搜档网
当前位置:搜档网 › 海洋磁力仪的应用

海洋磁力仪的应用

海洋磁力仪的应用
海洋磁力仪的应用

试析海洋磁力仪的应用姜进胜

摘要:目前来说,磁力仪分为质子旋进式与光泵式两种基本类型,本文就围绕着质子旋进式与光泵式两种海洋磁力仪对其应用展开

了探讨,并且对质子旋进式海洋磁力的一个发展分支——sea spy磁力仪的原理及应用进行了介绍,最后,对海洋磁力仪的其他应用做

了简要概述。

关键词:质子旋进式光泵式 sea spy

中图分类号:tp212.13 文献标识码:a 文章编

号:1672-3791(2012)06(b)-0089-01

人们在早期的生产实践活动中就已经对地磁场有了初步的认识,磁力线是从地球的北极出发一直延伸到地球的南极的,随着时间的推移,科技在不断进步,磁力仪的种类发展越来越来多。众所周知,磁法勘测在海洋地理调查中起着至关重要的作用,所以海洋磁力仪的普及使用也在海洋调查中大面积开展起来。

1 海洋磁力仪的原理与应用

在被大家熟知每一片地球区域,相关磁力场都是有规律的存在与分布着的。某一区域的的磁力场如果受到外界铁质物体的入侵,则这个磁力场将会受到铁质物体在磁力场中产生的相对于本磁力场

的外力作用,从而对该磁力场造成干扰。这些外力干扰基本上都是存在于这个入侵的铁质物体的周围的。磁力在磁场中的相关应用可以帮助工作人员测量出某个地球区域的磁场强度,如果磁场受到外

来入侵,导致了场强变化,放置在其中的磁力仪也会相应地改变磁力数值,由于能够改变磁力场的物质都是铁磁物质构成的,所以磁力仪能够勘测出任何会使磁力场发生改变的物体,同样,磁力仪的使用能够满足人们的应用需要。海洋磁力仪就是测量地球磁力场强度的一款精度很高的测量设备。磁力仪的两种基本类型分为质子旋进式与光泵式两种,sea spy磁力仪是质子旋进式的一个发展分支,它也属于质子旋进式。

1.1 质子旋进式磁力仪

标准质子旋进式磁力仪是将少量附有氢原子核的液体,比如说甲醇或者煤油之类的,装入其传感器中。在这些液体中,除了氢原子核能够显示较为微弱的磁矩,其的自旋磁矩并没有被抵消,液体中的其他分子的自旋、电子轨道以及原子核自选的所有相关磁矩都被成对地进行了彼此抵消。氢原子在外磁场强度为零值时的磁矩取向是任意无规则的。

当传感器中富含氢原子的液体周围被附加上了由线圈产生的强大的人造磁场,则这个然早磁场会引起液体中的大量质子向同一方向自旋,并且这些质子的排列方向都是定向地以人造磁场方向为自旋轴进行排列的。一旦这种人造磁场消失,就会发生质子旋进现象,具体表现为氢原子在地磁场力与其的原本持有的自旋惯性的相互作用下以同样的相位往磁场方向旋进。

在质子旋进的初期阶段,由于质子的相位相同,通过其磁性的宏

观显示,质子有周期性在容器外的线圈进行切割,从而发出相应地电感应的信号,切割频率与其的旋进频率是大体相同的。但是热搅动会引起进动一致性的降低,这就会使得电感应信号也随之发生很大的改变,具体表现为电感应信号的急剧下降,所以,要在衰变钱的0.5s也就是心噪值较高时来对质子的旋进频率进行详细具体的测量。然后通过对旋进信号的频率测量结果的出地磁场的场强大小。

1.2 sea spy磁力仪

sea spy磁力仪作为质子旋进式磁力仪的发展与延伸,虽然它也是以质子自旋共振原理为基础的,但是其较质子旋进磁力来说还是做了相当大的改进的。sea spy磁力仪的相关效应是通过电子-质子的偶合现象达到质子极化这一目标的,这是sea spy磁力仪与质子旋进最大的不同之处。sea spy磁力仪是将一种经过特殊处理的富含着带有一个游离电子的放射性原子的相应的化学试剂添加到富质子液体当中。其中的游离电子在暴露于某种特定的跃迁能级较低的低频射线中被有效地激发,它将自己的能量就近传给相近的质子,但是并不辐射出射线来释放相关能量,这样在对质子的极化时就不需要施加过于强大的人造磁场。

sea spy磁力仪最大输出信号是由相关的化学试剂来决定的,其预输入传感器的能量并无太大关系。所以,只使用l~2w的能量磁力仪传感器就能够清楚产生相关的强大进动信号,这是标准的质子磁力仪则即使耗费上千瓦的能量也无法匹敌的,sea spy磁力仪很大程

度上提高了质子磁力仪的可用信息量,相比于标准的,其的采样频

率是相当高的。sea spy磁力仪拥有着标准质子磁力仪同样的优良精确特性,其也具有很强的长期稳定性,所以,sea spy磁力仪作为质子磁力仪的扩展与延伸,其更具灵敏度,对电能的节约也是很明显,带宽更大。

1.3 光泵磁力仪

光泵磁力仪是在20世纪中期出现的的新型磁力仪器,其可以进行连续观测,对周围磁场的梯度要求不是特别严格,不需要具体定向,无零点漂移而且灵敏度是十分高的。光泵磁力仪在接通传感器的电源后,磁力仪射灯振荡器的rp功率会逐渐增强至整个射灯都开始发光,而后降低振荡器的相应功率,使其光线可进行调控,吸收室由于强光的照射温度会逐渐变高,使得铯原子发生物理变化,气化成蒸汽。

