搜档网
当前位置:搜档网 › 信息熵理论

信息熵理论

信息熵理论
信息熵理论

信息熵理论

在通信系统中,信息从发送到接收的传输过程是一个有干扰的信息复制过程。

对每一个具体的应用而言,传输的信息是确定的,有明确的应用目的。

对一个通信系统而言主,不同的用户要传送的具体的信息内容是不同的,则如何从这些繁杂的具体信息中提炼出它们的共同特征,并可进行量化估计是shannon 信息论研究的基础。 所谓量化估计就是用提炼的共同特征估计与某些具体内容所对应的需要传输的信息量大小。 信息量定义的另一个重要特征是它能保证信息量值的大小与具体的信息内容无关。

1.定义信息熵:

设X 是一个离散的随机变量,其定义空间为一个字符集E 。

()()E x x X P x p ∈==,,表示相应的概率分布函数,则

()()()()x p x p X H x

log ∑-=称为离散随机变量的熵。

有时记()()()()(){}X p E x p x p p H p

x

log log -=-=∑ {}p E 表示以概率分布()x p 对某随机变量或随机函数求概率平均。

2.定义联合熵:

设X ﹑Y 是丙个离散的随机变量,(X,Y )的联合概率分布函数为()()y Y x X P y x p ===,,,则

()()()y x p y x P Y X H x y

,log ,,∑∑-=

称为离散随机变量X 与Y 的联合熵。

有时记为:

()()()(){}Y X p E y x p y x p Y X H p x y

,log ,log ,,-=-=∑∑

3.定义条件熵:

如果()(),,~,y x p Y X 则条件熵()X Y H /定义为

()()()

∑=-=x x X Y H x p X Y H //

()()()∑∑-

=x y x y p x y p x p /log / ()()∑∑-=x y

x y p y x p /log ,

(){}X Y p E /log -=

条件熵等于零的条件为()1==Y X p

事实上,对任意的y x ,都有()()0/log /=x y p x y p ,从而得()()1/0/==x y p x y p 或,又因为X 与Y 是取值空间完全相同的随机变量,所以有()1/=X Y p

定义相对熵:设()()x q x p ,是两个不同的离散概率分布函数,则

()()()()()()∑?????????? ?

?=???? ??-=x p X q X p E

x q x p x p q p D log log 为概率分布函数()x p 关于()x q 的相对熵。

相对熵的物理意义

相对熵反映了一个变量因取值概率的差异导致的信息量变化情况。若将()x p 看作系统本身固有的概率分布,而()x q 看作人们对系统进行估计得到的经验概率分布,此时,相对熵反映了由于逼近误差引起的信息量的丢失量。

定义互信息:设X,Y 是两个离散的随机变量,其联合概率分布函数为()(),,,y Y x X P y x p ===相应的边沿分布密度函数为()()x q x p 和,则X 与Y 的互信息定义为

()()()()()∑∑???

? ??=x y y p x p y x,p log y x,p Y X,I

()()()()y q x p y x p D ,=

()()()()?

????????? ??=Y X Y X,log E ,p p p y x p 互信息的物理意义

互信息反映了联合分布与边沿分布乘积的相对熵,也可看作利用边沿分布去逼近联合分布时所损失的信息量。

如果考虑一个通信系统,X 表示发送端的输入变量,Y 表示接收端的输出变量。虽然要信号的传输过程中,变量X 受到一些不确定因素的干扰,而以变量Y 的形式出现,显然,变量X 和变量Y 之间的一定的相关性,但它们的联合分布()y x,p 与边沿分布的积()()y p p x 是有差异的(因为后者代表了变量X 与变量Y 是统计独立的),这种差异可以利用信息量进行估计。()Y X,I 反映了它们之间的相对熵,这种相对熵也可看作是传输信道引起的联合信息量的变化量。

考虑一种特殊情况:当传输信道没有引入任何干扰,此时接收端收到的信号与发送端发送的信号完全相同,即Y=X ,于是有

()()?

??≠==;,0,y x,p y x y x x p 则 ()()()()()∑∑???

? ??=x y y p x p y x,p log y x,p Y X,I

()()()()∑==-=x

Y H X H x p x p log

这表明发送端的信息完全传送到接收端而没有任何损失。

信息熵、联合熵、条件熵、相对熵和互信息的非负性

上述四个关系式表明信息熵、联合熵、条件熵、相对熵和互信息都是大于或等于零的量。

当信息熵和联合熵为零时,相应的变量以概率1取一确定的值,此时,它可以看作一常量。同时,它也表明:一个恒定的常量是不载有任何信息的。由此可以推断出一个变量所负载的信息量大小与它的变化程度有关;即一个变量所负载的信息量反映了此变量取值的不确定性。

