搜档网
当前位置:搜档网 › 电子衍射谱的形成原理与标定方法

电子衍射谱的形成原理与标定方法

电子衍射谱的形成原理与标定方法
电子衍射谱的形成原理与标定方法

《高分辨电子显微学》读书报告

题目:电子衍射谱的形成原理与标定方法

学院:

专业:

姓名:

学号:

简单电子衍射花样的形成与标定方法

现代科学技术的迅速发展,要求材料科学工作者能够及时提供具有良好力学性能的结构材料及具有各种物理化学性能的功能材料。而材料的性能往往取决于它的微观结构及成分分布。因此,为了研究新的材料或改善传统材料,必须以尽可能高的分辨能力观测和分析材料在制备、加工及使用条件下(包括相变过程中,外加应力及各种环境因素作用下等)微观结构和微区成分的变化,并进而揭示材料成分—工艺—微观结构—性能之间关系的规律,建立和发展材料科学的基本理论。

透射电子显微镜(TEM)正是这样一种能够达到原子尺度的分辨能力,同时提供物理分析和化学分析所需全部功能的仪器。特别是选区电子衍射技术的应用,使得微区形貌与微区晶体结构分析结合起来,再配以能谱或波谱进行微区成份分析,得到全面的信息。

一、TEM的成像原理

电子显微镜成像原理符合阿贝成像理论,如图1所示:平行于光轴的光通过如同一个衍射的物面后,受到衍射而形成向各个方向传播的平面波。如物镜的孔径足够大,以至可以接受由物面衍射的所有光,这些衍射光在后焦面上形成夫琅禾费衍射图样,焦平面上每一点又可以看成是相干的次波源,它们的光强度正比于各点振幅的平方,由这些次波源发出的光在像面上叠加而形成了物面的像。透镜的成像作用可以分为两个过程:第一个过程是平行电子束遭到物的散射作用而分裂成为各级衍射谱,即由物变换到衍射的过程;第二个过程是各级衍射谱经过干涉重新在像平面上会聚成诸像点,即由衍射重新变换到物(像是放大了的物)的过程。

透射电子显微镜不仅能观察图像,如图2(a)所示,而且可以作为一个高分辨的电子衍射仪使用,通过减弱中间镜电流来增大其物距,使其物平面与物镜的后焦面相重,这样就可以把物镜产生的衍射谱透到中间镜的像平面上,得到一次放大了的电子衍射谱,再经过投影镜的放大作用,最后在荧光屏上得到二次放大的电子衍射谱,如图2(b)所示。

图1 阿贝成像原理

图2 透射电镜的两种工作模式:

(a)成像模式,(b)衍射模式一次像

二次像

(a)成像模式(b)衍射模式

物镜

衍射谱

中间镜

投影镜

二、TEM的电子衍射原理

电镜中的电子衍射,其衍射几何与X射线完全相同,都遵循布拉格方程所规定的衍射条件和几何关系。衍射方向可以由厄瓦尔德球(反射球)作图求出,因此许多问题可用与X射线衍射相类似的方法处理,即

=(1)

2d s i nθλ

电子衍射与X射线衍射相比有以下优点:

1)电子衍射能在同一试样上将形貌观察与结构分析结合起来。

2)电子波长短,单晶的电子衍射花样婉如晶体的倒易点阵的一个二维截面在底片上放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和有关取向关系,使晶体结构的研究比X射线简单。

3)物质对电子散射主要是核散射,因此散射强,约为X射线一万倍,曝光时间短。

当然电子衍射也有其不足之处:

电子衍射强度有时几乎与透射束相当,以致两者产生交互作用,使电子衍射花样,特别是强度分析变得复杂,不能像X射线那样从测量衍射强度来广泛的测定结构。此外,散射强度高导致电子透射能力有限,要求试样薄,这就使试样制备工作较X射线复杂。

衍射花样与晶体的几何关系如下图所示,一个单晶试样C在电子束作用下,它的倒易阵点ABODEF与反射球相交,连接球心C与各交点就得到衍射束的方向。衍射束达到焦面或荧光屏形成了衍射斑点。在电子衍射条件下,其电子束的波长很短,一般在0.001~0.005 nm之间,所以相应反射球的半径相当大,局部甚至可以当做平面。同时透射电镜样品很薄,根据其形状效应它的倒易点阵的阵点是拉长的倒易杆。综上所述,电子衍射花样实际上是晶体的倒易点阵(杆)与Ewald球面相截部分在荧光屏上的投影,故单晶的电子衍射谱是一个二维倒易平面的放大(如图3所示),衍射斑点与倒易阵点的配置完全相似,因此掌握二维