在以上过程中,相应光线会经过一个透镜变成平行光线,而后经

过滤波器,产生具有特定波长的光线,然后再通过偏振镜使得其产

生极化方向相反的两束光线,让其射向吸收室,这两束光线分别通

过吸收室中的两个被看做独立的的分室中的,光线在通过吸收室后,再经过其中第二个透镜使其聚焦在相应地光敏元件上,最后通过检测光电流的变化放大取得地磁场强的最终测定。

2 海洋磁力仪的其他应用

海洋磁力仪的操作实际上是非常简单的,磁力仪一般经过基本测

试后,在以后几个月内的实际使用中都不需要做大的调整,不过在

每次的船上作业前还是建议检修海洋磁力仪,确保机器的正常运转,在航海船只受地域以及风浪影响的时候,经常会出现船上铁制品的客观遗失,在样的情况下就可以应用海洋磁力仪,其可以发挥很大

的作用。

综上可知,海洋磁力仪作为海洋工程中的重要勘测工作,因其精

度高、准度好,深度跨度大优良特点,越来越广泛地应用在海洋工程磁力勘测工作中,为航海事业的发展推波助澜。

参考文献

[1] 边刚,刘雁春,于波,等.海洋磁力测量仪器系统检验方法研究[j].海洋技术,2006(4).

[2] 徐家声,张效龙,裴彦良.我国近海磁力仪探测海缆的方

法及其结果分析[a]. 第二届全国海底光缆通信技术研讨会论文集

[c],2009.

[3] 蔡建平.海洋磁力仪探测应用的探讨[a].第三届长三角

科技论坛(测绘分论坛)暨2006江苏省测绘学术年会论文集

[c],2006.

[4] 冯志生,张苏平,梅卫萍,等.fhd质子磁力仪数字化资料

的分析与应用[a].中国地震学会第11次学术大会论文摘要集[c],2006.

海洋磁力仪的原理与技术指标对比分析

海洋磁力仪的原理与技术指标对比分析第 26卷第 2期海洋测绘Vo l126 , No12 2006年 3 月 M a r1, 2006 H YDRO GRA PH IC SURV EY IN G AND CHAR T IN G 海洋磁力异常逼近方法研究 1 1 1 2 1金绍华 ,于波 ,刘雁春 ,翟国君 ,边刚 ( )11海军大连舰艇学院海洋与测绘科学系 ,辽宁大连 116018; 21海军海洋测绘研究所 ,天津 300061 摘要 : 通过对常用的数值逼近方法的分析和研究 ,针对海洋磁力测量的特点 ,仿真计算分析了移动曲面法、 H a rdy多面函数法、Shep a rd法和 Kriging法在不同情况下的插值精度。同时 ,给出了一个实例来计算分析四种逼近 方法插值精度。仿真与实例计算结果表明 ,已知点的分布情况及磁异常变化情况不同时 ,四种逼近方法的插值精 度是不同的。针对不同的情况 ,本文总结出了适合于海洋磁力异常逼近的方法。 关键词 : 海洋磁力异常 ;逼近 ;插值精度 + 中图分类号 : P31816 3 ( ) 文献标识码 : A 文章编号 : 1671 23044 2006 0220006 203 2 2 ( ) z x, y = a+ ax + ay + ax y + ax+ ay 0 1 2 3 4 5 1 引言 ( ) 1 ( ) ( ) 式中 , z x, y 为已知点 x, y 的磁力异常值 , a、a、 0 1 ,得到由于海洋磁力测量属于点线状测量模式

a、a、a、a为拟合系数。 2 3 4 5 的观测结果往往是离散的 ,然而海洋磁场 本身却是 ( ) 由 1 式依据最小二乘原则可以求得拟合系数连续的 ,因此 ,根据观测的 离散数据寻找磁场的解析 a、a、a、a、a、a, 即可得到曲面方程。然后依据曲 0 1 2 3 4 5 表达式一 直在不断研究探索。将离散的磁异常值表 面方程可求得任一未知点处的逼近值。示成解析形式 ,便于利用计算机仿真 技术模拟海洋 [ 3 ]磁场的变化形态 ,反映测区的总体特征。 212 H a rdy多面函数法 磁力异常逼近技术是能够反映磁场连续变化的( ) 在平面坐标系中 ,若将磁力 异常函数 z x, y 表主要手段 ,对于反映整个中国海区的磁力异常变化示为 : n 特性 ,可以选取均匀分布整个中国海区的离散磁异 )( )( ) ( z x, y = aQ x, y, x, y2 i j j ? 常值 ,利用多项式模型、矩 谐模型、冠谐模型等建立 j = 1 [ 1 ] 磁异常模型 ,来分析中国海区的磁异常变化。而 ( ) x , y 为式中 , n 为核函数的个数 ; a 为待定参数 ; i j j 对于 小范围的磁异常变化特性可以采用数学逼近方 ( ) 已知磁异常点坐标 ; Q x, y, x, y为核函数 , 一般选 j j 法进行分析与研究。目前 ,主要的逼近方法有移动 用如下形式 : 2 2 曲面法、多项式拟合法、多面函数法、移动曲面法、 2ΔδΔ ( ) Q x, y, x , y = x+y+ j jj j Kriging逼近法和 Shep a rd方法。它们在陆地上 重力ΔΔδ式中 , x = x - x; y = y - y;为平滑因子 , 在海 j j j j 异常逼 近中取得了良好的效果 ,不失一般性 ,这些方 2 ( δ洋磁力测量中可令 = 0。 对于 m 个已知点 x , 1 法也可用来对海洋磁力测量的异常进行逼近。本文 ) ( ) ( ) ( ) y, x, y,x, y由 2 式可列 m 个方, 1 2 2 m m 介绍了几种常用的

