .根据散点图求得的回归直线方程都是有意义的 3. 下面的各图中,散点图与相关系数r 不符合的是(B ) \ 4 yi i .? — |

5. 在画两个变量的散点图时,下面哪个叙述是正确的 (B ) (A) 预报变量在x 轴上,解释变量在y 轴上 (B) 解释变量在x 轴上,预报变量在y 轴上 (C) 可以选择两个变量中任意一个变量在 X 轴上 (D) 可以选择两个变量中任意一个变量 二、 填空题 m 丄 1. y 关于m 个自变量的所有可能回归方程有-一1个。 2. H 是帽子矩阵,贝S tr(H)=p+1。 3. 回归分析中从研究对象上可分为一元和多元。 4. 回归模型的一般形式是 y ° 1X 1 2X 2 p X p 。 5. Cov(e) 2(l H) (e 为多元回归的残差阵)。 三、 叙述题 1.引起异常值消除的方法(至少5个)? 答案:异常值消除方法: (1) 重新核实数据; (2) 重新测量数据; (3) 删除或重新观测异常值数据; (4) 增加必要的自变量; 则正确的叙述是(D ) A .身咼一定是145.83cm C .身高低于145.00cm B .身高超过146.00cm D .身高在145.83cm 左右

应用回归分析第三章课后习题整理

y1 1 x11 x12 x1p 0 1 3.1 y2 1 x21 x22 x2p 1 + 2 即y=x + yn 1 xn1 xn2 xnp p n 基本假定 (1) 解释变量x1,x2…,xp 是确定性变量,不是随机变量,且要求 rank(X)=p+1

n 注 tr(H) h 1 3.4不能断定这个方程一定很理想,因为样本决定系数与回归方程中 自变量的数目以及样本量n 有关,当样本量个数n 太小,而自变量又较 多,使样本量与自变量的个数接近时, R 2易接近1,其中隐藏一些虚 假成分。 3.5当接受H o 时,认定在给定的显著性水平 下,自变量x1,x2, xp 对因变量y 无显著影响,于是通过x1,x2, xp 去推断y 也就无多大意 义,在这种情况下,一方面可能这个问题本来应该用非线性模型去描 述,而误用了线性模型,使得自变量对因变量无显著影响;另一方面 可能是在考虑自变量时,把影响因变量y 的自变量漏掉了,可以重新 考虑建模问题。 当拒绝H o 时,我们也不能过于相信这个检验,认为这个回归模型 已经完美了,当拒绝H o 时,我们只能认为这个模型在一定程度上说明 了自变量x1,x2, xp 与自变量y 的线性关系,这时仍不能排除排除我 们漏掉了一些重要的自变量。 3.6中心化经验回归方程的常数项为0,回归方程只包含p 个参数估计 值1, 2, p 比一般的经验回归方程减少了一个未知参数,在变量较 SSE (y y)2 e12 e22 1 2 1 E( ) E( - SSE* - n p 1 n p n 2 [D(e) (E(e ))2 ] 1 n (1 1 n 2 en n E( e 1 1 n p 1 1 n p 1 1 "1 1 n p 1 J (n D(e) 1 (p 1)) 1_ p 1 1 1 n p 1 2 2 n E(e 2 ) (1 h ) 2 1

《应用回归分析》课后题标准答案

《应用回归分析》课后题答案

————————————————————————————————作者:————————————————————————————————日期:

《应用回归分析》部分课后习题答案 第一章回归分析概述 1.1 变量间统计关系和函数关系的区别是什么? 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量 唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另 外一个变量的确定关系。 1.2 回归分析与相关分析的联系与区别是什么? 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有 a. 在回归分析中,变量y称为因变量,处在被解释的特殊地位。在相关分析中,变 量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x 与变量y的密切程度是一回事。b.相关分析中所涉及的变量y与变量x全是随机 变量。而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以 是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的 密切程度。而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归 方程进行预测和控制。 1.3 回归模型中随机误差项ε的意义是什么? 答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为 一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系, 由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明, 随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑 的种种偶然因素。 1.4 线性回归模型的基本假设是什么? 答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值 xi1.xi2…..xip是常数。2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^2 3.正态分布的假定条件为相互独立。 4.样本容量的个数要多于解释变量的个数, 即n>p. 1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题? 答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判 断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意 的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归 模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试算,最终找出最合适的一些变量。