C

g

R

图3 单晶电子衍射谱的形成图4 选区电子衍射原理

倒易点阵平面的性质及画法对于熟练分析电子衍射谱是有利的。

三、选区电子衍射

透射电子显微镜可以做多种电子衍射,如选区电子衍射、会聚束电子衍射以及微衍射,其中选区电子衍射是最基本的也是用得最多的一种电子衍射。整个电子衍射花样虽然包括样品上整个照明区域的电子,但这种花样的用处不大,因为样品常在大范围上被弯曲,衍射花样的质量很差,而且很强的直射束会对荧光屏造成损害。在实际操作过程中往往需要对样品上指定区域进行电子衍射分析。因此在透射电镜中经常采用选区电子衍射。

选区电子衍射是通过在物镜平面上插入选区光阑实现的,如图4所示。其作用如同在样品所在平面内插入一虚光阑,使虚光阑以外的照明电子束被挡掉。当电镜在成像模式时,中间镜的物平面与物镜的像平面重合,插入选区光阑便可以选择感兴趣的区域。调节中间镜电流使其物平面与物镜背焦面重合,将电镜置于衍射模式,即可获得与所选区域对应的电子衍射谱。

选取小孔径选区光阑可以缩小样品上被选择分析区域的的尺寸。然而,由于物镜总存在一定的聚焦误差和难以克服的球面像差,选区衍射时总存在一定程度的选区误差。通常情况下,为尽可能的减小选区误差,应按照如下步骤进行选区衍射操作:

(1)使选区光阑以下的透镜系统聚焦,在选区成像模式下,插入选区光阑,通过中间镜聚焦,在荧光屏上获得清晰、明锐的光阑孔边缘的像,此时中间镜物平面与光阑所在平面重合。

(2)使物镜精确聚焦,通过物镜聚焦,使样品的形貌像清晰显示,此时三个平面—物镜像平面、选区光阑平面、中间镜物平面重合。

(3)获得衍射谱,移动样品让选区光阑孔套住所选区域,移去物镜光阑,将透射电镜置于衍射模式,通过中间镜聚焦,使中心斑最细小、圆整。使第二聚光镜适当欠焦以提供尽可能平行的入射电子束,从而使衍射斑点更为细小、明锐。

四、电子衍射谱的标定

4.1多晶电子衍射谱的标定

完全无序的多晶样品可看成是一个单晶围绕一点在三维空间做4 球面度的旋转。因此多晶体的(hkl)倒易点是以倒易原点为中心,(hkl)晶面间距的倒数为半径的倒易球面,此球与Ewald反射球相截于一个圆,所以多晶的衍射花样是一系列同心的圆。

A 晶体结构已知的多晶电子衍射花样的标定

(1)测出各衍射环的直径,算出它们的半径;

(2)考虑晶体的消光规律,算出能够参与衍射的最大晶面间距,将其与最小的衍射环半径相乘即可得出相机常数和相机长度;

(3)由衍射环半径和相机常数,可以算出各衍射环对应的晶面间距,将其标定。如果已知晶体的结构是面心、体心或者简单立方,则可以根据衍射环的分布规律直接写出各衍射环的指数。

当然也可以测R、算R2、分析R2比值的递增规律、定N、求(hkl)。

B 晶体结构未知,但可以确定其范围的多晶电子衍射花样的标定

(1)首先看可能的晶体结构中有没有面心、体心和简单立方,如有,看花样与之是否对应;

(2)测出各衍射环的直径,算出它们的半径;

(3)考虑各晶体的消光规律,算出能够参与衍射的最大晶面间距,将其与最小的衍射环半径相乘得出可能的相机常数和相机长度,用此相机常数来计算剩下的衍射环对应的晶面间距,看是不是与所选的相对应;每个可能的相都这样算一次,看哪一个最吻合;

4、按最吻合的相将其标定。

C 晶体结构完全未知的多晶电子衍射花样的标定 (1)首先想办法确定相机常数;

(2)测出各衍射环的直径,算出它们的半径; (3)算出各衍射环对应的晶面的面间距;

(4)根据衍射环的强度,确定三强线,查PDF 卡片,最终标定物相;这种方法由于电子衍射的精度有限,而且电子衍射的强度并不能与X 射线一样可信,因此这种方法很有可能找不到正确的结果。

图5为0.65Pb(Mg 1/3Nb 2/3)O 3-0.35PbTiO 3(PMNT(65/35))的多晶衍射花样。下面就以其为例进行晶面指数标定。

由于此图没有标尺,故只能采取半径比值的方法来进行标定。由相机常数(L λ)与晶面间距(d )的关系rd=L λ可得r =L λ/d (其中r 为衍射环的半径)。由于对同一个衍射花样L λ是一个定值,所以有

2:: :::: :

:1j 1

2

j

111r r r d d d ??????=

??????

