搜档网
当前位置:搜档网 › 粤卡通数据挖掘案例

粤卡通数据挖掘案例

粤卡通数据挖掘案例
粤卡通数据挖掘案例

粤通卡客户数据的数据挖掘

1.由于目前对大中小客户的划分仅以卡的持有量来划分的方法缺乏科学性,请

你为公司制定出一个更好的客户划分标准,以反映各类客户的真实价值;

Excel表格“单位客户交易数据.xls”是粤通卡近期某三个月的单位用户的消费记录,你需要去分析这些数据的特征,然后寻找一种合理的大、中、小三类客户分类的划分标准。

(1)以“平均月实际消费金额”作为输入字段,对其进行两步聚类分析

(2)

分析

结果如下:

(3)把客户划分为1、2两种类型,以上分析结果结合“单位客户交易数据”,得出类型划分的区间:

(4)在“单位客户数据挖掘数据”中添加字段“客户类型”,并运用IF公式对待挖掘数据的字段“平均月消费金额”进行分析,得出各客户的类型。

2、在上述分类标准确定的情况下,进一步去发现三类客户的不同特征,由于表

格“单位客户交易数据.xls”是从现有的收费管理系统中取得的,所以有关客户

特征的一些数据并不完全,比如用户的注册资本、所在的行业等,这需要从用户

的工商登记资料中去查找,由于表格中用户数量很大,因此,从“单位客户交易

数据.xls”中抽取了一部分样本(约2000个),然后通过工商登记资料中一一查

找,补充了注册资本与所在行业的数据,形成表格“单位客户数据挖掘数据.xls”,

请你对这个表格选择合适的数据挖掘算法去发现三类客户的不同特征。建构C5.0

模型并进行结果分析

(1)数据源为“单位客户数据挖掘数据”,所包括的数据字段有如下:

(2)在模型里面选择C5.0模型,编辑模型的选项,模型及相关设置如下所示:

字段及类型设置

(3)运行结果:

(4)客户特征:

根据我们上题的分类标准,在数据挖掘表中没有小客户,全部客户分为两种:大客户与中客户。

通过数据发现在中客户中,民营企业占比最大,达34%;在中客户中,也为民营企业占比最大,达46%。

从上面的数据中可以得出,大客户的平均月消费次数为2529次,中客户为281;

大客户的注册资本平均为15049,中客户平均为13297,该项指标相差不大;大客户的持卡数量平均为29,中客户平均为8。

从上表中,可以看出,大客户中,交通运输的占比最大;中客户中,制造业的占比最大。

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.sodocs.net/doc/1511406496.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.sodocs.net/doc/1511406496.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

大学数据挖掘期末考试题

第 - 1 - 页 共 4 页 数据挖掘试卷 课程代码: C0204413 课程: 数据挖掘A 卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。( ) 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。( ) 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。( ) 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward 方法与组平均非常相似。( ) 5. DBSCAN 是相对抗噪声的,并且能够处理任意形状和大小的簇。( ) 6. 属性的性质不必与用来度量他的值的性质相同。( ) 7. 全链对噪声点和离群点很敏感。( ) 8. 对于非对称的属性,只有非零值才是重要的。( ) 9. K 均值可以很好的处理不同密度的数据。( ) 10. 单链技术擅长处理椭圆形状的簇。( ) 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( ) A.分类 B.聚类 C.关联分析 D.主成分分析 2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A.MIN(单链) B.MAX(全链) C.组平均 D.Ward 方法 3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。 A 分类 B 预测 C 关联规则分析 D 聚类 4.关于K 均值和DBSCAN 的比较,以下说法不正确的是( ) A.K 均值丢弃被它识别为噪声的对象,而DBSCAN 一般聚类所有对象。 B.K 均值使用簇的基于原型的概念,DBSCAN 使用基于密度的概念。 C.K 均值很难处理非球形的簇和不同大小的簇,DBSCAN 可以处理不同大小和不同形状的簇 D.K 均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN 会合并有重叠的簇 5.下列关于Ward ’s Method 说法错误的是:( )

