搜档网
当前位置:搜档网 › 马尔可夫过程及其应用

马尔可夫过程及其应用

马尔可夫过程及其应用
马尔可夫过程及其应用

马尔可夫过程

马尔可夫过程(Markov Proce ss)

什么是马尔可夫过程

1、马尔可夫性(无后效性)

过程或(系统)在时刻t0所处的状态为已知的条件下,过程在时刻t > t0所处状态的条件分布,与过程在时刻t0之前年处的状态无关的特性称为马尔可夫性或无后效性。

即:过程“将来”的情况与“过去”的情况是无关的。

2、马尔可夫过程的定义

具有马尔可夫性的随机过程称为马尔可夫过程。

用分布函数表述马尔可夫过程:

设I:随机过程{X(t),t\in T}的状态空间,如果对时间t的任意n个数值:

(注:X(t n)在条件X(t i) = x i下的条件分布函数)

(注:X(t n))在条件X(t n? 1) = x n? 1下的条件分布函数)

或写成:

这时称过程具马尔可夫性或无后性,并称此过程为马尔可夫过程。

3、马尔可夫链的定义

时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为

[编辑]

马尔可夫过程的概率分布

研究时间和状态都是离散的随机序列:,状态空间为

1、用分布律描述马尔可夫性

对任意的正整数n,r和,有:

PX m + n = a j | X m = a i,其中。

2、转移概率

称条件概率P ij(m,m + n) = PX m + n = a j | X m = a i为马氏链在时刻m处于状态a i条件下,在时刻

m+n转移到状态a j的转移概率。

说明:转移概率具胡特点:

由转移概率组成的矩阵称为马氏链的

转移概率矩阵。它是随机矩阵。

3、平稳性

当转移概率P ij(m,m + n)只与i,j及时间间距n有关时,称转移概率具有平稳性。同时也称些

链是齐次的或时齐的。

此时,记P ij(m,m + n) = P ij(n),P ij(n) = PX m + n = a j | X m = a i(注:称为马氏链的n步转移概率)

P(n) = (P ij(n))为n步转移概率矩阵。

特别的, 当k=1 时,

一步转移概率:P ij = P ij(1) = PX m + 1 = a j | X m = a i。

一步转移概率矩阵:P(1)

[编辑]

马尔可夫过程的应用举例

设任意相继的两天中,雨天转晴天的概率为1/3,晴天转雨天的概率为1/2,任一天晴或雨是互为逆事件。以0表示晴天状态,以1表示雨天状态,X n表示第n天状态(0或1)。试定出

马氏链的一步转移概率矩阵。又已知5月1日为晴天,问5月3日为晴天,5月

5日为雨天的概率各等于多少?

解:由于任一天晴或雨是互为逆事件且雨天转晴天的概率为1/3,晴天转雨天的概率为1/2,故一步转移概率和一步转移概率矩阵分别为:

故5月1日为晴天,5月3日为晴天的概率为:

又由于:

故5月1日为晴天,5月5日为雨天的概率为:P01(4) = 0.5995

马尔可夫链蒙特卡罗在实践中的应用

2012年第12期 吉林省教育学院学报 No.12,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总300期) Total No .300 收稿日期:2012—11—14 作者简介:孟庆一(1989—),女,吉林长春人,新加坡籍华人,英国伦敦大学数学系,本科生,研究方向:MCMC 统计学。 浅议马尔可夫链蒙特卡罗在实践中的应用 孟庆一 (英国伦敦大学,英国伦敦) 摘要:本文概括地介绍了马尔可夫链蒙特卡罗(Markov chain Monte Carlo ———MCMC ),一种随机模拟贝叶斯推断的方法。主要的抽样方法包括吉布斯采样(Gibbs Sampling )和Metropolis -Hastings 算法。本文也对MCMC 主题和应用的拓展进行了讨论。 关键词:马尔可夫链;蒙特卡罗;Gibbs 抽样;Metropolis -Hastings 中图分类号:O29 文献标识码:A 文章编号:1671—1580(2012)12—0120—02 统计学中的贝叶斯推理在过去的几十年里有前 所未有的突破,统计学家们发现了一种非常简单,但又非常强大的模拟技术,统称为MCMC 。这种技术可以运用到各种复杂的贝叶斯范例和实际情况。 贝叶斯推理: 贝叶斯方法把所给的模型里所有的未知量的不确定性联系在一起。利用所知的信息,贝叶斯方法用联合概率分布把所有未观察到的数量综合起来,从而得出的推论。在这里,给定已知的未知分布被称为后验分布。有关未知量的推理被称为预测,它们的边缘分布称作为预测分布。 贝叶斯推理根据贝叶斯规则计算后验概率: P (H |E )= P (E |H )·P (H ) P (E )然而,在大多数情况下,所给的模型的复杂性不允许我们运用这个简单的操作。因此,我们需要使用随机模拟, 或蒙地卡罗技术来代替。概述MCMC : MCMC 采用未知量的高维分布,为难度极高的模拟复杂模型的问题提供了一个答案。 一个马尔可夫链是一个序列的随机变量X 1,X 2,X 3,...这个序列有马尔可夫的属性———给予目前的状态,未来和过去的状态是独立的。从数学公 式上看, Pr (X n +1=x |X 1=x 1,X 2=x 2,…,X n =x n )=Pr (X n +1=x |X n =x n )X i 的可能的值可数的集合S 称 为链的状态空间。 幸运的是,在马尔可夫链里,我们也有与大数定律和中心极限定理类似的定理。 另外一个问题存在于如何建立一个马尔可夫链的极限分布与所需的分配一模一样。一种可行的解决方案是Gibbs 抽样。它是基于一个马尔可夫链,其前身的依赖性是由模型中出现的条件分布所决定的。另一种可能性是Metropolis -Hastings 算法。它是基于一个马尔可夫链,其前身的依赖性是分裂成两个部分:一个是建议,另一个是接受这一建议。 Metropolis -Hastings 算法: Metropolis -Hastings 算法,可以从任何概率分布中抽取样品,只要求是可计算函数的密度成正比。在贝叶斯的应用程序中,归一化因子计算往往是非常困难的,所以,和其他常用的抽样算法一样,能够在不知道这个比例常数的情况下产生样本是Metropolis -Hastings 算法的重要特征。 该算法的总体思路是产生一系列在一个马尔可 夫链里的样品。在足够长的时间后,所生成的样品的分布与分布相匹配。 该算法基本上按如下方式工作(这是一个特殊 的例子,其建议密度是对称的情况下):首先,选择一个任意的概率密度Q (x'|x t ),这表明一个新的采样值x'给定样本值x t 。对于简单的Metropolis 算法,这个建议密度必须是对称的Q (x'| 21

马尔可夫过程及其应用

马尔可夫过程 马尔可夫过程(Markov Proce ss) 什么是马尔可夫过程 1、马尔可夫性(无后效性) 过程或(系统)在时刻t0所处的状态为已知的条件下,过程在时刻t > t0所处状态的条件分布,与过程在时刻t0之前年处的状态无关的特性称为马尔可夫性或无后效性。 即:过程“将来”的情况与“过去”的情况是无关的。 2、马尔可夫过程的定义 具有马尔可夫性的随机过程称为马尔可夫过程。 用分布函数表述马尔可夫过程: 设I:随机过程{X(t),t\in T}的状态空间,如果对时间t的任意n个数值: (注:X(t n)在条件X(t i) = x i下的条件分布函数) (注:X(t n))在条件X(t n? 1) = x n? 1下的条件分布函数) 或写成: 这时称过程具马尔可夫性或无后性,并称此过程为马尔可夫过程。 3、马尔可夫链的定义