由图我们可以测得衍射环半径从内到外分别为r 1=1.05 cm ,r 2=1.73 cm ,r 3=2.19 cm ,r 4=2.55 cm ,r 5=2.79 cm ,r 6=3.13 cm ,r 7=3.31 cm ,r 8=3.63 cm ,r 9=3.79 cm ,r 10=4.05 cm ,r 11=4.26 cm 。由PDF 卡片我们可以看到{100}族晶面间距最大为d=4.050埃,所以最里面衍射环为{100},定其为(100)。因为r 1: r 2 =1.05/1.73 =0.606,在PDF 卡片中可以看到(111)晶面的面间距d 为2.3383埃,故d 111/d 100=2.3383/4.050=0.58≈0.606,故r 2衍射环对应的晶面为(111)。在PDF 卡片中d 200=2.0250埃,d 200/ d 100=0.5,r 1/ r 3=1.05/2.19=0.48≈0.5,故r 3衍射环对应的晶面应该为{200},取其为(200),同理可以将剩下的衍射环的晶面指数标定出来,如图5所示。

2 单晶电子衍射花样标定

A 已知晶体结构的电子衍射分析

图5 PMNT(65/35)的多晶衍射花样

(1)查找已知晶体结构对应的粉末衍射卡;

(2)在电子衍射图上选取不在一条直线上的最短及次最短的倒易矢长度 r 1, r 2,计算出对应正空间的d 1, d 2值;

(3)对比粉末衍射卡,确定d 1, d 2可能对应的晶面(h 1 k 1 l 1)和(h 2 k 2 l 2); (4)计算(h 1 k 1 l 1)和(h 2 k 2 l 2)的夹角φ,与实验值φ对比, 验证。 B 晶体结构未知情况下的电子衍射分析 (1)EDX 确定物质的元素组成(配比);

(2)利用双倾样品台拍摄系列电子衍射图;

(3)结合实验条件, 查阅相关文献, 确定该物质可能的组成及晶体结构, 查找相应的粉末衍射卡;

(4)对每种可能的结构, 按照前面已知晶体结构电子衍射分析方法进行试标定;

(5)根据衍射图之间的自洽关系确定为何种结构. 图6为PMNT(65/35)单晶相关联的三菊池极衍射花样图。下面就以其为例进行指数标定。由于此图仍没有标尺,故需要根据三个菊池极的约束关系来进行指数标定。取图b 中离原点O 最近的三个衍射斑点分别为A 、B 、C ,可以测得OA=1.95 cm ,OB=2.83 cm ,OC=1.96 cm 且 OA 和OB 的夹角为44.72?,OA 与OC 的夹角约为90?,则有::1:1:22

2

2

A B C r r r =,由于PMNT(65/35)近似属于立

方晶系,故

::::=:::2:4

2

2

2

A B C 123r r r =N N N 1122或。

如N 1 =N 2=1则A 、B 点为{100}族,设A 点指数为(100),B 点为(010)则C 点为(110)。因为图a 和b 共(100)晶面,故图a 中A 点也为(100)。测

000211--

(c)

*

*A(110)

O(000)

B(211)[113]

--

000C(110)110110-

000-

*

020

A(110)B(200)图6 PMNT(65/35)单晶相关联的三菊池极衍射花样图

O

得OA 与OB 的夹角为70.57?,OA=1.89 cm ,OB=3.23 cm 则::22A B 12r r N N 13==:,所以B 点为{111}族晶面,取B 点为(111),则A 点与B

点间的夹角:

AB AB cos 54.73

3

φφ=

=

=

?=

。计算

出的夹角与实际测到的70.57?不符,故以上A 点与B 点指数的假设不合适。

故在图b 中应为N 1 =N 2=2,则取A 点指数为(110)则B 点指数为(111),所以C 点指数为(200

AB AB cos 45

2

φφ=

=

=

?=

计算值

与测得值相符。则图a 中A 点指数也为(110),则B 点指数为{211},取B 点为(211

)则

AB AB h h k k l l 121101cos 69.34φφ++?+?+?=

=

=?=

(-)(-)计算值与测得值相符,即B 点指数为(110)是合适的。同理我们可以标定出图

c 中各点指数及带轴,如图所示。

单晶电子衍射谱标定入门朱玉亮

钢铁研究总院特殊钢研究所不锈钢研究室 单晶电子衍射谱 标定入门编写:朱玉亮

前言 作为材料分析的重要手段,透射电镜电子显微分析具有能够将材料的晶体结构分析与其微观形貌观察相结合的优点,因而在材料的研究中得到了广泛的应用。但也正是因为涉及到材料结构问题,使得电子衍射分析不同于常规的扫描电镜等材料微观形貌分析手段,研究者必须具备一定的理论基础知识。 电子衍射分析涉及到的基础理论涵盖晶体学、衍射学等内容,其中包括倒易点阵、结构因子等诸多概念。对于初次接触电子衍射的研究者而言,这些理论往往难以在短时间内掌握。但运用电子衍射的目的主要是为了确定某些物相,而确定物相的过程主要是对单晶电子衍射谱进行标定,相对而言这是较为容易掌握的。并且掌握这一技能也有助于进一步理解电子衍射的基本理论。 电子衍射标定物相的依据在于,对于某种物相,其特定指数晶面具有特定的晶面间距;而不同的物相其同一晶面指数的晶面间距是不同的。在标定单晶电子衍射谱之前,需要明确两点:1、衍射谱中每一个衍射斑代表晶体中的一个衍射晶面,衍射谱的中央最亮斑点为透射斑,其余斑点为衍射斑;2、衍射谱中由透射斑指向任一衍射斑构成一个向量,该向量的方向与其所对应的一组平行晶面的方向相同,其长度与该晶面组中相邻晶面的间距成反比。 本文适于作为初学电子衍射标定的基础参考资料。对于电子衍射具体理论的学习,有大量可供参考的文献专著,本文在最后也列出了部分可供参考的相关文献及著作。由于编者知识水平有限,对于文中出现的错误,敬请谅解。

图2 扫描仪扫描出来的透射照片 a 原始扫描照片;b 反相处理后 图1 电子衍射花样形成原理 1. 电子衍射基本公式 电子衍射花样形成原理图如1所示,图中OO*为电子入射 方向,O 点为透射试样所在位置。球O 是半径为1/λ的反射球 (也叫爱瓦尔德球,Ewald Sphere )。O*G*为满足布拉格方程 的衍射面所对应的倒易矢量。O’为照相底片中的透射斑,G’ 为OG*衍射线投影在底片上的衍射斑。由于在电子衍射中的衍 射角2θ(∠O*OG*)非常小,所以可以近似认为O*G*∥O ’G ’。 从而根据三角形相似得到电子衍射的基本公式如下: Rd=λL R :底片中衍射斑点G ’到透射斑点O ’的距离; d :晶面间距;对于每种晶系,其(hkl)晶面间距与其点阵常 数都有固定关系;如对于立方晶系有 。 λ:电子波长;由电镜的加速电压决定,如当加速电压为 200V 时,电子波长为0.0251?。 L :相机长度;可理解为试样距离底片的距离。 K=λL :称为相机常数。在同一次实验中K 是固定的。 2. 透射照片 通常,在透射电镜实验中,我们拿到的是冲洗出来的 底片。这种底片经扫描仪扫描后,就得到了电子照片,如 图2所示。图中央最亮的斑点为透射斑。除去中央透射斑, 图中还有两种亮度不同的斑点。一般而言,在做析出相的 选区电子衍射照片下,当析出像较小时(小于300nm ),选 区衍射电子打出的斑点同时包括基体和析出相的两套斑点。其中较亮的斑点为基体斑点;而较暗的斑点为析出相的斑 点。 图2给出的是一种镍基合金中细小析出相的衍射斑点,于是我们可以推测其中较亮的斑点为基体的斑点,而较暗 的斑点为析出相的斑点。 b

X射线衍射分析法原理概述

第十四章 X射线衍射分析法 14.1概述 X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ是入射波长的整数倍时,即 2dsinθ=nλ (n为整数) 两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X 射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2…时各称0级、1级、2级……衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途。在此主要介绍其在物相分析等方面的应用。 14.1.1 物相定性分析 1.基本原理 组成物质的各种相都具有各自特定的晶体结构(点阵类型、晶胞形状与大小及各自的结构基元等),因而具有各自的X射线衍射花样特征(衍射线位置与强度)。对于多相物质,其衍射花样则由其各组成相的衍射花样简单叠加而成。由此可知,物质的X射线衍射花样特征就是分析物质相组成的“指纹脚印”。制备各种标准单相物质的衍射花样并使之规范化(1969年成立了国际性组织“粉末衍射标准联合会(JCPDS)”,由它负责编辑出版“粉末衍射卡片”,称PDF卡片),将待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相,这就是物相定性分析的基本原理与方法。 2.物相定性分析的基本步骤 (1) 制备待分析物质样品,用衍射仪获得样品衍射花样。 (2) 确定各衍射线条d值及相对强度I/I1值(Il为最强线强度)。 (3) 检索PDF卡片。 PDF卡片检索有三种方式: 1)检索纸纸卡片 物相均为未知时,使用数值索引。将各线条d值按强度递减顺序排列;按三强线条d1、d2、d3的d—I/I1数据查数值索引;查到吻合的条目后,核对八强线的d—I/I1值;当八强线基本符合时,则按卡片编号取出PDF卡片。若按d1、d2、d3顺序查找不到相应条目,则可将d1、d2、d3按不同顺序排列查找。查找索引时,d值可有一定误差范围:一般允许