数据挖掘课程报告

数据挖掘课程报告 学习“数据挖掘”这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门技术有了一定的了解,明确了一些以前经常容易混淆的概念,并对其应用以及研究热点有了进一步的认识。以下主要谈一下我的心得体会,以及我对数据挖掘这项课题的见解。 随着数据库技术和计算机网络的迅速发展以及数据库管理系统的广泛应用,

人们积累的数据越来越多,而数据挖掘(Data Mining)就是在这样的背景下诞生的。 简单来说,数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。从某种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。 首先有一点是我们必须要明确的,即我们为什么需要数据挖掘这门技术?这也是在开课前一直困扰我的问题。数据是知识的源泉,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据,但现在还没有一种成熟的技术帮助我们分析、理解这些数据。数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行研究,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 那么数据挖掘可以做些什么呢?数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。具体来说,它可以做这七件事情:分类,估计,预测,关联分析,聚类分析,描述和可视化,复杂数据类型挖掘。在本学期的学习过程中,我们对大部分内容进行了较为详细的研究,并且建立了一些基本的概念,对将来从事相关方向的研究奠定了基础。由于篇幅限制,就不对这些方法一一讲解了,这里只谈一下我在学习工程中的一些见解和心得。 在学习关联规则的时候,我们提到了一个关于“尿布与啤酒”的故事:在一

《数据挖掘》结课报告

《数据挖掘》结课报告 --基于k-最近邻分类方法的连衣裙属性数据集的研究报告 (2013--2014 学年第二学期) 学院: 专业: 班级: 学号: 姓名: 指导教师: 二〇一四年五月二十四日

一、研究目的与意义 (介绍所选数据反应的主题思想及其研究目的与意义) 1、目的 (1)熟悉weka软件环境; (2)掌握数据挖掘分类模型学习方法中的k-最近邻分类方法; (3)在weka中以“Dress Attribute DataSet”为例,掌握k-最近邻分类算法的相关方法; (4)取不同的K值,采用不同的预测方法,观察结果,达到是否推荐某款连衣裙的目的,为企业未来的规划发展做出依据。 2、意义 此数据集共有14个属性,500个实例,包含了连衣裙的各种属性和根据销售量的不同而出现的推荐情况,按照分类模型学习方法中的k-最近邻分类方法依据各属性推断应推广哪些种类的裙子,对发展市场的扩大及企业的发展战略具有重要意义。 二、技术支持 (介绍用来进行数据挖掘、数据分析的方法及原理) 1、原理:k-最近邻分类算法是一种基于实例的学习方法,不需要事先对训练数据建立分类模型,而是当需要分类未知样本时才使用具体的训练样本进行预测,通过在训练集中找出测试集的K个最近邻,来预测估计测试集的类标号; 2、方法:k-最近邻方法是消极学习方法的典型代表,其算法的关键技术是搜索模式空间,该方法首先找出最近邻即与测试样本相对

接近的所有训练样本,然后使用这些最近邻的类标号来确定测试样本的类标号。 三、数据处理及操作过程 (一)数据预处理方法 1、“remove”属性列:数据集中属性“Dress_ID”对此实验来说为无意义的属性,因此在“Attributes”选项中勾选属性“Dress_ID”并单击“remove”,将该属性列去除,并保存新的数据集; 2、离散化预处理:需要对数值型的属性进行离散化,该数据集中只有第3个属性“rating”和第13个属性“recommendation”为数值型,因此只对这两个属性离散化。 “recommendation”属性只有2个取值:0,1,因此用文本编辑器“Ultra Edit”或者写字板打开数据集并直接修改“Dress Attribute Data Set.arff”文件,把“@attribute recommendation numeric”改为“@attribute recommendation {0,1,}”,并保存;在“Explorer”中重新打开“Dress Attribute Data Set.arff”,选中“recommendation”属性后,右方的属性摘要中“Type”值变为“Nominal”。 在过滤器Filter中单击“choose”,出现树形图,单击“weka”--“Filters”--“unsupervised”--“attribute”--“discretize”,点击“Choose”右边的文本框进行参数设置,把“attribute Indices”右边改成“3”,计划将该属性分成3段,于是把“bins”改成“3”,其它参数不更改,点“OK”回到“Explorer”,单击“Apply”离散化后的数据如下所示:

数据挖掘概述

数据挖掘概述 阅读目录 ?何为数据挖掘? ?数据挖掘背后的哲学思想 ?数据挖掘的起源 ?数据挖掘的基本任务 ?数据挖掘的基本流程 ?数据挖掘的工程架构 ?小结 回到顶部何为数据挖掘? 数据挖掘就是指从数据中获取知识。 好吧,这样的定义方式比较抽象,但这也是业界认可度最高的一种解释了。对于如何开发一个大数据环境下完整的数据挖掘项目,业界至今仍没有统一的规范。说白了,大家都听说过大数据、数据挖掘等概念,然而真正能做而且做好的公司并不是很多。

笔者本人曾任职于A公司云计算事业群的数据引擎团队,有幸参与过几个比较大型的数据挖掘项目,因此对于如何实施大数据场景下的数据挖掘工程有一些小小的心得。但由于本系列博文主要是结合传统数据挖掘理论和笔者自身在A云的一些实践经历,因此部分观点会有较强主观性,也欢迎大家来跟我探讨。 回到顶部数据挖掘背后的哲学思想 在过去很多年,首要原则模型(first-principle models)是科学工程领域最为经典的模型。 比如你要想知道某辆车从启动到速度稳定行驶的距离,那么你会先统计从启动到稳定耗费的时间、稳定后的速度、加速度等参数;然后运用牛顿第二定律(或者其他物理学公式)建立模型;最后根据该车多次实验的结果列出方程组从而计算出模型的各个参数。通过该过程,你就相当于学习到了一个知识--- 某辆车从启动到速度稳定行驶的具体模型。此后往该模型输入车的启动参数便可自动计算出该车达到稳定速度前行驶的距离。 然而,在数据挖掘的思想中,知识的学习是不需要通过具体问题的专业知识建模。如果之前已经记录下了100辆型号性能相似的车从启动到速度稳定行驶的距离,那么我就能够对这100个数据求均值,从而得到结果。显然,这一过程是是直接面向数据的,或者说我们是直接从数据开发模型的。 这其实是模拟了人的原始学习过程 --- 比如你要预测一个人跑100米要多久时间,你肯定是根据之前了解的他(研究对象)这样体型的人跑100米用的多少时间做一个估计,而不会使用牛顿定律来算。 回到顶部数据挖掘的起源 由于数据挖掘理论涉及到的面很广,它实际上起源于多个学科。如建模部分主要起源于统计学和机器学习。统计学方法以模型为驱动,常常建立一个能够产生数据的模型;而机器学习则以算法为驱动,让计算机通过执行算法来发现知识。仔细想想,"学习"本身就有算法的意思在里面嘛。

数据挖掘报告(模板)

第一章:数据挖掘基本理论 数据挖掘的产生: 随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的知识”。 为有效解决这一问题,自二十世纪90年代开始,数据挖掘技术逐步发展起来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视为是数据管理与分析技术的自然进化产物。自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了更方便灵活的数据存取语言和界面;此外在线事务处理手段的出现也极大地推动了关系数据库技术的应用普及,尤其是在大数据量存储、检索和管理的实际应用领域。 自八十年代中期开始,关系数据库技术被普遍采用,新一轮研究与开发新型与强大的数据库系统悄然兴起,并提出了许多先进的数据模型:扩展关系模型、面向对象模型、演绎模型等;以及应用数据库系统:空间数据库、时序数据库、 多媒体数据库等;日前异构数据库系统和基于互联网的全球信息系统也已开始出现并在信息工业中开始扮演重要角色。

数据挖掘案例分析--啤酒与尿布讲课稿

前言 “啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长! 商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是我们小组乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。 购物篮分析的算法很多,比较常用的有A prior/ ?’ p r i ?/算法、FP-tree结构和相应的FP-growth算法等等,上次课我们组的邓斌同学已经详细的演示了购物篮分析的操作流程,因此在这里我不介绍具体的购物篮分析算法,而是在已经获得的结果的基础上剖析一下数据身后潜藏的商业信息。目前购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分,客户购买了这些软件产品后就等于有了购物篮分析的工具,比如我们正在使用的Clementine。 缘起 “啤酒与尿布”的故事可以说是营销界的经典段子,在打开Google搜索一下,你会发现很多人都在津津乐道于“啤酒与尿布”,可以说100个人就有100个版本的“啤酒与尿布”的故事。故事的时间跨度从上个世纪80年代到本世纪初,甚至连故事的主角和地点都会发生变化——从美国跨越到欧洲。认真地查了一下资料,我们发现沃尔玛的“啤酒与尿布”案例是正式刊登在1998年的《哈佛商业评论》上面的,这应该算是目前发现的最权威报道。 “啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。 在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。 当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal (个人翻译--艾格拉沃)提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提出了商品关联关系的计算方法——A prior算法。沃尔玛从上个世纪90年代尝试将A prior算法引入到POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。 “啤酒和尿布”的故事为什么产生于沃尔玛超市的卖场中