熵的应用和意义

浅谈熵的意义及其应用 摘要:介绍了熵这个概念产生的原因,以及克劳修斯对熵变的定义式;介绍了玻尔兹曼从微观角度对熵的定义及玻尔兹曼研究工作的重要意义;熵在信息、生命和社会等领域的作用;从熵的角度理解人类文明和社会发展与环境的关系。 关键词:克劳修斯熵玻尔兹曼熵信息熵生命熵社会熵 0 前言:熵是热力学中一个非常重要的物理量,其概念最早是由德国物理学家克劳 修斯(R.Clausius)于1854年提出,用以定量阐明热力学第二定律,其表达式为 dS=(δQ/T)rev。但克劳修斯给出的定义既狭隘又抽象。1877年,玻尔兹曼(L.Boltzmann)运用几率方法,论证了熵S与热力学状态的几率W之间的关系,并由普朗克于1900给出微观表达式S=k logW,其中k为玻尔兹曼常数。玻尔兹曼对熵的描述开启了人们对熵赋予新的含义的大门,人们开始应用熵对诸多领域的概念予以定量化描述,促成了广义熵在当今自然及社会科学领域的广泛应用【1】【2】。 1 熵的定义及其意义 由其表达式可知,克劳修克劳修斯所提出的熵变的定义式为dS=(δQ/T)rev , 斯用过程量来定义状态函数熵,表达式积分得到的也只是初末状态的熵变,并没有熵的直接表达式,这给解释“什么是熵”带来了困难。【1】直到玻尔兹曼从微观角度理解熵的物理意义,才用统计方法得到了熵的微观表达式:S=k logW。这一公式对应微观态等概出现的平衡态体系。若一个系统有W个微观状态数,且出现的概率相等,即每一个微观态出现的概率都是p=1/W,则玻尔兹曼的微观表达式还可写为:S=-k∑plogp。玻尔兹曼工作的杰出之处不仅在于它引入了概率方法,为体系熵的绝对值计算提供了一种可行的方案,而且更在于他通过这种计算揭示了熵概念的一般性的创造意义和价值:上面所描述的并不是体系的一般性质量和能量的存在方式和状态,而是这些质量和能量的组构、匹配、分布的方式和状态。 玻尔兹曼的工作揭示了正是从熵概念的引入起始,科学的视野开始从对一般物的质量、能量的研究转入对一般物的结构和关系的研究,另外,玻尔兹曼的工作还为熵概念和熵理论的广义化发展提供了科学依据。正是玻尔兹曼开拓性的研究,促使熵概念与信息、负熵等概念联姻,广泛渗透,跨越了众多学科,并促

最大熵算法笔记

最大熵算法笔记 最大熵,就是要保留全部的不确定性,将风险降到最小,从信息论的角度讲,就是保留了最大的不确定性。 最大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫"最大熵模型"。 匈牙利著名数学家、信息论最高奖香农奖得主希萨(Csiszar)证明,对任何一组不自相矛盾的信息,这个最大熵模型不仅存在,而且是唯一的。而且它们都有同一个非常简单的形式-- 指数函数。 我们已经知道所有的最大熵模型都是指数函数的形式,现在只需要确定指数函数的参数就可以了,这个过程称为模型的训练。 最原始的最大熵模型的训练方法是一种称为通用迭代算法GIS (generalized iterative scaling) 的迭代算法。GIS 的原理并不复杂,大致可以概括为以下几个步骤: 1. 假定第零次迭代的初始模型为等概率的均匀分布。 2. 用第N 次迭代的模型来估算每种信息特征在训练数据中的分布,如果超过了实际的,就把相应的模型参数变小;否则,将它们便大。 3. 重复步骤2 直到收敛。 GIS 最早是由Darroch 和Ratcliff 在七十年代提出的。但是,这两人没有能对这种算法的物理含义进行很好地解释。后来是由数学家希萨(Csiszar) 解释清楚的,因此,人们在谈到这个算法时,总是同时引用Darroch 和Ratcliff 以及希萨的两篇论文。GIS 算法每

次迭代的时间都很长,需要迭代很多次才能收敛,而且不太稳定,即使在64 位计算机上都会出现溢出。因此,在实际应用中很少有人真正使用GIS。大家只是通过它来了解最大熵模型的算法。 八十年代,很有天才的孪生兄弟的达拉皮垂(Della Pietra) 在IBM 对GIS 算法进行了两方面的改进,提出了改进迭代算法IIS (improved iterative scaling)。这使得最大熵模型的训练时间缩短了一到两个数量级。这样最大熵模型才有可能变得实用。即使如此,在当时也只有IBM 有条件是用最大熵模型。 由于最大熵模型在数学上十分完美,对科学家们有很大的诱惑力,因此不少研究者试图把自己的问题用一个类似最大熵的近似模型去套。谁知这一近似,最大熵模型就变得不完美了,结果可想而知,比打补丁的凑合的方法也好不了多少。于是,不少热心人又放弃了这种方法。第一个在实际信息处理应用中验证了最大熵模型的优势的,是宾夕法尼亚大学马库斯的另一个高徒原IBM 现微软的研究员拉纳帕提(Adwait Ratnaparkhi)。拉纳帕提的聪明之处在于他没有对最大熵模型进行近似,而是找到了几个最适合用最大熵模型、而计算量相对不太大的自然语言处理问题,比如词性标注和句法分析。拉纳帕提成功地将上下文信息、词性(名词、动词和形容词等)、句子成分(主谓宾)通过最大熵模型结合起来,做出了当时世界上最好的词性标识系统和句法分析器。拉纳帕提的论文发表后让人们耳目一新。拉纳帕提的词性标注系统,至今仍然是使用单一方法最好的系统。科学家们从拉纳帕提的成就中,又看到了用最大熵模型解决复杂的文字信息处理的希望。