电子衍射谱的标定

第二章 电子衍射谱的标定 2. 1透射电镜中的电子衍射 透射电镜中的电子衍射基本公式为: R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。 0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作 中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。 K 为有效机相常数,单位ο A mm ,如加速电压U =200仟伏,则ο A 2 1051.2-?=λ,若有 效相机长度mm L 800=,则ο A mm K 08.2010 51.28002 =??=- 透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算: H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A ; 0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长ο A 2 10 51.2-?=λ则有效相机常数K 为: H -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:2 2 2 2 10 70.3,1095.2,1071.2,1051.2----????埃。 由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。 ②用金Au 多晶环状花样校正相机常数 例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为 0.40 92298 4A 工作电压为200仟伏 电子波长为: ο A 2 1051.2-?=λ 由仪器确定的相机常数 ο A mm L K 04.10==λ

第二章电子衍射谱的标定

第二章 电子衍射谱的标定 2. 1透射电镜中的电子衍射 透射电镜中的电子衍射基本公式为: λL Rd = R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。 p i M M f L 0= 0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作 中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。 K L =λ K 为有效机相常数,单位ο A mm ,如加速电压U =200仟伏,则ο A 2 1051.2-?=λ,若有 效相机长度mm L 800=,则ο A mm K 08.2010 51.28002 =??=- 透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算: H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A 90.5.21; 0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长ο A 2 10 51.2-?=λ则有效相机常数K 为: ο A mm L K 08.201051.28002 =??==-λ H -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:2 2 2 2 10 70.3,1095.2,1071.2,1051.2----????埃。 由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。 ②用金Au 多晶环状花样校正相机常数 例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为

电子衍射谱的形成原理与标定方法

《高分辨电子显微学》读书报告 题目:电子衍射谱的形成原理与标定方法 学院: 专业: 姓名: 学号:

简单电子衍射花样的形成与标定方法 现代科学技术的迅速发展,要求材料科学工作者能够及时提供具有良好力学性能的结构材料及具有各种物理化学性能的功能材料。而材料的性能往往取决于它的微观结构及成分分布。因此,为了研究新的材料或改善传统材料,必须以尽可能高的分辨能力观测和分析材料在制备、加工及使用条件下(包括相变过程中,外加应力及各种环境因素作用下等)微观结构和微区成分的变化,并进而揭示材料成分—工艺—微观结构—性能之间关系的规律,建立和发展材料科学的基本理论。 透射电子显微镜(TEM)正是这样一种能够达到原子尺度的分辨能力,同时提供物理分析和化学分析所需全部功能的仪器。特别是选区电子衍射技术的应用,使得微区形貌与微区晶体结构分析结合起来,再配以能谱或波谱进行微区成份分析,得到全面的信息。 一、TEM的成像原理 电子显微镜成像原理符合阿贝成像理论,如图1所示:平行于光轴的光通过如同一个衍射的物面后,受到衍射而形成向各个方向传播的平面波。如物镜的孔径足够大,以至可以接受由物面衍射的所有光,这些衍射光在后焦面上形成夫琅禾费衍射图样,焦平面上每一点又可以看成是相干的次波源,它们的光强度正比于各点振幅的平方,由这些次波源发出的光在像面上叠加而形成了物面的像。透镜的成像作用可以分为两个过程:第一个过程是平行电子束遭到物的散射作用而分裂成为各级衍射谱,即由物变换到衍射的过程;第二个过程是各级衍射谱经过干涉重新在像平面上会聚成诸像点,即由衍射重新变换到物(像是放大了的物)的过程。 透射电子显微镜不仅能观察图像,如图2(a)所示,而且可以作为一个高分辨的电子衍射仪使用,通过减弱中间镜电流来增大其物距,使其物平面与物镜的后焦面相重,这样就可以把物镜产生的衍射谱透到中间镜的像平面上,得到一次放大了的电子衍射谱,再经过投影镜的放大作用,最后在荧光屏上得到二次放大的电子衍射谱,如图2(b)所示。 图1 阿贝成像原理 图2 透射电镜的两种工作模式: (a)成像模式,(b)衍射模式一次像 二次像 (a)成像模式(b)衍射模式 物 物镜 衍射谱 中间镜 投影镜

TEM 分析中电子衍射花样标定

TEM分析中电子衍射花样的标定原理 第一节 电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产

生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。 1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们

X射线衍射分析原理及其应用

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现

了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:方法,衍射,原理,应用 X射线衍射仪的原理 1.X射线衍射原理 当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。n不同,衍射方向的也不同。 由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。 在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。 晶体结构=点阵+结构基元,点阵又包括直线点阵,平面点阵和空间点阵。在x 射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。 光栅衍射 当光程差(BD+BF)=2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为: 2dsinθ=nλ 一、X射线衍射法