大数据挖掘商业案例

1.前言 随着中国加入WTO,国金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。金融业正在快速发生变化。合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。节约资金、更完善的服务诱使客户转投到竞争对手那里。即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢? 数据挖掘、模式(Patterns>等形式。用统计分析和数据挖掘解决商务问题。 金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。 客户细分―使客户收益最大化的同时最大程度降低风险 市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。 数据挖掘实现客户价值的最大化和风险最小化。SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易、呼叫中心以及相关分支机构的客户数据。采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。 客户流失―挽留有价值的客户 在银行业和保险业,客户流失也是一个很大的问题。例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。 为了留住最有价值的客户,您需要开展有效的保留活动。然而,首先您需要找出最有价值的客户,理解他们的行为。可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。 交叉销售 在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。 研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。 从客户的交易数据和客户的自然属性中寻找、选择最有可能捆绑在一起销售的产品和服务,发现有价值的产品和服务组合,从而有效地向客户提供额外的服务,提高活期收入并提升客户的收益率。

大学数据挖掘期末考试题

:号学 题目-一 - -二 二 三四五六七八九十总成绩复核得分 阅卷教师 :名姓班 级 业专 院 学院学学科息信与学数 题试试考末期期学季春年学一320数据挖掘试卷 课程代码:C0204413课程:数据挖掘A卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。() 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。() 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。() 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似。() 5. DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。() 6. 属性的性质不必与用来度量他的值的性质相同。() 7. 全链对噪声点和离群点很敏感。() 8. 对于非对称的属性,只有非零值才是重要的。() 9. K均值可以很好的处理不同密度的数据。() 10. 单链技术擅长处理椭圆形状的簇。() 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分 离?() A. 分类 B.聚类 C.关联分析 D.主成分分析 2. ()将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A. MIN(单链) B.MAX(全链) C.组平均 D.Ward方法 3. 数据挖掘的经典案例“啤酒与尿布试验”最 主要是应用了()数据挖掘方法。 A分类B预测C关联规则分析D聚类 4. 关于K均值和DBSCAN的比较,以下说法不正确的是() A. K均值丢弃被它识别为噪声的对象,而DBSCAN —般聚类所有对 象。 B. K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 C. K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 D. K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇 5. 下列关于 Ward 'Method说法错误的是:() A. 对噪声点和离群点敏感度比较小 B. 擅长处理球状的簇 C. 对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差 D. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似 6. 下列关于层次聚类存在的问题说法正确的是:() A. 具有全局优化目标函数 B. Group Average擅长处理球状的簇 C. 可以处理不同大小簇的能力 D. Max对噪声点和离群点很敏感 7. 下列关于凝聚层次聚类的说法中,说法错误的事: () A. 一旦两个簇合并,该操作就不能撤销 B. 算法的终止条件是仅剩下一个簇 2 C. 空间复杂度为O m D. 具有全局优化目标函数 8规则{牛奶,尿布}T{啤酒}的支持度和置信度分别为:()

数据挖掘期末实验报告

数据挖掘技术期末报告 理学院 姓名: 学号: 联系电话:

专业班级: 评分:优□|良□|中□|及格□|不及格□

一、实验目的 基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka 平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。二、实验环境 实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。

数据挖掘技术期末报告

. 数据挖掘技术期末报告 评分:优□|良□|中□|及格□|不及格□

一、实验目的 基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 二、实验环境 实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal

Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度; 3.Uniformity of Cell Size(numeric)均匀的细胞大小; 4. Uniformity of Cell Shape(numeric),均匀的细胞形状; 5.Marginal Adhesion(numeric),边际粘连; 6.Single Epithelial Cell Size(numeric),单一的上皮细胞大小; 7.Bare Nuclei(numeric),裸核; 8.Bland Chromatin(numeric),平淡的染色质; 9. Normal Nucleoli(numeric),正常的核仁; 10.Mitoses(numeric),有丝分裂; 11.Class(enum),分类。 3.2数据分析 由UCI公开数据库得到一组由逗号隔开的数据,复制粘贴至excel表中,选择数据——分列——下一步——逗号—

大数据应用案例

四大经典大数据应用案例解析 什么是数据挖掘(Data Mining)?简而言之,就是有组织有目的地收集数据,通过分析数据使之成为信息,从而在大量数据中寻找潜在规律以形成规则或知识的技术。在本文中,我们从数据挖掘的实例出发,并以数据挖掘中比较经典的分类算法入手,给读者介绍我们怎样利用数据挖掘的技术解决现实中出现的问题。 数据挖掘是如何解决问题的? 本节通过几个数据挖掘实际案例来诠释如何通过数据挖掘解决商业中遇到的问题。下面关于“啤酒和尿不湿”的故事是数据挖掘中最经典的案例。而Target 公司通过“怀孕预测指数”来预测女顾客是否怀孕的案例也是近来为数据挖掘学者最津津乐道的一个话题。

一、尿不湿和啤酒 很多人会问,究竟数据挖掘能够为企业做些什么?下面我们通过一个在数据挖掘中最经典的案例来解释这个问题——一个关于尿不湿与啤酒的故事。超级商业零售连锁巨无霸沃尔玛公司(Wal Mart)拥有世上最大的数据仓库系统之一。为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行了购物篮关联规则分析,从而知道顾客经常一起购买的商品有哪些。在沃尔玛庞大的数据仓库里集合了其所有门店的详细原始交易数据,在这些原始交易数据的基础上,沃尔玛利用数据挖掘工具对这些数据进行分析和挖掘。一个令人惊奇和意外的结果出现了:“跟尿不湿一起购买最多的商品竟是啤酒”!这是数据挖掘技术对历史数据进行分析的结果,反映的是数据的内在规律。那么这个结果符合现实情况吗?是否是一个有用的知识?是否有利用价值? 为了验证这一结果,沃尔玛派出市场调查人员和分析师对这一结果进行调查分析。经过大量实际调查和分析,他们揭示了一个隐藏在“尿不湿与啤酒”背后的美国消费者的一种行为模式: 在美国,到超市去买婴儿尿不湿是一些年轻的父亲下班后的日常工作,而他们中有30%~40%的人同时也会为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫不要忘了下班后为小孩买尿不湿,而丈夫们在买尿不湿后又随手带回了他们喜欢的啤酒。另一种情况是丈夫们在买啤酒时突然记起他们的责任,又去买了尿不湿。既然尿不湿与啤酒一起被购买的机会很多,那么沃尔玛就在他们所有的门店里将尿不湿与啤酒并排摆放在一起,结果是得到了尿不湿与啤酒的销售量双双增长。按常规思维,尿不湿与啤酒风马牛不相及,若不是