关于焓和熵的概念

关于焓和熵的概念 熵和焓的概念 (2008-11-22 15:23:21) 转载 标签: 杂谈 解释1、焓是物体的一个热力学能状态函数。在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,

信息熵理论

信息熵理论 在通信系统中,信息从发送到接收的传输过程是一个有干扰的信息复制过程。 对每一个具体的应用而言,传输的信息是确定的,有明确的应用目的。 对一个通信系统而言主,不同的用户要传送的具体的信息内容是不同的,则如何从这些繁杂的具体信息中提炼出它们的共同特征,并可进行量化估计是shannon 信息论研究的基础。 所谓量化估计就是用提炼的共同特征估计与某些具体内容所对应的需要传输的信息量大小。 信息量定义的另一个重要特征是它能保证信息量值的大小与具体的信息内容无关。 1.定义信息熵: 设X 是一个离散的随机变量,其定义空间为一个字符集E 。 ()()E x x X P x p ∈==,,表示相应的概率分布函数,则 ()()()()x p x p X H x log ∑-=称为离散随机变量的熵。 有时记()()()()(){}X p E x p x p p H p x log log -=-=∑ {}p E 表示以概率分布()x p 对某随机变量或随机函数求概率平均。 2.定义联合熵: 设X ﹑Y 是丙个离散的随机变量,(X,Y )的联合概率分布函数为()()y Y x X P y x p ===,,,则 ()()()y x p y x P Y X H x y ,log ,,∑∑-= 称为离散随机变量X 与Y 的联合熵。 有时记为: ()()()(){}Y X p E y x p y x p Y X H p x y ,log ,log ,,-=-=∑∑ 3.定义条件熵: 如果()(),,~,y x p Y X 则条件熵()X Y H /定义为 ()()() ∑=-=x x X Y H x p X Y H // ()()()∑∑- =x y x y p x y p x p /log / ()()∑∑-=x y x y p y x p /log , (){}X Y p E /log -= 条件熵等于零的条件为()1==Y X p 事实上,对任意的y x ,都有()()0/log /=x y p x y p ,从而得()()1/0/==x y p x y p 或,又因为X 与Y 是取值空间完全相同的随机变量,所以有()1/=X Y p

信息熵.doc

一些信息熵的含义 (1) 信息熵的定义:假设X是一个离散随即变量,即它的取值范围R={x1,x2...}是有限可数的。设p i=P{X=x i},X的熵定义为: (a) 若(a)式中,对数的底为2,则熵表示为H2(x),此时以2为基底的熵单位是bits,即位。若某一项p i=0,则定义该项的p i logp i-1为0。 (2) 设R={0,1},并定义P{X=0}=p,P{X=1}=1-p。则此时的H(X)=-plogp-(1-p)log(1-p)。该H(x)非常重要,称为熵函数。熵函数的的曲线如下图表示: 再者,定义对于任意的x∈R,I(x)=-logP{X =x}。则H(X)就是I(x)的平均值。此时的I(x)可视为x所提供的信息量。I(x)的曲线如下: (3) H(X)的最大值。若X在定义域R={x1,x2,...x r},则0<=H(X)<=logr。 (4) 条件熵:定义

推导:H(X|Y=y)= ∑p(x|y)log{1/p(x,y)} H(X|Y)=∑p(y)H(X|Y=y)= ∑p(y)*∑p(x|y)log{1/p(x/y)} H(X|Y)表示得到Y后,X的平均信息量,即平均不确定度。 (5) Fano不等式:设X和Y都是离散随机变量,都取值于集合{x1,x2,...x r}。则 H(X|Y)<=H(Pe)+Pe*log(r-1) 其中Pe=P{X≠Y}。Fano表示在已经知道Y后,仍然需要通过检测X才能获得的信息量。检测X的一个方法是先确定X=Y。若X=Y,就知道X;若X≠Y,那么还有r-1个可能。 (6) 互信息量:I(X;Y)=H(X)-H(X|Y)。I(X;Y)可以理解成知道了Y后对于减少X的不确定性的贡献。 I(X;Y)的公式: I(X;Y)=∑(x,y)p(x,y)log{p(y|x)/p(y)} (7)联合熵定义为两个元素同时发生的不确定度。 联合熵H(X,Y)= ∑(x,y)p(x,y)logp(x,y)=H(X)+H(Y|X) (8)信道中互信息的含义 互信息的定义得: I(X,Y)=H(X)-H(X|Y)= I(Y,X)=H(Y)-H(Y|X) 若信道输入为H(X),输出为H(Y),则条件熵H(X|Y)可以看成由于信道上存在干扰和噪声而损失掉的平均信息量。条件熵H(X|Y)又可以看成由于信道上的干扰和噪声的缘故,接收端获得Y后还剩余的对符号X的平均不确定度,故称为疑义度。 条件熵H(Y|X)可以看作唯一地确定信道噪声所需要的平均信息量,故称为噪声熵或者散布度。 (9)I(X,Y)的重要结论