应用回归分析课后习题参考答案

应用回归分析课后习题 参考答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第二章一元线性回归分析 思考与练习参考答案 一元线性回归有哪些基本假定 答:假设1、解释变量X是确定性变量,Y是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(ε i )=0 i=1,2, …,n Var (ε i )=2i=1,2, …,n Cov(ε i, ε j )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X之间不相关: Cov(X i , ε i )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 ε i ~N(0, 2) i=1,2, …,n 考虑过原点的线性回归模型 Y i =β 1 X i +ε i i=1,2, …,n 误差εi(i=1,2, …,n)仍满足基本假定。求β1的最小二乘估计解: 得: 证明(式),e i =0 ,e i X i=0 。 证明: ∑ ∑+ - = - = n i i i n i X Y Y Y Q 1 2 1 2 1 )) ? ?( ( )? (β β 其中: 即:e i =0 ,e i X i=0 2 1 1 1 2) ? ( )? ( i n i i n i i i e X Y Y Y Qβ ∑ ∑ = = - = - = ) ? ( 2 ?1 1 1 = - - = ? ?∑ = i i n i i e X X Y Q β β ) ( ) ( ? 1 2 1 1 ∑ ∑ = = = n i i n i i i X Y X β 01 ?? ?? i i i i i Y X e Y Y ββ =+=- 01 00 ?? Q Q ββ ?? == ??

线性回归分析报告地基本步骤

步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例

实用标准文案 由于()01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据:

那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之上,它描述的是因变量Y 和自变量X 之间的近似于真实的非确定型依赖关系。这种近似表现在两个方面:一是结构参数?β 是其真实值β的一种近似估计;二是残差e 是随机误差项U 的一个近似估计; ⅱ:总体回归方程是根据总体数据得到的,它描述的是因变量的条件均值

应用回归分析课后习题部分答案_何晓群版

第二章 一元线性回归 2.14 解答:(1)散点图为: (2)x 与y 之间大致呈线性关系。 (3)设回归方程为01y x ββ∧ ∧ ∧ =+ 1β∧ = 1 2 2 1 7()n i i i n i i x y n x y x n x -- =- =-=-∑∑ 0120731y x ββ-∧- =-=-?=- 17y x ∧ ∴=-+可得回归方程为 (4)22 n i=1 1()n-2i i y y σ∧∧=-∑ 2 n 01i=1 1(())n-2i y x ββ∧∧=-+∑ =222 22 13???+?+???+?+??? ( 10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1 169049363 110/3 = ++++=

6.1σ∧=≈ (5)由于 2 11 (,) xx N L σββ ∧ : t σ ∧ == 服从自由度为n-2的t分布。因而 /2 |(2)1 P t n α α σ ?? ?? <-=- ?? ?? 也即: 1/211/2 (p t t αα βββ ∧∧ ∧∧ -<<+=1α - 可得 1 95% β∧的置信度为的置信区间为(7-2.3537+2.353即为:(2.49,11.5) 2 2 00 1() (,()) xx x N n L ββσ - ∧ + : t ∧∧ == 服从自由度为n-2的t分布。因而 /2 (2)1 P t n α α ∧ ?? ?? ?? <-=- ?? ?? ?? ?? ?? 即 0/200/2 ()1 pβσββσα ∧∧∧∧ -<<+=- 可得 1 95%7.77,5.77 β∧- 的置信度为的置信区间为() (6)x与y的决定系数 2 21 2 1 () 490/6000.817 () n i i n i i y y r y y ∧- = - = - ==≈ - ∑ ∑

相关主题