遥感技术在海洋中的应用

遥感技术在海洋中的应用 海洋覆盖着地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间。随着人口的增长和陆地非再生资源的大量消耗,开发利用海洋对人类生存与发展的意义日显重要。所以,必须利用先进的科学技术,全面而深入地认识和了解海洋,指导人们科学合理地开发海洋。在种种情况下,遥感技术应运而生。 1.遥感技术在海洋中应用的优越性 与常规的海洋调查手段相比海洋遥感技术具有许多独特的优点: 第一,它不受地理位置、天气和人为条件的限制,可以覆盖地理位置偏远、环境条件恶劣的海区及由于政治原因不能直接去进行常规调查的海区。 第二,卫星遥感能提供大面积的海面图像,每个像幅的覆盖面积达上千平方公里,对海洋资源普查、大面积测绘制图及污染监测都极为有利。 第三,卫星遥感能周期性地监视大洋环流、海面温度场的变化、鱼群的迁移、污染物的运移等。 第四,卫星遥感获取的海洋信息量非常大。 第五,能同步观测风、流、污染、海气相互作用和能量收支情况。 2.遥感技术在海洋中的应用 2.1在海岸开发中的应用 我国有1.8万公里海岸线,海岸带面积约35万平方公里,其中泥沙问题比较突出,特别是黄河、长江、杭州湾、珠江口等大的河口,年平均输沙量在5—12亿吨以上。如果我们掌握了泥沙的运动规律,加以很好地利用,就是一笔巨大的财富;反之,则会带来巨大的灾难。利用多时相的卫星遥感图像不仅可以反映大面积海区水体表层悬浮泥沙的分布规律和变化动态,而且还可以确定大风天时高含沙量的活动范围。这些信息对新港口选址、新航道的开辟、近海石油开采以及解决旧港口淤积等问题是必不可少的依据。 2.2在海洋渔业中的应用 卫星遥感信息可以用于渔场海洋环境研究,主要有: ①水温反演:海水温度与鱼类的生存、洄游有着密切关系,各种鱼类不仅有自己最适生存温度范围,而且随季节进行适温洄游。气象卫星可提供大面积海面

geometricsSC地震仪采集软件20120101------dxs

GEOMETRICS公司地震仪操作和参考手册 GEODE SMARTSEIS ST STRATAVISOR NZ ES-3000 部件:28519-01 版本:L 软件版本:9.30 2190 Fortune Drive San Jose, CA 95131 Phone: 408.954.0522 Fax: 408.954.0902 EMAIL: salesgeometrics. .geometrics.

目录 2.系统概况SYSTEM OVERVIEW (3) 2.1硬件HARDWARE (3) 2.2地震仪采集软件SEISMIC CONTROL SOFTWARE (4) 2.2.1首次使用软件STARTING THE SOFTWARE FOR THE FIRST TIME (4) 2.2.1.1炮集窗口 SHOT WINDOW (9) 2.2.1.2频谱窗口SPECTRA WINDOW (MGOS/NZOS) (11) 2.2.1.3 噪音监视窗口NOISE DISPLAY WINDOW (11) 2.2.1.4板报窗口SURVEY LOG WINDOW (12) 2.2.1.5参考道PILOT WINDOW (MGOS/NZOS) (12) 2.2.1.6地震排列窗口GEOMETRY GRAPHICAL USER INTERFACE (12) 2.2.1.7 状态栏STATUS BAR (13) 2.2.1.8主菜单MAIN MENU BAR (13) 2.3 打开软件菜单GETTING AROUND THE MENUS (15) 2.4地震道状态CHANNEL STATES (18) 2.5 地震道类型CHANNEL TYPES (19) 3.采集软件SCS ACQUISITION CONTROL SOFTWARE (20) 3.1 测量菜单SURVEY MENU (20) 3.1.1 新建测量NEW SURVEY (20) 3.2 排列菜单GEOM[ETRY] MENU (21) 3.2.1测量模式SURVEY MODE (21) 3.2.2 检波器间隔GEOPHONE INTERVAL (22) 3.2.3 位置信息GROUP/SHOT LOCATIONS (24)

海洋地震仪OBS简介及技术参数中英文

海洋地震仪OBS简介 Ocean Bottom Seismometer 主要用途 海底地震仪OBS( Ocean Bottom Seismometer )是一种放置于海底的地震数据采集系统,可用于记录天然地震事件和人工地震勘探,广泛应用于油气勘探、地球深部结构探测等领域。由于仪器位于海底,可以同时接收P波和S波信号,且环境噪音低,实现高信噪比、高分辨率和高精度的海底地震数据采集。 Application : OBS( Ocean Bottom Seismometer )is a seismic data acquisition system which placed in the seabed, able to record the natural earthquake and human seismic exploration, it is widely used for Oil & gas exploration, deep exploration of earth structure and other fields. Since the device is in the seabed, it could receive the signal of P wave and S wave at the same time, with a low noise environment, the data acquisition is realized the high signal to noise ratio, high resolution and high accuracy. 主要特点 1. 可采集4 分量的地震信号,分辨率高,一致性好; 2. 采用宽频带地震计,可适应海底较大的倾斜角,自动调整水平; 3. 低功耗运行,连续长期海下工作; 4. 万米级工作水深; 5. 高精度GPS授时,水面自定位; 6. 人机友好交互,方便查看仪器状态; Main Features: 1. Get 4 channels seismic signal, high resolution and Good consistency 2. Adopt broad band seismic sensor, can adapt to the larger angle of the sea, automatically adjust the level; 3. Low-power operation, continuously work underwater in long-terms; 4. work depth could reach 10000m; 5. High precision GPS timing, self-positioning; 6. Man-machine friendly interaction, easy to view the instrument state; 技术参数 1. 宽频带长周期四通道海底地震仪:甚宽频带( 120s-50Hz );标准宽频带( 60s-50Hz ;30s- 100Hz );部分120s 和60s OBS 为双球体或四球体等,以满足检波器固置空间和海底能源供应的需