焓熵的相关概念

焓是物体的一个热力学能状态函数。<br/>在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:<br/>1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。原来花粉在水面运动是受到各个方向水分子的撞击引起的。于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。<br/>在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。<br/>既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。<br/>分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。分子势能与弹簧弹性势能的变化相似。物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。<br/>物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能,焓是流动式质的热力学能和流动功之和,也可认为是做功能力。<br/>2、熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。(可逆过程熵不)热力学能与动能、势能一样,是物体的一个状态量。<br/>能可以转化为功,能量守恒定律宣称,宇宙中的能量必须永远保持相同的值。那么,能够把能量无止境地转化为功吗?既然能量不灭,那么它是否可以一次又一次地转变为功?<br/>1824年,法国物理学家卡诺证明:为了作功,在一个系统中热能必须非均匀地分布,系统中某一部分热能的密集程度必须大于平均值,另一部分则小于平均值,所能荼得的功的数量妈决于这种密集程度之差。在作功的同时,这种差异也在减小。当能量均匀分布时,就不能再作功了,尽管此时所有的能量依然还存在着。<br/>德国物理学家克劳修斯重新审查了卡诺的工作,根据热传导总是从高温到低温而不能反过来这一事实,在1850年的论文中提出:不可能把热量从低温物体传到高温物体而不引起其他变化。这就是热力学第二定律,能量守恒则是热力学第一定律。<br/>1854年,克劳修斯找出了热与温度之间的某一种确定产关系,他证明当能量密集程度的差异减小时,这种关系在数值上总在增加,由于某种原因,他在1856年的论文中将这一关系式称作“熵”(entropy),entropy一诩源于希腊语,本意是“弄清”或“查明”,但是这与克劳修斯所谈话的内容似乎没有什么联系。热力学第二定律宣布宇宙的熵永远在增加着。<br/>然而,随着类星体以及宇宙中其他神秘能源的发现,天文学家们现在已经在怀疑:热力学第二定律是否果真在任何地方任何条件下都成立<br/>熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。<br/>&nbsp;&nbsp;&nbsp;&nbsp;在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例如,如图4a所示,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,

实验一-信息熵与图像熵计算-正确

实验一信息熵与图像熵计算(2 学时) 一、实验目的 1.复习MATLAB的基本命令,熟悉MATLAB下的基本函数; 2.复习信息熵基本定义,能够自学图像熵定义和基本概念。 二、实验内容 1.能够写出MATLAB源代码,求信源的信息熵; 2.根据图像熵基本知识,综合设计出MATLAB程序,求出给定图像的图像熵。 三、实验仪器、设备 1.计算机-系统最低配置256M内存、P4 CPU; 2.MATLAB编程软件。 四实验流程图 五实验数据及结果分析

四、实验原理 1.MATLAB中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: 1( ) 1 ( ) [log ] ( ) log ( ) i n i i p a i H E p a p a X 信息熵的意义:信源的信息熵H是从整个信源的统计特性来考虑的。它是从平均意

义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 3.学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令Pi表示图像中灰度值为i的像素所占的比例,则定义灰度图像的一元灰度熵为: 2550 log i i i p p H 图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。选择图像的邻域灰度均值作为灰度2

联合熵与条件熵

第6讲 联合熵与条件熵 信息熵H(X)反映了随机变量X 的取值不确定性。当X 是常量时,其信息 熵最小,等于0;当X 有n 个取值时,当且仅当这些取值的机会均等时,信息 熵H(X)最大,等于log n 比特。我们拓展信息熵H(X)的概念,考虑两个随机 变量X 和Y 的联合熵H(XY)和条件熵H(Y|X)。 1. 联合熵 设X ,Y 是两个随机变量, 则(X,Y)是二维随机变量,简写为XY 。 二维随机变量XY 的联合概率分布记为p (xy ),即 根据信息熵的定义可知,XY 的信息熵为 定义 1.1 二维随机变量XY 的信息熵H(XY)称为X 与Y 的联合熵(joint entropy )。 它反映了二维随机变量XY 的取值不确定性。我们把它理解为X 和Y 取值的 总的不确定性。 练习: 假设有甲乙两只箱子,每个箱子里都存放着100个球。甲里面有红蓝色球 各50个,乙里面红、蓝色的球分别为99个和1个。试计算H(XY) 我们将联合熵概念推广到任意多离散型随机变量上。 定义1.2 一组随机变量12,,,N X X X L 的联合熵定义为 注:为了简化记号,我们有时把12N X X X L 记为X N ,把12N x x x L 记为x N 。 物理意义: (1)12()N X H X X L 是这一组随机变量平均每一批取值 所传递的信息量。 (2)若N-维随机变量12N X X X L 表示某信源产生的任意一条长度为N 的消息, 则12()N X H X X L 是平均每条长度为N 的消息的信息量。因此,若该信源产生一 个长度为N 的消息,则在不知道其它条件的情况下,对该消息所含信息量的最