时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 [编辑] 马尔可夫过程的概率分布 研究时间和状态都是离散的随机序列:,状态空间为 1、用分布律描述马尔可夫性 对任意的正整数n,r和,有: PX m + n = a j | X m = a i,其中。 2、转移概率 称条件概率P ij(m,m + n) = PX m + n = a j | X m = a i为马氏链在时刻m处于状态a i条件下,在时刻 m+n转移到状态a j的转移概率。 说明:转移概率具胡特点: 。 由转移概率组成的矩阵称为马氏链的 转移概率矩阵。它是随机矩阵。 3、平稳性 当转移概率P ij(m,m + n)只与i,j及时间间距n有关时,称转移概率具有平稳性。同时也称些 链是齐次的或时齐的。 此时,记P ij(m,m + n) = P ij(n),P ij(n) = PX m + n = a j | X m = a i(注:称为马氏链的n步转移概率)

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

马尔可夫过程在信源编码中的应用

河南城建学院 马尔科夫过程在信源编码中的应用 信 息 论 基 础 姓名:王坤 专业名称:电子信息工程 专业班级:0934121 指导老师:贺伟 所在院系:电气与信息工程学院 2014年12月20日

摘要 首先主要讲述了马尔科夫过程,对马尔科夫过程进行了简介,介绍了马尔科夫过程的数学描述方法并对马尔科夫过程的发展历史进行了简述。 在第二章节对马尔科夫过程在信源编码中的应用进行了简单的论述及讲解。信息论中的编码主要包括信源编码和信道编码。信源编码的主要目的是提高有效性,通过压缩每个信源符号的平均比特数或降低信源的码率来提高编码效率;信道编码的主要目标是提高信息传输的可靠性,在信息传输率不超过信道容量的前提下,尽可能增加信源冗余度以减小错误译码概率。研究编码问题是为了设计出使通信系统优化的编译码设备 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。

目录 1引言 (1) 2马尔科夫过程 (2) 3马尔科夫过程在信源编码中的应用 (4) 4参考文献 (13)

1 引言 随着现代科学技术的发展,特别是移动通信技术的发展,信息的传输在社会科学进步的地位越来越重要。因此如何更加高效的传输信息成了现代科技研究的重要目标。马尔可夫过程是一类非常重要的随机过程。很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。由于 研究马尔科夫过程在信源编码中的作用,可以利用马尔科夫模型减少信息传输的冗余,提高信息传输的效率。 马尔可夫信源是一类有限长度记忆的非平稳离散信源,信源输出的消息是非平稳的随机序列,它们的各维概率分布可能会随时间的平移而改变。由于马尔可夫信源的相关性及可压缩性,它已成为信息领域的热点问题。

马尔可夫链预测方法及其一类应用【开题报告】

开题报告 数学与应用数学 马尔可夫链预测方法及其一类应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 概率论自1654年创立以来, 已由最初的博弈分析问题发展成为现今的方法论综合性学科. 而其中随机过程已经是现代概率论发展的必然性. 在这其中, 马尔可夫在1906年的"大数定理关于相依变量的扩展"(Extension de la loi de grands bombers etc)论文中首次创立的马尔可夫链已经成为了概率论的重中之重. 马尔可夫是世界上著名的数学家、社会学家. 他所研究的范围非常的广泛, 涉及到概率论、数论、数的集合、函数逼近论、数理统计、微分方程等方面. 马尔可夫在1906~1912年间, 他提出并研究了一种能用数学分析方法研究自然过程的一般图示, 后人把这种图示以他的姓氏命名为马尔可夫链(Markov Chain). 在当时, 马尔可夫开创性地采用了一种对无后效性的随机过程的研究范式, 即在已知当前状态的情况下, 过程的未来状态与其过去状态无关, 这就是现在大家非常熟悉了解的马尔可夫过程. 在现实生活当中, 有许多过程都能被看作成马尔可夫过程. 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动等等. 也正是由于马尔可夫链在生活中所具有的普遍存在性, 马尔可夫链理论才被广泛应用于近代的物理学, 生物学, 地质学, 计算机科学, 公共事业, 教育管理、经济管理、以及企业人员管理、桥梁建筑等各个领域. 马尔可夫链运用数学模型对定性问题进行预测提供了一种思路, 丰富了预测的内容. 其大体上可以分为以下几个步骤: 首先, 把现象看作成为一个系统, 并对该系统进行科学的划分. 根据系统的实际和需要划分出多个状态, 系统所划分出来的各个状态就是要预测的内容. 其次, 对现象各种状态的状态概率进行统计测定, 也就是判定出系统当前处于什么状态. 然后, 对各系统未来发展的每次转移概率进行预测, 就是要确定出系统是如何转移的. 最后, 根据系统当前的各种状态和转移概率矩阵, 推测出系统经过若干次转移后, 到达