X射线衍射的基本原理

三.X 射线衍射的基本原理 3.1 Bragg 公式 晶体的空间点阵可划分为一族平行而等间距的平面点阵,两相邻点阵平面的间距为d hkl 。晶体的外形中每个晶面都和一族平面点阵平行。 当X 射线照射到晶体上时,每个平面点阵都对X 射线射产生散射。取晶体中任一相邻晶面P 1和P 2,如图3.1所示。两晶面的间距为d ,当入射X 射线照射到此晶面上时,入射角为θ,散射X 射线的散射角也同样是θ。这两个晶面产生的光程差是: θsin 2d OB AO =+=? 3.1 当光程差为波长λ 的整数倍时,散射的X 射线将相互加强,即衍射: λθn d hkl =sin 2 3.2 上式就是著名的Bragg 公式。也就是说,X 射线照射到晶体上,当满足Bragg 公式就产生衍射。式中:n 为任意正整数,称为衍射级数。入射X 射线的延长线与衍射X 射线的夹角为2θ(衍射角)。为此,在X 射线衍射的谱图上,横坐标都用2θ 表示。 图3.1 晶体对X 射线的衍射 由Bragg 公式表明:d hkl 与θ 成反比关系,晶面间距越大,衍射角越小。晶面间距的变化直接反映了晶胞的尺寸和形状。每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小等。晶体的衍射峰的数目、位置和强度,如同人的指纹一样,是每种物质的特征。尽管物质的种类有成千上万,但几乎没有两种衍射谱图完全相同的物质,由此可以对物质进行物相的定性分析。

3.2 物相分析 物相的定义是物质存在的状态,如同素异构体SiO2、TiO2分别有22种和5种晶体结构。除了单质元素构成的物质如铜、银等以外,X射线衍射分析的是物相(或化合物),而不是元素成分。 对于未知试样,为了了解和确定哪些物相时,需要定性的物相分析。 正如前述,晶体粉末衍射谱图,如人的指纹一样,有它本身晶体结构特征所决定。因而,国际上有一个组织——粉末衍射标准联合会(JCPDS)后改名为JCPDS-衍射数据国际中心专门负责收集、校订、编辑和发行粉末衍射卡片(PDF)的工作。自1941年以来,共发行衍射卡片近20万个。为了使大量的卡片方便进行人工物相鉴定,还出版了对这些卡片进行检索的索引。PDF卡片的标准形式如图3.2所示,对应此图编号的内容说明如表3.1所示。 图 图3.2 PDF卡片的标准形式 每一张卡片上不一定包括表3.1所述的所有内容,但有效数据都将一一列出。 物相分析的方法就是将未知试样与标准卡片上数据进行对比,由此来确定物相。先测试未知试样,然后按图3.3所示的步骤从PDF索引中查找。找出该物相的卡片号后,按卡片号查该物相的卡片,仔细核对后再判定该物相。

X射线衍射分析

X射线衍射分析 1 实验目的 1、了解X衍射的基本原理以及粉末X衍射测试的基本目的; 2、掌握晶体和非晶体、单晶和多晶的区别; 3、了解使用相关软件处理XRD测试结果的基本方法。 2 实验原理 1、晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。 ③晶体结构=空间点阵+结构单元。非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14种Bravais 点阵 表面延伸、链 松弛、链的重吸收 页脚内容1

结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱间直角最多,同时体积最小。1848年Bravais证明只有14种点阵。 晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。 2、X衍射的测试基本目的与原理 X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald 球上是产生衍射必要条件。 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: θn λ d= 2 sin 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。 X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分 页脚内容2

X射线衍射仪工作原理

一X射线衍射仪工作原理 X射线是利用衍射原理,精确测定物质的晶体结构,织构及应力。对物质进行物相分析、定性分析、定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X 射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. .L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: θn λ 2, sin d= 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 二,X射线衍射的应用 1、当X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格条件的反射面得到反射。测出θ后,利用布拉格公式即可确定点阵平面间距d、晶胞大小和晶胞类型; 2、利用X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础,测定衍射线的强度,就可进一步确定晶胞内原子的排布。 3、而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射线束的波长λ作为变量来保证晶体中一切晶面都满足布拉格条件,故选用连续X射线束。再把结构已知晶体(称为分析晶体)用来作测定,则在获得其衍射线方向θ后,便可计算X射线的波长λ,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分 4、X射线衍射在金属学中的应用: X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。 (1)物相分析是X射线衍射在金属中用得最多的方面,又分为定性分析和定量分析。定性分析是把对待测材料测得的点阵平面间距及衍射强度与标准物相的衍射数据进行比较,以确定材料中存在的物相;定量分析则根据衍射花样的强度,确定待测材料中各相的比例含量。(2)精密测定点阵参数常用于相图的固态溶解度曲线的绘制。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可获得单位晶胞原子数,从而可确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。 (3)取向分析包括测定单晶取向和多晶的结构(如择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。