信息熵的应用

分类号: O236单位代码:106 密级:一般学号: 本科毕业论文(设计) 题目:信息熵在球员选拔中的应用专业: 姓名: 指导教师: 职称: 答辩日期:

信息熵在球员选拔中的应用 摘要:.本课题通过研究信息熵的定义和性质,运用p c -分析法,通过统计一场球赛中各个球员的各项技术指标并该场球赛中各个队员的信息熵,自信息等值,得到球员选拔过程中对球员的评判方法.并以此法选出优秀的球员,根据信息熵的性质指出每个球员的不足之处,为今后的训练指明了方向. 关键字:信息熵;P-C分析法;球员选拔 Information entropy application in selecting players Abstract: Shannon information entropy presented expressions in 1948, which pioneered information theory. Now more and more international competitions, how to select best players on behalf of the state competition become critical .This issue through the definition and nature of information entropy, use of p c -law to come the assessment of each player, and select a good player, and point out the inadequacties of each player based on information entropy, that should be strengthened in future training exercises. Key Words: Information Entropy; P-C Analysis; Selecting Players

熵的定义

热力学第二定律和熵 专业:能源与动力工程 班级:能源14-3班 姓名:王鑫 学号:1462162330

熵的表述 在经典热力学中,可用增量定义为 式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量,下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。单位质量物质的熵称为比熵,记为S。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地,连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生过程,总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。 熵的相关定义 1.比熵:在工程热力学中,单位质量工质的熵,称为比熵。表达式为δq=Tds,s称为比熵,单位为J/ (kg·K) 或kJ/ (kg·K)。 2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变。熵流可正可负,视热流方向而定。 3.熵产:纯粹由不可逆因素引起的熵的增加。熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程。熵产是不可逆程度的度量。 熵增原理 孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加。 熵增加原理是热力学第二定律的又一种表述,它比开尔文、克劳修斯表述更为概括地指出了不可逆过程的进行方向;同时,更深刻地指出了热力学第二定律是大量分子无规则运动所具有的统计规律,因此只适用于大量分子构成的系统,不适用于单个分子或少量分子构成的系统 实质:熵增原理指出:凡事是孤立系统总熵减小的过程都是不可能发生的,理想可逆的情况也只能实现总熵不变,实际过程都不可逆,所以实际热力过程总是朝着使孤立系统总熵增大的方向进行,dS>0。熵增原理阐明了过程进行的方向。 熵增原理给出了系统达到平衡状态的判据。孤立系统内部存在不平衡势差是过程自发进行的推动力。随着过程进行,孤立系统内部由不平衡向平衡发展,总熵增大,当孤立系统总熵达到最大值时,过程停止进行,系统达到相应的平衡状态,这时的dS=0即为平衡判据。因而,熵增原理指出了热过程进行的限度。 熵增原理还指出如果某一过程的进行,会导致孤立系中各物体的熵同时减小,虽然或者各有增减但其中总和使系统的熵减小,则这种过程,不能单独进行除非有熵增大的过程,作为补

信息熵理论的应用研究

信息熵理论的应用研究 [摘要] 广告活动是信息的活动,信息熵是信息活动的度量标准。本文利用信息熵理论对广告活动中的信息处理、广告传播、广告效果测定和广告受众进行了论证,指出了广告信息活动的规律。 [关键词] 信息熵;负熵;广告活动;广告受众 广告是一种非人际的信息传播,是信息交流的工具。广告系统实质上是信息系统,它具备了信息传播的五要素:谁——通过什么媒介——对谁——说了什么——取得了什么效果。广告的信息传播包括:广告发布者(包括广告主、广告制作者和传播者,即信息源)、广告信息内容、广告媒介、广告受众、广告效果等要素。信息熵理论是描述信息系统发展的基本理论,利用信息熵从信息的角度分析广告行为、预判广告活动的发展趋势,是研究广告活动的一种新方法。 一、熵、信息熵与广告活动的理论分析 熵是一个重要的物理概念,热力学中的熵通常被用于表征一个物理系统的无序程度。随着科学综合化的发展,熵又远远超出物理学范围。1948年,香农(shannon)第一次将熵这一概念引入到信息论中,从此,熵这一概念被广泛用于信息的度量,在自然科学和社会科学众多领域中得到广泛应用,并成为一些新学科的理论基础,由狭义熵发展为广义熵。正如爱因斯坦的评价那样:“熵理论对于整个科学来说是第一法则”。熵表示的是系统固有的、规律性的本质。在没有外界作用下,一个系统的熵越增,不可用能就越大,动力越小;换言之,一个系统的熵不相同时,对于相等的进程,它们的利用价值可以大不相同。一个孤立系统的熵永不减少,这叫做熵增原理。根据这一原理,以熵变为判据,不仅可以判断过程进行的方向,而且还能给出孤立系统达到平衡的条件。熵增原理揭示了一切自发过程都是不可逆的这一共同本质。为了打破平衡,必须与外部系统交换熵,从外部系统得到的熵称为负熵,目的是使本系统的熵值减少,更具有活力。