马尔科夫及其应用(02129057)

马尔可夫过程及其应用 一. 马尔可夫过程的简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 二. 马尔可夫过程的一般概念 2.1定义 设有一随机过程X(t),t ∈T ,若在t1,t1,…tn-1,tn(t1

马尔可夫链预测方法及其一类应用【文献综述】

文献综述 数学与应用数学 马尔可夫链预测方法及其一类应用 马尔可夫性是俄国数学家A.A.Mapkov 在1906年最早提出的. 但是, 什么是马尔可夫性呢? 一般来讲,认为它是“相互独立性”的一种自然推广. 设有一串随机事件,...,,...,,121n n A A A A -中(即n A 属于概率空间(P ,,ξΩ)中的σ代数ξ,1≥n ), 如果它们中一个或几个的发生, 对其他事件的发生与否没有影响, 则称这一串事件是相互独立的(用概率空间(P ,,ξΩ)的符号表示, 即))()(11n m n m n n A P A P X I ===, 推广下, 如果在已知,...,1+n n A A 中的某些事件的发生, 与,,...,,121-n A A A 中的事件发生与否无关, 则称这一串事件{1:≥n A n }具有马尔可夫性. 所以说, 马尔可夫性可视为相互独立性的一种自然推广. 从朴素的马尔可夫性, 到抽象出马尔可夫过程的概念, 从最简单的马尔可夫过程到一般的马尔可夫过程, 经历了几十年的发展过程. 它有极其深厚的理论基础, 如拓扑学、函数论、几何学、近世代数、泛函分析. 又有很广泛的应用空间, 如随机分形、近代物理、公共事业中的服务系统、电子信息、计算技术等. 在现实世界中, 有很多过程都是马尔可夫过程, 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动, 车站排队问题等等, 都可视为马尔可夫过程. 所谓马尔可夫链是指时间连续(或离散)、状态可列、时间齐次的马尔可夫过程. 之所以要研究这种过程, 一方面是由于它的理论比较完整深入, 可以作为一般马尔可夫过程及其他随机过程的借鉴; 二是由于它在自然科学和许多实际问题(如遗传学、教育学、经济学、建筑学、规则论、排队论等)中发挥着越来越大的作用. 自从我国著名数学家、教育家、中科院王梓坤院士在上世纪50年代将马尔可夫理论引入国内以后, 我国数学家对马尔可夫过程的研究也取得了非常好的效果, 在生灭过程的构造和它的积分型泛函的分布、马尔可夫过程的零壹律、Martin 边界与过份函数、马尔可夫过程