单晶多晶的电子衍射标定注意事项

单晶多晶的电子衍射标定注意事项 衍射花样的标定注意点 接下来说说衍射花样的标定,这个其实我前面所说的资料里面已经有很充分的阐述,一般看了那些资料的相关章节后,都不会有太多问题,我这里讲一些新手经常有的问题: 1. 底片的测量:因为很多老电镜没有配备CCD相机,所以拿到的都是底片,那么这里就有一个如何测量,或者如何将底片转换为电子格式再测量的问题。 首先要看一下底片,底片上一般会给出电子衍射所用的相机长度,比如80 cm,60 cm等,一般只给出数字,这就表示,底片上的1cm就代表了80 cm。然后用以mm或0.5mm为最小单位的尺子测量衍射点或者衍射环到中心透射斑的实际距离R,然后根据dR=LA,其中L 是相机长度,A是电子波长,一般的电镜书上都有,比如200 kV电镜是0.00251 nm。代入计算即可得到相应的d值。建议测量用对称两点测量,这样比较准确一些。 如果有人觉得这样不习惯,喜欢用电子版的,那么可以用底扫扫描到电脑里。 只是将1cm定义为1cm/ LA,如果L取80 cm,A取0.0025 nm,那么这个1cm代表的就是5 nm-1,这样你量取R值之后,比如是1.2 cm,那么对应的d值=1/(1.2*5)=0.167 nm。如果是0.8 cm,那么d = 1/(0.8*5) = 0.25 nm。 单晶花样需要角度的测量,可以用量角器直接在底片上测量,也可以先扫描到电脑里,用DigitalMicrograph这个软件测量,可以将衍射点与中心斑连线,之后在control对话框的会出现一个theta值,两个衍射点之间的面夹角就等于它们与中心斑的两条连线之间的theta角之差。如果有人说找不到control对话框,那么到菜单里依次找到windows-floating windows -点击show all即可。 2. 数码照片的测量:这要分几种情况: a) 如果有dm3格式的源文件,而且标尺是倒易空间标尺(1/nm),那么很简单,就用DigitalMicrograph这个软件读取,用ROI tools里面的虚线或者实线工具,拉线测量衍射点到中心斑点的长度,这个时候control对话框里面的L就是对应值,取倒数就是对应点的d值。 b) 如果是dm3格式的源文件,但标尺还是正空间标尺,那么需要将这个标尺转换为倒易空间标尺,一般的电镜室都有这样的校正文件,转换一下即可。其余步骤同a) c) 如果没有dm3源文件,只是有tiff或者jpeg这种格式,但标尺已经是倒易空间标尺,那么也很简单,测量标尺长度S,记下数值(无需单位),而后测量目标距离R,如果倒易空间标尺是5 1/nm,那么d值就是1/(R/S*5) d) 没有dm3源文件,只是有tiff或者jpeg这种格式,标尺也同样没有校正,这个也有一个方法,就是找到和你在同一机器同样条件下得到的标样的衍射照片,把已知d值的衍射点量一下距离,和相应d值取一个比值,这样就可以作为临时标尺计算,不过这是应急的方法,最好还是用已经校正好的dm3格式文件来做。 e) 角度测量同底片的DM测量方法。 其他标定点 3. 注意标定时晶带轴确定的右手定则,这个可以看看《分析电子显微学导论》的3.6章节或者电子显微分析 4.5章节,里面有充分的论述。 4. 无论底片还是数码照片,即使经过严格的标样校正和标准的拍摄程序,d值的测量都不是特别准确,误差在3-5%都是很正常的,所以对应于标准PDF卡都会有一些不同,因此要完全定下一个晶带轴,还是需要晶面夹角(就是两个衍射点与中心斑点之间形成的夹角)来确认:定好两个衍射面的hkl值后,带入相应的晶系公式(不同晶系的面夹角公式在那份资料里,分析电子显微学导论的附录里面都有),就可以得到一个理论夹角值,比较理论值与测量值的差异,一般能优于0.5度的误差,就可以认定是准确的。

x射线衍射仪原理

标准实用 x射线衍射仪原理及应用 课程名称材料分析测试技术 系别金属材料工程系 专业金属材料工程 班级材料**** 姓名______ * *_ 学号********

化学工程与现代材料学院制

x射线衍射仪原理及应用 基本原理: x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子,在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。 基本特征: X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD 图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰 基本构成:

1,高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。 X射线管利用高速电子撞击金属靶面产生X射线的真空电子器件,又称X光管。分为充气管和真空管两类。1895 年W.K.伦琴在进行克鲁克斯管实验时发现了X射线。克鲁克斯管就是最早的充气X射线管,其功率小、寿命短、控制困难,现已很少应用。1913年W.D.库利吉发明了真空X射线管。管内真空度不低于10-4帕。阴极为直热式螺旋钨丝,阳极为铜块端面镶嵌的金属靶。阴极发射出的电子经数万至数十万伏高压加速后撞击靶面产生X射线。以后经过许多改进,至今仍在应用。现代出现一种在阳极靶面与阴极之间装有控制栅极的X 射线管,在控制栅上施加脉冲调制,以控制X射线的输出和调整定时重复曝光。X射线管用于医学诊断、治疗、零件的无损检测,物质结构分析、光谱分析、科学研究等方面。X射线对人体有害,使用时须采取防护措施。 简单的说,它包括四个部分: (1).产生电子的阴极,一般是螺旋形状的钨丝,加热后可以发射电子。 (2).阳极靶,它用来吸收阴极电子,通过这些高速电子的撞击,产生X射线(X射线的产生原理~你应该知道吧?赘述),撞击会产生大量热(主要的能

单晶多晶的电子衍射标定

单晶多晶的电子衍射标定 自从纳米这个名词的出现,研究者就不得不面对一个问题,怎么观察纳米级物质?电镜,这个从1931年开始有雏形的现代研究工具,经过近80年的发展,突飞猛进的展示出自己强大的潜力,不断的给现代研究带来惊喜,已经成为纳米研究不可或缺的工具之一。目前,美国能源部国家电子显微镜中心(NCEM)于2008年1月25日装配完成了TEAM05,分辨率可以达到0.5埃,这个电镜是经过美国劳伦斯伯克力国家实验室、阿贡国家实验室、橡树岭国家实验室,伊利诺大学的弗雷德里克?塞兹材料研究室通力合作,以FEI公司和德国海德堡CEOS为研发伙伴研制而成的。目前,“TEAM 0.5”显微镜的基础系统已投入使用,其中包括世界顶级的控制室显示器,可在高清宽屏TV的平板显示器上显示显微镜下的样本。在一系列庞大而严格的测试和调试后,“TEAM 0.5”将于2008年10月份提供给公众用户使用。 是的,0.5埃的分辨率让人可以更清晰的直接观察到原子,同时在80年里,从50 nm到0.05 nm分辨率的提升的速度也让人为电镜将来的发展趋势充满希冀。 但无论怎么发展,电镜都有它基本的原理,让我们暂时忘却现代电镜的强大分辨率,来关心一下电镜的一些基本原理,溯根求源,电镜的基本构造和原理是必须要了解的,这就需要去读一些资料。因为电镜涉及的知识范围太广,从量子力学到电子光学,从材料性能到微区细节,需要掌握的数学,物理,化学,材料方面的多种知识,然而仅仅想要了解电镜,就要去读一本甚至多本书,我想是很多人都不愿意也无法做到的,这对于一般的研究者来说是不可能的。说到电镜的图书或资料,我想各位对电镜有过关注并想要了解的朋友一定在网上下载过不少资料,从国内到国外,从建国到现今,电镜方面的经典书籍有很多,我记得有个帖子,是“透射电子显微学必读之秘籍”,里面有不少好书。网上去搜,一定能找到不少网站都转贴过。这个最初是在武汉大学电镜室主页上的,看内容,应该是武汉大学的王文卉老师手下写的。 所以很多网站就以交流为目的,当一个流动的知识库,随问随答,按需求知,针对性强,大大促进了学习的效率。但有些知识是无法从一个帖子里面讲的很透,这就需要有进一步了解的朋友去读一些入门的书籍,这些书针对的是用电镜来辅助表征的研究者,读起来比较浅显易懂,还是能比较有效的解决问题的。这里推荐几本,选取其中之一细读就能有不少收获: 1. 《电子显微分析》清华大学出版社,章晓中 2. 《材料评价的分析电子显微方法》(日)进藤大辅, 及川哲夫合著刘安生译 3. 《分析电子显微学导论》高等教育出版社,戎咏华编著 这些书在大的书城或者网上书店都能买到,如果财力有限,可以买其中的1或者3备查,一般的应用都可以在这些书里找到答案或解决的途径。对于不想买书,只是想知道如何标定电子衍射花样的朋友,那么有一个比较推荐的资料可以去下载: 透射电镜的电子衍射分析基础知识与衍射斑点的基本标定方法

电子衍射花样标定训练

电子衍射 第一节电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产

生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。 1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们

TEM电子衍射的基本知识

第一节电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙

钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。 1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。

相关主题