卫星遥感技术应用

卫星遥感技术应用 卫星遥感技术应用现状(对地)首先,到目前为止,我国已经成功发射了十六颗返回式卫星,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的六颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为使用,实现了业务化运行。一九九九年十月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。 其次,除了上述发射的遥感卫星外,我国还先后建立了国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等国家级遥感应用机构。同时,国务院各部委及省市地方纷纷建立了一百六十多个省市级遥感应用机构。这些遥感应用机构广泛的开展气象预报、国土普查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供多方面的信息服务。这也为迎接2 1世纪空间时代和信息社会的挑战,打下了坚实的基础。 最后,非常关键,必须要重点指出的是两大系统的建立完成。一是国家级基本资源与环境遥感动态信息服务体系的完成,标志着我国第一个资源环境领域的大型空间信息系统,也是全球最大规模的一个空间信息系统的成功建立;二是国家级遥感、地理信息系统及全球定位系统的建立,使我国成为世界上少数具有国家级遥感信息服务体系的国家之一。我国遥感监 测的主要内容为如下三方面; 1、对全国土地资源进行概查和详查; 2、对全国农作物的长势及其产量监测和估产; 3、对全国森林覆盖率的统计调查。 卫星遥感技术在海洋中的应用 2.2.1 在海岸开发中的应用 我国有 1.8 万公里海岸线,海岸带面积约 35万平方公里,其中泥沙问题比较突出,特别是黄河、长江、杭州湾、珠江口等大的河口,年平均输沙量在5—12 亿吨以上。如果我们掌握 了泥沙的运动规律,加以很好地利用,就是一笔巨大的财富;反之,则会带来巨大的灾难。利用多时相的卫星遥感图像不仅可以反映大面积海区水体表层悬浮泥沙的分布规律和变化动态,而且还可以确定大风天时高含沙量的活动范围。这些信息对新港口选址、新航道的开辟、近海石油开采以及解决旧港口淤积等问题是必不可少的依据。 2.2.2 在海洋渔业中的应用 卫星遥感信息可以用于渔场海洋环境研究,主要有:第一、水温反演:海水温度与鱼类的生存、洄游有着密切关系,各种鱼类不仅有自己生存的最适温度范围,而且随季节进行适温洄游。海洋卫星可提供大面积海面温度信息,为渔业生产服务。第二、流隔研究:海洋中存在着不同的流系,不同流系之间存在着较大的温度梯度,成为流隔。计算机对红外图像进行密度分割处理后,可以清楚反映出不同流系分布,为确定中心渔场提供指标。第三、渔场小尺度水文现象监测:当利用卫星监测到渔场存在着直径为几十到几百公里的中、小尺度冷水涡 旋时,在涡旋中心附近可形成中心渔场。第四、叶绿素浓度分析:海洋捕捞资源是以浮游生物年产量为基础,通过浮游生物年产量的测定,来估算捕捞资源潜力。而海洋叶绿素又是反映海洋浮游生物光合作用的重要参数。海洋卫星可以提供海洋中叶绿素相对浓度分布。 2.2.3 在保护海洋生态环境中的应用

遥感技术及其应用

遥感技术及其应用 第四从人地关系看资与环境 单元活动遥感技术及其应用 一、教材分析 《遥感技术及其应用》是鲁教版必修一第四单元单元活动的教学内容,主要教学内容包括:遥感的概念、遥感的基本原理、遥感影像的初步判读等内容。 二、教学目标 知识要求:了解遥感技术的特点,工作原理流程及其应用领域。 技能要求:能够运用遥感影像中的直接和间接解译标志对遥感影像进行简单的解译。 情感要求:关注现代化的科学技术在地理科学中的应用,思考和理解地理信息技术的应用对协调人地关系的重要影响,培养学生的热爱地理的兴趣。 三、教学重点难点 重点:遥感工作原理 难点:遥感影像的判读 四、学情分析 本节内容是高一学生所学内容,尚未分科的平行班内不少是学理的好手,所以并不担心学生物理知识的不足。对于

气氛不太活跃的班级一定要让学生活动起,投入到角色中去,才能很好的理解遥感的原理。 五、教学方法 1.问题探究教学法:设置若干问题让学生分组讨论,并合作得出答案。 2.学案导学:见后面的学案。 3.新授课教学基本环节:预习检查→情境导入→合作探究→总结检测→布置预习 六、课前准备 1.学生的学习准备:预习“遥感技术及其应用”,初步掌握遥感的基本概念、基本原理及其应用领域和应用前景。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案,并把学生科学分成若干小组。 七、课时安排:1课时 八、教学过程 (一)预习检查、总结疑惑 检查学生预习的落实情况,并了解和归纳学生的疑惑,使课堂教学更有效率和更具有针对性。 (二)情景导入、展示目标 前面几节课我们学习了人地关系的一些相关知识,知道了人类的生存与发展离不开资与环境。随着科技的发展和时

海洋测量

海洋测绘

海洋测绘(Hydrographic Survey and Charting)是海洋测量和海洋制图的总称。其任务是对海洋及其邻近陆地和江河湖泊进行测量和调查,获取海洋基础地理信息,编制各种海图和航海资料,为航海、国防建设、海洋开发和海洋研究服务。 海洋测绘的主要内容有:海洋大地测量、水深测量、海洋工程测量、海底地形测量、障碍物探测、水文要素调查、海洋重/磁力测量,海洋专题测量和海区资料调查;以及各种海图、海图集、海洋资料的编制和出版,海洋地理信息的分析、处理及应用。

海洋测绘特点: 1、陆地上所测定点的三维坐标是分别用不同的方法,不同的仪器设备分别测定的,但在海洋测量中垂直坐标是和船体的平面位置同步测定的。 2、陆上的测站点与在海上的测站点相比,可以说是固定不动的。但海上的测站点是在不断的运动过程中的。 3、在陆地测量中一般必须使用电磁波信号,而在海水中,则采用声波信号。 4、陆地上测定的是高程,即某点高出大地水准面多少,而在海上测定的是海底某点的深度即其低于大地水准面或水深基准面多少。 5、在陆地的观测点往往通过多次重复测量,得到一组观测值,经平差后可得该组观测值的最或是值。但在海上,测量工作必须在不断运动着的海面上进行。