应用随机过程——马尔可夫过程的应用

应用随机过程——马尔可夫过程的应用 李文雯,黄静冉,李鑫,苏建武 (国防科学技术大学电子科学与工程学院,湖南,长沙,410072) 摘要:现实生活中,语音处理、人脸识别以及股市走势预测等实际问题都具有马尔可夫性,即未来的走势 和演变仅仅与当前的状态有关而不受过去状态的影响。本文运用这一性质建立了以上三个问题的马尔可夫 链模型并做出了相应分析。 Abstract: In practical, phonetic processing, face recognition and the prediction of trend in stock market all have the MarKov property, that is, the evolvement and trend in the future are just in relationship with present state but not influenced by the past. In this article, we use the property setting up MarKov chain models of the three problems mentioned above and make some corresponding analysis. 关键词:马尔可夫过程语音处理人脸识别股市走势预测 Keyword: MarKov Process Phonetic processing Face recognition Prediction of trend in stock market 一、引言 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程 在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关, 这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。我们称时间离散、状态离散 的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概 率矩阵控制。我们将采用马尔可夫链建模的方法,就马尔可夫模型在语音处理、人脸识别以 及股市走势预测等几个方面的应用进行探讨。 二、马尔可夫过程的应用举例 1、股票市场走势预测 对一支股票来说,令x(n)表示该股票在第n天的收盘价,x(n)是一个随机变量,(x(n), n≥0)是一个参数离散的随机过程。假设股票价格具有无后效性与时问齐次性,这样一来我 们就可以用马尔可夫过程的研究方法预测未来某交易日收盘价格落在每个区间的概率。 以某股份18个收盘交易日的收盘价格为资料 序号 1 2 3 4 5 6 7 8 9 收盘价12.99 13.15 13.78 13.83 12.54 13 13.2 12.96 12.6 序号10 11 12 13 14 15 16 17 18 收盘价13.7 13.58 13.58 13.58 13.49 13.7 14.03 13.77 13.82 这组数据中的最大值为14.03,最小值为12.54,因此可以将这个取值范围划分为 [12.54,12.9125],[12.9125,13.285],[13.285,13.6575],[13.6575,14.03]。故将观测数据划分如下: 价格状态 A B C D 价格区间 [12.54,12.9125] [12.9125,13.285][13.285,13.6575][13.6575,14.03] 频数 2 5 4 7 根据以上的状态划分,可以对状态转移的情况进行统计如下:

马尔可夫过程的发展和应用

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:马尔可夫过程的发展与应用 院系:电子信息与工程学院 班级:通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009/12/17 马尔可夫链(过程)的发展与应用

1. 随机过程发展简述 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。 一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。 2. 马尔可夫过程发展 2.1 马尔可夫过程简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 2.2 马尔可夫过程的发展 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。

马尔可夫性与马尔可夫链

马尔可夫性与马尔可夫链 【教学目标】 1.掌握马尔可夫性与马尔可夫链。 2.熟练运用马尔可夫性与马尔可夫链解决具体问题。 3.亲历马尔可夫性与马尔可夫链的探索过程,体验分析归纳得出马尔可夫性与马尔可夫链,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握马尔可夫性与马尔可夫链。 难点:马尔可夫性与马尔可夫链的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习马尔可夫性与马尔可夫链,这节课的主要内容有马尔可夫性与马尔可夫链,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解马尔可夫性与马尔可夫链内容,形成初步感知。 (2)首先,我们先来学习马尔可夫性,它的具体内容是: 1n X +的随机变化规律与0X ,1X ,…1n X -的取值都没有关系,随机变量序列{}n X 的所具有的这类性质称为马尔可夫性 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例: 马尔可夫性描述了一种_____。 解析:状态序列 可以给学生一定的提示。 根据例题的解题方法,让学生自己动手练习。 练习: 序列所有可能取值的集合,被称为_____。 (3)接着,我们再来看下马尔可夫链内容,它的具体内容是:

一般地,我们称具有马尔可夫性的随机变量序列{}n X为马尔可夫链。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:请同学们查询资料,判断马尔可夫链与布朗运动是否有联系 解析:马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 根据例题的解题方法,让学生自己动手练习。 练习: 请写出马尔科夫链满足的两个假设。 三、课堂总结 (1)这节课我们主要讲了马尔可夫性与马尔可夫链 (2)它们在解题中具体怎么应用? 四、习题检测 1.请同学们写出马尔可夫性的定义。 2.请同学们写出马尔科夫链的定义。 3.请同学们写出马尔科夫性和马尔科夫链之间的联系。