基于最大熵原理的语言建模

基于最大熵原理的语言建模 1 问题的引入 在自然语言处理中,为了建立语言模型,需要使用上下文文本中的信息特征,利用不同的信息特征所建立的语言模型,对当前词预测所得的概率结果可能会有所不同,这样的信息特征在上下文 中有多种。例如,利用当前词w i 前面的连续n-1个词(∈-+-1 i 1n i w h)作为历史信息特征构造的n-gram 模型,其概率估计为)W |W (P 1i 1n i i -+-;而触发对语言模型,则是利用当前词前面的某个历史窗口中的 词作为触发词,要预测的当前词作为被触发词,该模型中所用的历史信息特征和n-gram 中的就不同,它可以是历史窗口中与当前词相距为d 的某个词或词串。例如,如果我们想估计在给定的文本历史情况下词“模型”的出现概率P(模型|h),如果使用Bigram 模型,则就会将事件空间(h,模型)根据h 的最后一个词划分成几个等价类,比如说,在训练文本中可能有“数学模型”、“语言模型”、“工程模型”、“汽车模型”等这样的短语,因此,“模型”一词的历史文本h 的最后一个词可能就是“数学”、“语言”、“工程”、“汽车”等,并将它们分别看作一个等价类,Bigram 模型为每个等价类赋以相同的概率。例如: {语言,模型} 模型|语言)=K (P Bigram (1) 这里,K {语言,模型}定义如下: ) Count() ,Count(},{语言模型语言模型语言= K (2) Count(语言,模型)是“语言”与“模型”两个词在训练语料中的同现次数,Count(语言)是“语 言”在训练语料中出现的次数。另一种对“模型”出现概率的估计方法就是根据特殊的触发对,比如说“建立汉语语言模型”或“使用语言模型”,我们就要考察在相同的历史信息h 中,是否有“建立”或“使用”这样的词,这样,又可以形成对事件空间(h,模型)的另一种划分,利用Trigger 模型,可以为同一个等价类赋以相同的概率: 模型) 建立 模型建立建立模型,(h h K )|(P ∈=∈→ (3) 这里定义模型) 建立 ,(h K ∈为: ) C() ,C(K h h ,(h ∈∈∈建立模型建立= 模型) 建立 (4) 显然,利用Bigram 和Trigger 模型所使用的信息特征估计得到的“模型”出现概率是不一样的,同理,用前面提到的其他信息特征所得到的概率也会不一样,能不能将它们协调一致,建立一个符合多个信息特征约束的统一模型框架呢?1992年,Della Pietra 等人利用最大熵原理建立语言模型就是对这一想法的尝试。 2 最大熵原理 2.1 基本思想 最大熵原理是E.T.Jayness 于1950年提出的,其基本思想是:假设{X }是一个事件空间,有许多种能够刻画该事件空间的信息源特征(或称约束),可以用来对事件的出现概率P(X)进行表述,假设每个约束i 与一个约束函数f i (X)和一个数学期望K i 相联系,则该约束可以写为:

信息熵与图像熵计算

p (a i ) ∑ n 《信息论与编码》课程实验报告 班级:通信162 姓名:李浩坤 学号:163977 实验一 信息熵与图像熵计算 实验日期:2018.5.31 一、实验目的 1. 复习 MATLAB 的基本命令,熟悉 MATLAB 下的基本函数。 2. 复习信息熵基本定义, 能够自学图像熵定义和基本概念。 二、实验原理及内容 1.能够写出 MATLAB 源代码,求信源的信息熵。 2.根据图像熵基本知识,综合设计出 MATLAB 程序,求出给定图像的图像熵。 1.MATLAB 中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出 的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: H (X ) = E [ log 1 ] = -∑ p (a i ) log p (a i ) i =1 信息熵的意义:信源的信息熵H 是从整个信源的统计特性来考虑的。它是从平均意义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 1. 学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令 P i 表示图像中灰度值为 i 的像素所占的比例,则定义灰度图像的一元灰度熵为: 255 H = p i log p i i =0