6、陆地地形测量及工程制图大多采用高斯-克吕格投影,而海洋制图还有墨卡托、UTM投影等,尤其海图投影基本采用墨卡托投影。 海洋测量的任务既可以是科学任务,如研究地球的形状、研究海底地质构造的运动、海洋环境等,也可以是一些实用任务,如自然资源的勘探与海洋工程、航运救捞与航道、近岸工程、渔业捕捞划界等等,具体涉及到的内容包括海洋重力测量、海洋磁力测量、海水面的测定、大地控制与海底控制、定位、测深、海底地形勘测、制图与MGIS等等。

《遥感技术与应用》教学大纲

《遥感技术及应用》教学大纲 课程代号:0707222080 课程名称:遥感技术及应用 课程英文名称:Remote Sensing Technology and Application 课内学时:48学时 学分:2.5学分 编写人:杨德明 一、课程目的与要求: 遥感技术及应用是为资源环境与城乡规划管理专业设立的专业基础课。本课程教学目的是通过课程的讲授和实验,使学习者掌握遥感科学技术的基本理论;掌握遥感信息的来源和遥感图像的成像原理;掌握遥感技术及应用的基本知识内容;基本掌握遥感在资源与环境等方面应用的技术方法;了解遥感技术的发展与应用领域。 二、课程简介: 遥感技术及应用是一门具有广泛实用性的专业基础课。该课程在遥感技术理论阐述基础之上,讲述该技术在地质、土地、海洋、农林、城市等资源环境调查、监测等方面的应用。遥感技术是当前被全世界广受重视的高新技术,在地球表层系统研究中又具广阔的应用领域。该课程在我校是地质、资源环境、自然地理、土地资源管理、地理信息系统、环境工程的专业的必修课,受到学生的普遍欢迎,也有望成为全校一年级的公共选修课。 课程英文简介: Remote Sensing Technology and Application is a wide-ranging pragmatic specialized basic course. Based on expounding the theory of remote sensing technology, the course tells about it’s applications of resources investigation and monitor in geology, land, ocean, agriculture, urban and so on. Nowadays, as being an advanced high technology, remote sensing technology is paid great attention by all over the world. It has a broad application field in the research of the earth’s surface system. In our school, this course has being widely taught for the specialties such as geology, resources and environment, natural geology, land resource management, GIS and environment engineering. Since it is began lecturing, students extend warm welcome, what’s more, it may be taken as a public elective course for the freshmen. 三、课程内容与学时分配: (一)课程安排(40学时) 第一章绪论2学时 一、遥感与遥感技术 (一)遥感的基本概念 讲解有关遥感的基本概念:遥感的涵义、遥感的信息源、主动遥感、被动遥感、广义遥感、狭义遥感、成像方式遥感和非成像方式遥感。 (二)遥感技术系统和特点 1.遥感技术系统涵义 2.遥感技术系统组成 (1)遥感信息收集系统(遥感仪器和运载平台) (2)遥感信息传输和与处理系统(地面接受站的工作和设备) (3)遥感图像处理解译分析系统(处理设备和专业解译人员)

海洋磁力仪的应用

试析海洋磁力仪的应用姜进胜 摘要:目前来说,磁力仪分为质子旋进式与光泵式两种基本类型,本文就围绕着质子旋进式与光泵式两种海洋磁力仪对其应用展开 了探讨,并且对质子旋进式海洋磁力的一个发展分支——sea spy磁力仪的原理及应用进行了介绍,最后,对海洋磁力仪的其他应用做 了简要概述。 关键词:质子旋进式光泵式 sea spy 中图分类号:tp212.13 文献标识码:a 文章编 号:1672-3791(2012)06(b)-0089-01 人们在早期的生产实践活动中就已经对地磁场有了初步的认识,磁力线是从地球的北极出发一直延伸到地球的南极的,随着时间的推移,科技在不断进步,磁力仪的种类发展越来越来多。众所周知,磁法勘测在海洋地理调查中起着至关重要的作用,所以海洋磁力仪的普及使用也在海洋调查中大面积开展起来。 1 海洋磁力仪的原理与应用 在被大家熟知每一片地球区域,相关磁力场都是有规律的存在与分布着的。某一区域的的磁力场如果受到外界铁质物体的入侵,则这个磁力场将会受到铁质物体在磁力场中产生的相对于本磁力场 的外力作用,从而对该磁力场造成干扰。这些外力干扰基本上都是存在于这个入侵的铁质物体的周围的。磁力在磁场中的相关应用可以帮助工作人员测量出某个地球区域的磁场强度,如果磁场受到外

来入侵,导致了场强变化,放置在其中的磁力仪也会相应地改变磁力数值,由于能够改变磁力场的物质都是铁磁物质构成的,所以磁力仪能够勘测出任何会使磁力场发生改变的物体,同样,磁力仪的使用能够满足人们的应用需要。海洋磁力仪就是测量地球磁力场强度的一款精度很高的测量设备。磁力仪的两种基本类型分为质子旋进式与光泵式两种,sea spy磁力仪是质子旋进式的一个发展分支,它也属于质子旋进式。 1.1 质子旋进式磁力仪 标准质子旋进式磁力仪是将少量附有氢原子核的液体,比如说甲醇或者煤油之类的,装入其传感器中。在这些液体中,除了氢原子核能够显示较为微弱的磁矩,其的自旋磁矩并没有被抵消,液体中的其他分子的自旋、电子轨道以及原子核自选的所有相关磁矩都被成对地进行了彼此抵消。氢原子在外磁场强度为零值时的磁矩取向是任意无规则的。 当传感器中富含氢原子的液体周围被附加上了由线圈产生的强大的人造磁场,则这个然早磁场会引起液体中的大量质子向同一方向自旋,并且这些质子的排列方向都是定向地以人造磁场方向为自旋轴进行排列的。一旦这种人造磁场消失,就会发生质子旋进现象,具体表现为氢原子在地磁场力与其的原本持有的自旋惯性的相互作用下以同样的相位往磁场方向旋进。 在质子旋进的初期阶段,由于质子的相位相同,通过其磁性的宏