马尔可夫过程的研究及其应用

马尔可夫过程的研究及其应用 概率论的思想通常都很微秒,即使在今天看来仍没有被很好地理解。尽管构成概率论的思想有点含糊,但是概率论的结果被应用在整个社会当中,当工程师估计核反应堆的安全时,他们用概率论确定某个部件及备用系统出故障的似然性。当工程师设计电话网络时,他们用概率论决定网络的容量是否足够处理预期的流量。当卫生部门的官员决定推荐或不推荐公众使用一种疫苗时,他们的决定部分的依据概率分析,即疫苗对个人的危害及保证公众健康的益处。概率论在工程实际、安全分析,乃至整个文化的决定中,都起着必不可少的作用。关于概率的信息虽然不能让我们肯定的预测接下来发生个什么,但是它允许我们预测某一事件或时间链的长期频率,而这个能力十分有用。概率论的思想不断渗透到我们的文化当中,人们逐渐熟悉运用概率论的语言思考大自然。 世界并不是完全确定的,不是每个“事件”都是已知“原因”的必然结果。当科学家们对自然了解的更多,他们才能认知现象—例如,气体或液体中分子的运动,或液体的波动。由此引入了人们对布朗运动的定性与定量描述。在人们思考布朗运动的同时,俄国数学家马尔可夫开始研究现在所谓的随机过程。在实际中遇到的很多随机现象有如下的共同特性:它的未来的演变,在已知它目前状态的条件下与以往的状况无关。描述这种随时间推进的随机现象的演变模型就是马尔可夫过程。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 安德烈?马尔可夫(A.A.Markov,1856-1922),1856年6月14日生于梁赞;1922年7月20日卒于圣彼得堡。马尔可夫上中学时,大部分课程学得不好,惟独数学成绩常常都得满分,并开始自学微积分,有一次他独立地发现了一种常系数线性常微分方程的解法,就写信给著名数学家布尼亚科夫斯基,信被转到彼得堡数学系科尔金和佐洛塔廖夫手里,从此马尔可夫与彼得堡大学的数学家建立了联系。1874年考入彼得堡大学数学系学习,在学习期间他深受切比雪夫、科尔金、佐洛塔廖夫等数学家的启发和影响,1878年大学毕业,并以《用连分数求微分方程的积分》一文获金质奖章。1880年以题目为《论行列式为正的二元二次齐次》的论文取得硕士学位并在彼得堡大学任教。1884年获物理数学博士学位,1886年成为教授,1890年当选为彼得堡科学院候补院士,1896年当选为院士,1905年退休时彼得堡大学授予他功勋教授称号。马尔可夫研究的范围很广,对概率论、数理统计、数论、函数逼近论、微分方程、数的几何等都有建树。在概率论方面,他深入研究并发展了其老师切比雪夫的矩方法,使中心极限定理的证明成为可能。他推广了大数定律和中心极限定理的应用范围。他提出并研究了一种能够用数学分析方法研究自然过程的一般图式,这种图式后人即以他的姓氏命名为马尔可夫链。他还开创了一种无后效性随机过程的研究,即在已知当前状态的情况下,过程的未来状态与其过去状态无关,这就是现在大家耳熟能详的马尔可夫过程。马尔可夫的工作极大的丰富了概率论的内容,促使它成为自然科学和技术直接有关的最重要的数学领域之一。 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942 年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的