信息熵在图像处理中的应用

信息熵在图像处理中的应用 摘要:为了寻找快速有效的图像处理方法,信息理论越来越多地渗透到图像处理技术中。文章介绍了信息熵在图像处理中的应用,总 结了一些基于熵的图像处理特别是图像分割技术的方法,及其在这一领域内的应用现状和前景 同时介绍了熵在织物疵点检测中的应用。 Application of Information Entropy on Image Analysis Abstract :In order to find fast and efficient methods of image analysis ,information theory is used more and more in image analysis .The paper introduces the application of information entropy on the image analysis ,and summarizes some methods of image analysis based on information entropy ,especially the image segmentation method .At the same time ,the methods and application of fabric defect inspection based on information entropy ale introduced . 信息论是人们在长期通信实践活动中,由通信技术与概率论、随机过程、数理统计等学科相结合而逐步发展起来的一门新兴交叉学科。而熵是信息论中事件出现概率的不确定性的量度,能有效反映事件包含的信息。随着科学技术,特别是信息技术的迅猛发展,信息理论在通信领域中发挥了越来越重要的作用,由于信息理论解决问题的思路和方法独特、新颖和有效,信息论已渗透到其他科学领域。随着计算机技术和数学理论的不断发展,人工智能、神经网络、遗传算法、模糊理论的不断完善,信息理论的应用越来越广泛。在图像处理研究中,信息熵也越来越受到关注。 1 信息熵 1948年,美国科学家香农(C .E .Shannon)发表了一篇著名的论文《通信的数学理论》 。他从研究通信系统传输的实质出发,对信息做了科学的定义,并进行了定性和定量的描述。 他指出,信息是事物运动状态或存在方式的不确定性的描述。其通信系统的模型如下所示: 图1 信息的传播 信息的基本作用就是消除人们对事物的不确定性。信息熵是信息论中用于度量信息量的一个概念。假定X 是随机变量χ的集合,p (x )表示其概率密度,计算此随机变量的信息熵H (x )的公式是 P (x ,y )表示一对随机变量的联合密度函数,他们的联合熵H (x ,y )可以表示为 信息熵描述的是信源的不确定性,是信源中所有目标的平均信息量。信息量是信息论的中心概念,将熵作为一个随机事件的不确定性或信息量的量度,它奠定了现代信息论的科学理论基础,大大地促进了信息论的发展。设信源X 发符号a i ,的概率为Pi ,其中i=1,2,…,r ,P i >O ,要∑=r i Pi 1=1,则信息熵的代数定义形式为:

最大熵原理在气象学中的应用

第六章最大熵原理在气象学中的应用 上一章我们把熵原理作了简要介绍,并附带提及了它在一些领域的应用。由于熵原理的普遍的适用性,因而认真分析它在气象上的应用潜力是十分值得的。很显然,用熵原理说明的气象学中的问题越多,不仅越加显示熵原理的重要性,显示宇宙真理的统一性,而且也为气象学找到了新的理论武器,而这势必也提高了气象学的科学性和实用性。 在这一章我们就重点讨论最大熵原理怎样应用于各种气象问题之中,以及由此得出的结果。把最大熵原理用于说明气象现象大致包含如下步骤: ◆首先把气象问题归结为某种分布函数(这在第二章 已列出约30个分布函数的个例)。 ◆找出形成上述分布函数的物理(气象)过程中有哪些 重要的约束条件。 ◆从物理(气象)过程含有随机性引出对应的熵达到极 大值(即随机性导致最混乱)。 ◆进行数学处理,从熵理论导出分布函数。 ◆用实际资料验证理论结果(如不符,可再重复上述过 程)。 后边的介绍就是把上述步骤分别用于各个具体的气象分布问题中,并从中逐步加深对最大熵原理的认识。 另外,从70年代以来Paltridge[1]等人从热力学熵平衡角度研究地球纬圈上的气温分布的工作,也应属于试着用熵原理的一种事例。这个工作中尽管在原理上尚有不清楚之处,但其结果与实况的一致性和引用极值原理都是很有意义的。鉴于汤懋苍[2]近年对此已有介绍,我们这里就不再评述

了。 顺便指出,早在上世纪,从力学中发展起来的最小作用原理就从力学领域体现了自然界遵守某种极值原理的精神。 在气象界,罗伦茨[3]在60年代就设想大气也应当遵守某种极值原理。而我们指出有一些气象分布函数可以从熵达极大的角度推导出来,这可以看成是罗伦茨思想从统计角度(非决定论角度)的具体体现。 所以,最大熵原理在气象学中的应用不仅应看作是随机论(非决定论)的胜利,也应当看成广义的极值原理的胜利。 §1 大气的温度场和气压场 从最大熵原理出发,很容易说明大气中的温度场和气压场的分布。在第二章第4节我们已经论证了大气的温度场和气压场的分布。对气压场,我们从简单的分析得出它应是均匀分布,对温度场则从平均图上得出其分布也是均匀分布。这就是说,如果从大气中纯随机地抽取一个空气样品,则其气压(气温)为各种可能值的出现概率都是相等的,或者说各种可能的气压(温度)占有的大气质量是一样的。图2.5 就是其代表。 大气温度为什么恰为均匀分布(它竟然遵守如此简单的分布,确实有些出人意料!)? 形成现今温度分布的原因当然是太阳辐射和大气的对外辐射,这使我们想到如图6.1的极简单的模型。图的左侧有一高温的恒定热源,其温度为T1,左侧有一低温的恒定热汇,其温度为T0。介质处于T1和T0两个温度之间,它的温度在各处不会都是T1或T0,从而构成了一个温度场。如果介质仅能从左右两端吞吐热量而其他界面与外界绝缘,那么介质中的温度场理应会形成如图所示的等温线呈均匀分布之形状。此时介质上的温度分布函数应为均匀分布,对此我们也可以从解热传导方程中得出来。