obsdecom-海底地震仪数据解编转换及波形显示软件使用说明

海底地震仪数据解编转换及波形显示软件V1.0使用说明 软件著作权登记号:2013SR019292 刘劲松中国科学院地质与地球物理研究所 1.功能简介 海底地震仪数据解编转换及波形显示软件,用于海底地震仪记录的数据解编和格式转换,可将按时序排列的海底地震仪数字波形定点数据转换为按道序排列的浮点数据,并转换为SAC格式或SU格式。同时该软件可显示原始数据的波形。软件包含3个模块,obsdecom模块,sac2su模块,xdobs模块。obsdecom 模块用于将obs原始记录数据转为sac格式;sac2su将多个sac格式的数据转为多道单文件的su格式数据;xdobs用于在电脑终端上显示obs原始数据的波形。 2.用法详解 2.1 obsdeom模块 该模块将原始obs数据转换为SAC数据格式,根据文件名编码确定起始时间并存到SAC数据的道头字中。3通道和4通道的数据要分开处理,不可同时处理两种通道数目的数据。 模块通过命令行变量输入参数,无变量执行obsdecom会显示程序帮助信息,内容如下: **************************************************************** * usage: obsdecom [-c|-d] [dt=] [sfx=] [stn=] [od=] fn1 [fn2 ....] * -c check data only, no decom & convert(default) * -d decom & convert * dt= specify sample interval in ms. * sfx=x,y,z,h filename suffix of each component. * default are BHE,BHN,BHZ,BHH. * stn= specify station code. default STN * od=. specify output directory. * fn1,fn2,... data filenames in raw format. **************************************************************** 以下详细解释每个命令行变量的意义: -c 只显示有关信息,不做解编和转换。缺省选项 -d 进行解编和转换。 stn= 指定台站代码,缺省为STN。 sfx= 指定x、y、z、h各分量的输出文件名后缀,缺省为BHE,BHN,BHZ,BHH dt= 指定采样间隔,单位为毫秒,缺省时3通道数据dt=5,4通道数据dt=8 od=. 指定输出数据的存放目录,缺省为当前目录

海洋地震仪GOBS简介及技术参数

海洋地震仪GOBS简介 Group Ocean Bottom Seismometer 主要用途 组合式海底地震仪GOBS(Group Ocean Bottom Seismometer)是一种小型化的地震数据采集站,主要利用人工震源探查海底沉积层和深部地质构造。由于各个节点能够独立进行采集作业,可适应海底起伏剧烈的复杂地形,针对海洋油气资源和滨海区地质调查,实现高密度的节点式布放和高分辨率的三维地震勘探。 Application: GOBS(Group Ocean Bottom Seismometer)is a miniaturization seismic data acquisition station, mainly use the artificial seismic source to investigate the Seabed sediments and deep geological structures. Since each node can acquire the data independently, adapting to the complex seabed ups and downs, investigating for ocean oil & gas resources and coastal area geological survey, achieving high density node layout and high resolution 3D seismic are available. 主要特点 1、各采集节点可独立采集4分量的地震信号,适应多种海底地形; 2、各采集节点由软性线缆进行连接,便于施工布设; 3、耐压水深最大1500m,可以勘探需要定制,如100m 500m 700m 1000m等; 4、留海工作时长大于30天; 5、工作频带范围达到10s-300HZ; 6、可实现多台采集节点同时数据传输和快速充电; Main features: 1.Each acquisition node can independently acquire 4 channels seismic signal, adapt to a variety of submarine terrain; 2.The acquisition node is connected by the soft cable, convenient for the layout 3.The max. operating depth is 1500m, and it can be customized such as 100m 500m 700m 1000m; 4.Continuously working for more than 30 days in the sea; 5.Working frequency range is 10s-300HZ; 6.Multiple acquisition nodes data transmission and fast charging at the same time are available. 技术参数: 各采集节点由软性线缆进行连接,高密度布放,适用于二维、三维复杂海底地震勘探; 仪器尺寸:φ300mm×150mm; 耐压水深:1500 m(可定制,如G100、G700、G1000、G2000等); 通道数:四通道(3分量速度检波器、1通道水听器); 连续工作时长:30天; 检波器频带:1 ~ 300Hz;

海洋遥感技术实习报告

实习报告 课程名称:遥感技术原理及应用 实习名称:高级高光谱遥感应用 院(系): 专业班级: 姓名: 学号: 指导教师: 2013年1月6日

一、实习时间 2012年12月31日至2013年1月06 日 二、实习地点 天津科技大学9-513海洋信息技术实验室 三、实习目的: 理论与实验课的综合运用,提高课堂与实践相结合的分析能力 1、理解高光谱概念、地物光谱仪、光谱数据库、高光谱传感器; 2、掌握ENVI软件的基本功能; 3、熟悉ENVI遥感影像处理的一般方法; 4、进一步掌握高级高光谱分析及制图方法; 5、理解MNF理论及算法,线性混合波谱理论; 6、总结获取高光谱端元的方法。 四、实习主要仪器设备,软件及数据 1、硬件准备:PC机; 2、操作系统:Linux系统或Windows 2k以上系统; 3、软件工具:ENVI 4、数据:美国California州A VIRIS影像数据,及USGS植被及矿物的光谱库数据 路径:CD1/m94avsub;CD1/spec_lib;CD2/C95avsub;CD2/ spec_lib。 5、文献阅读、网上电子图书馆。 五、AVIRIS及测谱学(Imaging Spectroscopy)介绍 1、介绍测谱学; 测谱学(Imaging Spectrometry):成像光谱仪(Imaging Spectrometers)或高光谱传感器(Hyperspectral Sensors)都是遥感仪器,其将影像传感器的空间表述同光谱仪的分析能力结合在了一起。它们有多达几百个的狭窄波谱通道,波谱分辨率通常小于10nm。成像光谱仪将为影像中每一个像元提供完整的波谱曲线。将这些同宽波段(broad-band)多光谱扫描仪,如TM 进行比较:TM 只有6 个波段,其波谱分辨率大于100nm。使用成像光谱仪产生的高光谱分辨率影像,其最终结果可以帮助我们鉴别物质,而使用宽波段传感器只能区