马尔可夫链应用于天气预报

马尔可夫链应用于天气预报 摘要: 在《概率论与随机过程》课中学习了马尔可夫链,马尔可夫过程因其无后效性、遍历性和时齐性,在科学研究、天气预测、农业预测、市场预测等方面应用非常广泛。本文通过对马尔可夫链理论和切普曼-柯尔莫哥洛夫方程的探讨,结合天气因素、降水情况的不确定性和无后效性等诸多特点,构建了基于天气预报的马尔可夫链预测模型,文中给出了马尔可夫链的一步转移概率矩阵和多重转移概率的计算方法,根据此算法可以预报短期天气情况,达到预测天气的目的。 关键字:马尔可夫链 天气预报 转移概率 切普曼-柯尔莫哥洛夫方程 1 引言 天气变化情况与人们的生产、生活息息相关,是人们普遍关注的重点问题之一。所以天气预报的准确性与时效性就显得尤为重要,否则将对人们带来不便,甚至有可能带来重大经济和人员损失。本文借助随机过程中著名的马尔可夫链模型,以某日天气的状态转移数据为例,建立了天气情况预测模型,并借助该模型应用马尔可夫链的遍历性,对未来天气的变化趋势作出了预测分析。由于马尔可夫过程应用广泛,它的重要特征是无后效性和遍历性。因此,运用马尔可夫链,只需要最近或现在的动态资料则可按转移概率可预测将来,这样就可以很方便地达到预测天气变化的目的。 2 马尔可夫链预测模型 2.1 马尔可夫链的概念和特性 马尔可夫过程是指具有以下特性的过程:过程X(t)(或系统)在时刻t 0所处的状态为已知的条件下,过程在时刻t >t 0所处状态的条件分布与过程在时刻t 0之前所处的状态无关,只与时刻t 0所处的状态有关,这种特性称为马尔可夫性或无后效性。则称X(t)为马尔可夫过程。 马尔可夫链实际上就是状态和时间都是离散的马尔可夫过程。这一特性可用分布函数来确切地表出:设随机过程{X(t),t ∈T},状态空间为χ,若对于t 的任意n 个值t 1

马尔可夫过程

马尔可夫过程 马尔科夫过程和马尔可夫过程是同义词,已合并。 一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变( 过去) 。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。资料个人收集整理,勿做商业用途 目录 1名词定义资料个人收集整理,勿做商业用途 2形成过程资料个人收集整理,勿做商业用途 1. 2.1 时间链资料个人收集整理,勿做商业用途 2. 2.2 连续时间资料个人收集整理,勿做商业用途 3. 2.3 生灭过程资料个人收集整理,勿做商业用途 4. 2.4 一般过程资料个人收集整理,勿做商业用途 3扩散过程资料个人收集整理,勿做商业用途 1名词定义 在马尔可夫性的定义中,"现在"是指固定的时刻,但实际问题中常需把马尔可夫性中的“现在”这个时刻概念推广为停时(见随机过程)。例如考察从圆心出发的平面上的布朗运动,如果要研究首次到达圆周的时刻τ以前的事件和以后的事件的条件独立性,这里τ为停时,并且认为τ是“现在”。如果把“现在”推广为停时情形的“现在”,在已知“现在”的条件下,“将来”与“过去”无关,这种特性就叫强马尔可夫性。具有这种性质的马尔可夫过程叫强马尔可夫过程。在相当一段时间内,不少人认为马尔可夫过程必然是强马尔可夫过程。首次提出对强马尔可夫性需要严格证明的是J.L.杜布。直到1956年,才有人找到马尔可夫过程不是强马尔可夫过程的例子。马尔可夫过程理论的进一步发展表明,强马尔可夫过程才是马尔可夫过程真正研究的对象。资料个人收集整理,勿做商业用途

随机过程报告记录——马尔可夫链

随机过程报告记录——马尔可夫链

————————————————————————————————作者:————————————————————————————————日期:

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为 ,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上 改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。 定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的 ,,...,110I i i i n ∈+条件概率满足 }i {},...,i X i {1n 100 01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义1.2 条件概率 }{P 1)(i X j X p n n n ij ===+ 称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转 移概率。 一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

相关主题