武大学长美国计算机硕士经典案例分享

武大学长美国常春藤名校计算机硕士录取经验分享 哥大CS系成立于1979年,项目在计算机领域覆盖很广,学生可以从八个研究方向中选择自己感兴趣的进行修习,包括计算生物学、计算机安全、计算机科学基础、机器学习、自然语言处理、网络系统、软件系统、视觉与图形等等。 哥伦比亚大学计算机硕士课程要求学生必须完成30个学分,至少2.7以上的GPA成绩并完成选修课程,需要完成至少6学分的6000-level的技术课程,最多3学分的非计算机/技术的课程。 一.武汉申友留学美国计算机硕士名校成功申请案例 学生姓名:Chen Z.H. 本科学校:武汉大学 本科专业:计算机 基本条件:GPA3.3+,IELTS7.5,GRE320+ 申请方向:美国计算机硕士 录取结果: 哥伦比亚大学(美国常春藤名校,2019年US NEWS 排名TOP3) 佛罗里达大学($4500奖学金) 武汉申友留学顾问老师点评Chen同学的申请: 记得特别清楚,去年9月28日下午,陈爸爸很焦急的打电话过来咨询孩子的留学申请,因为一开始是打算考国内的研究生,临时决定还是出国读研,留学考试都还没有开始准备,研究背景方面也有所欠缺,所以时间特别紧凑。国庆节过后立即签约加入了武汉申友美国服务,考试辅导老师Bella老师立即帮陈同学定制短期冲刺备考方案,武汉高级文书顾问Jessy老师也根据陈同学的现有背景出文书初稿,好在陈同学学习能力很强,在短短2个月的时间,一战考出GRE320+,IELTS7.5的好成绩,赶在圣诞节前提交了部分申请。由于陈同学的GPA不是很高,研究背景方面有些不足,陆续也收到过几所学校的拒信,但是我们都没有放弃,在3月份终于拿到了哥伦比亚大学和佛罗里达大学带奖学金的录取。 二.去美国留学计算机专业申请难度分析 计算机专业毕业生的一大优势是薪资水平高,本科毕业生平均起薪为58,419美元,研究生则增加到了70,625美元。极高的投资回报率,加上专业方向非常多,不同背景的学生都可以申请,所以计算机专业申请人数连年持续走高,申请竞争激烈,而申请的软硬件条件也水涨船高。

数据挖掘实验报告(参考)

时间序列的模型法和数据挖掘两种方法比较分析研究 实验目的:通过实验能对时间序列的模型法和数据挖掘两种方法的原理和优缺点有更清楚的认识和比较. 实验内容:选用1952-2006年的中国GDP,分别对之用自回归移动平均模型(ARIMA) 和时序模型的数据挖掘方法进行分析和预测,并对两种方法的趋势和预测结果进行比较并给出解 释. 实验数据:本文研究选用1952-2006年的中国GDP,其资料如下 日期国内生产总值(亿元)日期国内生产总值(亿元) 2006-12-312094071997-12-3174772 2005-12-311830851996-12-31 2004-12-311365151995-12-31 2003-12-311994-12-31 2002-12-311993-12-31 2001-12-311992-12-31 2000-12-31894041991-12-31 1999-12-31820541990-12-31 1998-12-31795531989-12-31 1988-12-311969-12-31 1987-12-311968-12-31 1986-12-311967-12-31 1985-12-311966-12-311868 1984-12-3171711965-12-31 1983-12-311964-12-311454 1982-12-311963-12-31 1981-12-311962-12-31 1980-12-311961-12-311220 1979-12-311960-12-311457 1978-12-311959-12-311439 1977-12-311958-12-311307 1976-12-311957-12-311068 1975-12-311956-12-311028 1974-12-311955-12-31910 1973-12-311954-12-31859 1972-12-311953-12-31824 1971-12-311952-12-31679 1970-12-31 表一 国内生产总值(GDP)是指一个国家或地区所有常住单位在一定时期内生产活动的最终成果。这个指标把国民经济全部活动的产出成果概括在一个极为简明的统计数字之中为评价和衡量国家经济状况、经济增长趋势及社会财富的经济表现提供了一个最为综合的尺度,可以说,它是影响经济生活乃至社会生活的最重要的经济指标。对其进行的分析预测具有重要的理论与现实意义。

数据挖掘商业案例

金融行业应用 1.前言 随着中国加入WTO,国内金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。金融业正在快速发生变化。合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。节约资金、更完善的服务诱使客户转投到竞争对手那里。即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢? 数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。用统计分析和数据挖掘解决商务问题。 金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。 客户细分―使客户收益最大化的同时最大程度降低风险 市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。 数据挖掘实现客户价值的最大化和风险最小化。SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易网站、呼叫中心以及相关分支机构的客户数据。采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。 客户流失―挽留有价值的客户 在银行业和保险业,客户流失也是一个很大的问题。例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。 为了留住最有价值的客户,您需要开展有效的保留活动。然而,首先您需要找出最有价值的客户,理解他们的行为。可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。 交叉销售 在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。 研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:02

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++ 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include <> #include<> #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1=0,j1,counter =0,c1[100]={0},flag1=1,j2,u=0,c2[100]={0},n[2 0],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;id[j+1])

相关主题