海洋遥感的应用与展望

海洋遥感的应用与展望 摘要:海洋遥感利用电磁波与大气和海洋的相互作用原理观测和研究海洋,以海洋及海岸带作为监测、研究对象,具有快速、多波段、周期性、大面积覆盖等观测能力的空间遥感技术。回顾了海洋遥感发展的4个阶段,介绍了海洋遥感在海洋资源环境调查、动态监测以及海洋污染等方面的应用。最后,提出了海岸带遥感动态监测技术的精确化和定量化研究、海洋遥感地理信息系统建设以及海洋小卫星遥感的应用是未来海洋遥感研究和应用的重点。 海洋覆盖地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间,“海洋是全球生命支持系统的一个基本组成部分,是一种有助于实现可持续发展的宝贵财富”(联合国《21世纪议程》,1992),开发利用海洋对人类生存与发展的意义日显重要。多年来国内外投入了大量的人力、物力和财力,利用先进的科学调查技术以求全面而深入地认识和了解海洋,指导人们科学合理地开发海洋、改善环境质量。传统的海岸调查在资料获取、信息处理等方面存在较大局限,主要表现在海岸环境的进入性与通达性较差;近海和海岸环境复杂多变,难以进行多变量同步控制观测;海岸环境变化周期长、信息量大,难以取得理想的可控制数据,在实时处理上也有很大困难。因而,常规的海洋观测手段不可能全面、深刻地认识海洋现象,也不可能掌握全球大洋尺度的过程和变化规律。在海洋资源开发、全球性环境变化监测、海洋权益的维护及沿海地区的综合开发和管理上,都需要有一种新的海洋观测技术替代或补充传统的常规海洋调查方法,而海洋遥感所具有的大范围实时同步、全天时、全天候多波段成像技术优势可以快速地探测海洋表面各物理参量的时空变化规律。海洋遥感(Oceanographic Remote Sensing)是指以海洋及海岸带作为监测、研究对象的遥感,包括物理海洋学遥感,如对海面温度、海浪谱、海风矢量、全球海平面变化等的遥感;生物海洋学和化学海洋学遥感,如对海洋水色、黄色物体、叶绿素浓度等的遥感;海冰监测,如监测海冰类型、分布和动态变化;海洋污染监测,如油膜污染等。海洋遥感是利用电磁波与大气和海洋的相互作用原理观测和研究海洋的,其内容涉及到物理学、海洋学和信息科学等多种学科,并与空间技术、光电子技术、微波技术、计算机技术、通讯技术密切相关,是20世纪后期海洋科学取得重大进展的关键学科之一,形成了从海洋波谱分析到海洋现象自动识别等一套完整的理论与方法。海洋遥感与常规的海洋调查手段相比具有许多独特的优点:首先,它不受地表、海面、天气和人为条件的限制,可以探测地理位置偏远、环境条件恶劣等不能直接进入的海区;其次,它的宏观特性使它能进行大范围海洋资源普查、海洋制图以及海冰、海洋污染监测;第三,能周期性地监测大洋环流、海面温度场的变化、鱼群的迁移、污染物的运移等;第四,多波段、高光谱海洋遥感可以提供海量海洋遥感信息,开拓人们的视野;第五,能达到同步观测风、流、污染、海气相互作用,并获取能量收支信息。 1 发展回顾 海洋遥感的发展过程,大致经历了4个阶段: 第1阶段(1957~1970年)是起步阶段。 自从1957年前苏联发射了第一颗人造地球卫星以后,人类就步入了太空时代,空间海洋观测是人类空间计划中最早的项目之一。1960年4月1日,美国宇航局(NASA)发射了第一颗气象卫星TIROS-Ⅰ(泰罗斯),其热红外图像能够显示无云海区丰富的海面温度信息,卫星数据由此成为海洋学研究的新的信息源。随后发射的TIROS-Ⅱ卫星,开始涉及海温观测。1961年美国执行水星计划,宇航员有机会在高空亲眼观察海洋。其后,Gemini与Apollo宇宙飞船获得大量的彩色图像以及多光谱图像。尽管这些航天计划主要试验目的是空间技术,但它已展现了从空间观测和研究海洋的潜力。