焓&熵

焓enthalpy 为了引出焓这个概念,我们先讨论恒容和恒压过程的热效应。 对于一个封闭体系,△U=Q-W,封闭体系,恒容变化(不做体积功),且不做非体积功时,△U=Q,即封闭系、恒容、W'=0时,△U=Q v(Q v为恒容热效应),dU=δQ v。 上式是热力学中常用的一个公式,使用此公式时,一定要满足前面的条件,请大家注意,在热力学中用公式必须满足条件。 在化学中,我们更关心恒压过程,因为化学效应一般是在恒压条件下进行的。 封闭体系、恒压时,△U=Q p-W,若W'=0,则Q p=△U+W=△U+P e△V=U2-U1+ (P e V2-P e V1),因恒压P e=P1=P2,则Q p=(U2+P2V2)-(U1+P1V1),为了数学表达的方便,引进一个物理量,焓:H=U+PV,这里要说明一下,焓在这里无明确的物理意义,可以理解为,为了表达方便,专门设为一个符号,H即U+PV,之所以要提出焓这一物理量,是因为U+PV经常会用到,所以专门用一个符号来代替它。则上式 Qp=H2-H1=△H。 ∴封闭体系、恒压、W'=0时, Qp=△H,dH=δQ p。 这里要特别说明的是,H是状态系数,因为U、P、V都是状态系数,状态确定,U、P、V都是一定值,当然H也是确定值,也就是说从始态→终态,所有途径的△H都是的一样的,也就是说,在计算△H时,可以设计一条方便计算得途径。 焓是热力学的基本概念之一,以后经常要用到。总的来说,封闭体系不做非体积功时的过程,内能变化可以通过测定恒容热效应来求,焓变可以通过测恒压热效应求得。 焓 焓(enthalpy),符号H,是一个系统的热力学参数。 物理意义:⑴H=U+pV 焓=流动内能+推动功 ⑵焓表示流动工质所具有的能量中,取决于热力状态的那部分能量 定义一个系统内: H = U + pV 式子中"H"为焓,U为系统内能,p为其压强,V则为体积。 对于在大气内进行的化学反应,压强一般保持常值,则有 ΔH = ΔU + pΔV 规定放热反应的焓取负值。如:

信息熵及其性质和应用

农业大学 本科生课程论文 论文题目信息熵及其性质和应用学生专业班级信息与计算科学09级2班学生学号 20093992 指导教师吴慧 完成时间2012年06月25日 2012 年 06 月 25 日

课程论文任务书 学生指导教师吴慧 论文题目信息熵及其性质和应用 论文容(需明确列出研究的问题):研究信息熵的目的就是为了更深入的了解信息熵,更好的了解信息熵的作用,更好地使用它解决现实生活中的问题。文中介绍了信息熵的定义和性质及其应用。使我们对信息熵有跟深入的了解。 资料、数据、技术水平等方面的要求:论文要符合一般学术论文的写作规,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 发出任务书日期 06月15日完成论文日期 06月25日 教研室意见(签字) 院长意见(签字)

信息熵及其性质和应用 信息与计算科学专业 指导教师吴慧 摘要:信息熵是随机变量不确定性的度量,文中从信息熵的定义出发,结合信息熵的性质,介绍了目前信息熵在具体问题中的应用。信息是一个十分通俗而又广泛的名词,它是人类认识世界、改造世界的知识源泉。人类社会发展的速度,在一定程度上取决于人类对信息利用的水平,所以对信息的度量就很有必要。香农提出信息的一种度量,熵的定义形式,它是随机变量不确定性的度量,文中主要介绍熵的性质及其应用。 关键词;信息熵性质应用 Information entropy and its properties and Application Student majoring in Information and Computing Science Specialty dongqiang Tutor WuHui Abstract:information entropy is a measure of uncertainty of random variable, this paper from the definition of information entropy, combined with the nature of information entropy, information entropy, introduced the specific issues in the application https://www.sodocs.net/doc/188719323.html,rmation is a very popular and wi dely noun, it is human understanding of the world, transforming the world knowledge source . The human society development speed, depend on on certain level the human make use of information level, so the measurement information is necessary.Shannon put forward the informa-tion a kind of measurement, the definition of entropy form, it is the uncertainty of random variable metric, this paper mainly introduces the property of entropy and its application. Key words:information entropy properties application

相关主题