海洋测量1

海洋:海洋是地球表面包围大陆和岛屿的广大连续的含盐水域,是由作为海洋主体的海水水体、溶解和悬浮其中的物质、生活于其中的海洋生物、邻近海面上空的大气、围绕海洋周缘的海岸和海底等部分组成的统一体。 海湾:是指洋或海延伸进入大陆部分的水域 海峡:是指海洋中相邻海区之间宽度较窄的水道 海岸:笼统的讲就是陆地与海洋相互作用、相互交界的地带。 海岸带:是海陆交互的地带,其外界应在15-20m等深线一带,这里既是波浪、潮流对海底作用有明显影响的范围,人们活动频繁的区域。 海岸线:是近似于多年平均大潮高潮的痕迹所形成的水陆分界线。 海洋概貌:海洋地形通常分为海岸带、大陆边缘和大洋底三个部分。海岸带是海陆交互作用的地带,其地貌是在波浪、潮汐和海流等作用下形成的,海岸带由海洋、海滩及水下岸坡组成。大陆边缘是大陆与海洋连接的边缘地带,大陆边缘是大陆与大洋之间的过渡带,通常由大陆架、大路坡、大陆隆及海沟等组成。大洋底是大陆边缘之间的大洋全部部分,由大洋中脊和大洋盆地构成。 海洋资源:包括海洋中储存的海洋能、矿物资源和生物资源。 海洋测绘:海洋测绘是海洋测量和海图绘制的总称,其任务是对海洋及其邻近陆地和江河湖泊进行测量和调查,获取海洋基础地理信息,编制各种海图和航海资料,为航海、国防建设、海洋开发和海洋研究服务。海洋测绘的主要内容有:海洋大地测量、水深测量、海洋工程测量、海底地形测量、障碍物探测、水文要素调查、海洋重力测量、海洋磁力测量、海洋专题测量和海区资料调查;以及各种海图、海图集、海洋资料的编制和出版,海洋地理信息的分析、处理及应用。现代海洋测绘的主要体现:(1)测绘内容更加广泛(2)采用的技术手段更加先进 海洋测量的特点:1)海洋测量中垂直坐标是和船体的平面位置同步测定的;2)在海洋中设置控制点相当困难,海洋测量中测量的作用距离远比陆地上测量的作用距离长得多;3)由于海上测站点处于动态中,所以其观测精度不如陆地上的观测精度高;4)由于作用距离的差别,陆上和海洋测量时所使用的传播信号也是不同的,海水中采用声波做信号源,受到海水温度、盐度和深度的影响;5)陆地上测定的是高程,即某点高出大地水准面多少,而在海上测定的是海底某点低于大地水准面多少;6)因为海面是不断运动的,因此就某点无法进行重复观测,需要在一条船上采用不同的仪器系统或者同一仪器系统的多台仪器进行测量,从而产生多余观测,进行平差后提高精度。 海洋测绘的任务:(1)科学性任务,包括三大部分内容,一是为研究地球形状提供更多的数据资料;二是为研究海底地质的构造运动提供必要的资料;三是为海洋环境研究工作提供测绘保障。(2)实用性任务,主要指对各种不同的海洋开发工程,提供他们所需的海洋测量服务工作,他们的服务对象主要有海洋自然资源的勘探和离岸工程、航运、救援与航道、近岸工程、渔业捕捞、海底电缆和管道工程、海上划界等。 海洋测绘主要内容:海洋重力测量;海洋磁力测量;海水面的测定;大地控制和海底控制测量;定位;测深;海底地形测量及地貌、底质探测;海图编制;海洋地理信息系统。 海洋大地测量:是研究海洋大地控制点网及确定地球形状大小,研究海面形状变化的科学。海洋大地测量控制网主要由海底控制点、海面控制点以及海岸或岛屿上的大地控制点相连而组成。

海洋地震仪项目可行性研究报告

海洋地震仪项目 可行性研究报告 xxx科技发展公司

海洋地震仪项目可行性研究报告目录 第一章基本情况 第二章项目建设背景 第三章项目市场分析 第四章产品规划分析 第五章项目选址科学性分析 第六章项目工程方案 第七章工艺方案说明 第八章环境保护分析 第九章项目安全规范管理 第十章建设及运营风险分析 第十一章项目节能可行性分析 第十二章实施进度计划 第十三章投资方案分析 第十四章项目经济效益 第十五章招标方案 第十六章项目结论

第一章基本情况 一、项目承办单位基本情况 (一)公司名称 xxx科技发展公司 (二)公司简介 公司满怀信心,发扬“正直、诚信、务实、创新”的企业精神和“追求卓越,回报社会” 的企业宗旨,以优良的产品、可靠的质量、一流的服务为客户提供更多更好的优质产品。 公司引进世界领先的技术,汇聚跨国高科技人才以确保公司产业的稳定发展和保持长期的竞争优势。 公司一直注重科研投入,具有较强的自主研发能力,经过多年的产品研发、技术积累和创新,逐步建立了一套高效的研发体系,掌握了一系列相关产品的核心技术。公司核心技术均为自主研发取得,支撑公司取得了多项专利和著作权。 (三)公司经济效益分析 上一年度,xxx实业发展公司实现营业收入5372.97万元,同比增长15.42%(717.75万元)。其中,主营业业务海洋地震仪生产及销售收入为4598.85万元,占营业总收入的85.59%。

根据初步统计测算,公司实现利润总额1220.01万元,较去年同期相比增长276.63万元,增长率29.32%;实现净利润915.01万元,较去年同期相比增长157.62万元,增长率20.81%。 上年度主要经济指标 二、项目概况

干涉合成孔径雷达在海洋遥感中的应用

干涉合成孔径雷达在海洋遥感中的应用 1.干涉合成孔径雷达的原理 1.1 雷达的原理 雷达遥感(微波遥感)可分为主动和被动两种方式。被动方式与可见光和红外遥感类似,是由微波扫描辐射计接收地表目标的微波辐射。目前多数星载雷达采用主动方式,即由遥感平台发射电磁波,然后接收辐射和散射回波信号,主要探测地物的后向散射系数和介电常数。它发射的电磁波波长一般较长,在1mm至1m之间。合成孔径雷达(SAR)概念的提出是相对真实孔径雷达天线而提出的。对于真实孔径雷达,当雷达随载体(飞机或卫星)飞行时,向地表发射雷达波束,然后接受地面反射信号,这样便得到了地表雷达图像。 我们知道卫星雷达天线越长,对地物的观测分辨率就越高。由于受雷达天线长度的限制,真实孔径雷达的地表分辨率往往很低,难以满足应用要求。而合成孔径雷达正是解决了利用有限的雷达天线长度来获取高分辨率雷达图像的问题。 合成孔径雷达(SAR,Synthetic Aperture Radar)技术是干涉合成孔径雷达(INSAR,Interferometric Synthetic Aperture Radar ,简称:干涉雷达)技术和差分干涉合成孔径雷达(D-INSAR,Differential Interferometric Synthetic Aperture Radar ,简称:差分干涉雷达)技术的基础,它涉及到侧视雷达系统、雷达波信号处理技术以及雷达图像的生成等诸方面。而干涉雷达技术和差分干涉雷达技术则是基于合成孔径雷达技术的图像处理方法和模型,是合成孔径雷达技术的应用延伸和扩展。 合成孔径雷达干涉测量技术(INSAR,Interferometric Synthetic Aperture Radar;简称:干涉雷达测量)是以同一地区的两张SAR图像为基本处理数据,通过求取两幅SAR图像的相位差,获取干涉图像,然后经相位解缠,从干涉条纹中获取地形高程数据的空间对地观测新技术。 差分干涉雷达测量技术(D-INSAR)是指利用同一地区的两幅干涉图像,其

相关主题