搜档网
当前位置:搜档网 › 基于MATLAB的汽车运动控制系统设计仿真

基于MATLAB的汽车运动控制系统设计仿真

基于MATLAB的汽车运动控制系统设计仿真
基于MATLAB的汽车运动控制系统设计仿真

课程设计

题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班

姜木北:2010133***

小组成员

指导教师吴

2013 年12 月13 日

汽车运动控制系统仿真设计

10级自动化2班姜鹏2010133234

目录

摘要 (3)

一、课设目的 (4)

二、控制对象分析 (4)

2.1、控制设计对象结构示意图 (4)

2.2、机构特征 (4)

三、课设设计要求 (4)

四、控制器设计过程和控制方案 (5)

4.1、系统建模 (5)

4.2、系统的开环阶跃响应 (5)

4.3、PID控制器的设计 (6)

4.3.1比例(P)控制器的设计 (7)

4.3.2比例积分(PI)控制器设计 (9)

4.3.3比例积分微分(PID)控制器设计 (10)

五、Simulink控制系统仿真设计及其PID参数整定 (11)

5.1利用Simulink对于传递函数的系统仿真 (11)

5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12)

5.1.2输入为600N时,KP=700、KI=100、KD=100 (12)

5.2 PID参数整定的设计过程 (13)

5.2.1未加校正装置的系统阶跃响应: (13)

5.2.2 PID校正装置设计 (14)

六、收获和体会 (14)

参考文献 (15)

摘要

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。

关键词:运动控制系统 PID仿真稳态误差最大超调量

汽车运动控制系统仿真设计

一、课设目的

针对具体的设计对象进行数学建模,然后运用经典控制理论知识 设计控制器,并应用Matlab 进行仿真分析。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。

二、控制对象分析

2.1、控制设计对象结构示意图 m u

v v

bv

图1. 汽车运动示意图

2.2、机构特征

汽车运动控制系统如图1所示。忽略车轮的转动惯量,且假定汽车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反。

根据牛顿运动定律,该系统的模型表示为:

???==+v

y u bv v m (1)

其中,u 为汽车驱动力(系统输入),m 为汽车质量,b 为摩擦阻力与运动速度之间的比例系数,v 为汽车速度(系统输出),v

为汽车加速度。 对系统的参数进行如下设定: 汽车质量m =1200kg ,比例系数b =60 N·s/m,汽车的驱动力u =600 N 。

三、课设设计要求

当汽车的驱动力为600N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标设定为:上升时间:<5s ;最大超调量:<10%;稳态误差:<2%。

1. 写出控制系统的数学模型。

2. 求系统的开环阶跃响应。

3. PID 控制器的设计

(1) 比例(P )控制器的设计

(2) 比例积分(PI )控制器的设计

(3) 比例积分微分(PID )控制器的设计

4. 利用Simulink 进行仿真设计。

四、控制器设计过程和控制方案

4.1、系统建模

为了得到控制系统传递函数,对式(1)进行拉普拉斯变换,假定系数的初始条件为零,则动态系统的拉普拉斯变换为既然系统输出是汽车的速度,用Y (s )替代v (s ),得到

(2)

由于系统输出是汽车的运动速度,用Y(S)替代V(s),得到:

)()()(s U s bY s msY =+ (3)

该控制系统汽车运动控制系统模型的传递函数为:

(4)

由此,建立了系统模型。

4.2、系统的开环阶跃响应

根据我们建立的数学模型,我们从系统的原始状态出发,根据阶跃响应曲线,利用串联校正的原理,以及参数变化对系统响应的影响,对静态和动态性能指标进行具体的分析,最终设计出满足我们需要的控制系统。

具体设计过程如下:

根据前面的分析,我们已经清楚了,系统在未加入任何校正环节时的传递函数,见表达式(4),下面我们绘制原始系统的阶跃响应曲线,相应的程序代码如

质量m 摩擦力bv 驱动力u

速度v

加速度

下:

clear ;

m=1200;

b=60;

num=[1] ;

den=[m,b];

disp('?-?μí3′?oˉ?a:')

printsys(num ,den);

t=0:0.01:120;

step(10*num ,den,t);

axis([0 120 0 0.2]);

title('?μí3ê?3?');

xlabel('Time-sec');

ylabe1('Response-vahie');

grid;

text (45,0.7,'?-?μí3')

得到的系统开环阶跃响应如图所示。

从图2中可以看出,系统的开环响应曲线未产生振荡,属于过阻尼性质。这类曲线一般响应速度都比较慢。果然,从图和程序中得知,系统的上升时间约100秒,稳态误差达到98%,远不能满足跟随设定值的要求。这是因为系统传递函数分母的常数项为50,也就是说直流分量的增益是1/50。因此时间趋于无穷远,角频率趋于零时,系统的稳态值就等于1/50=0.02。为了大幅度降低系统的稳态误差,同时减小上升时间,我们希望系统各方面的性能指标都能达到一个满意的程度,应进行比例积分微分的综合,即采用典型的PID校正。

4.3、PID控制器的设计

我们通过数学模型建立模拟PID控制系统如下图:

模拟PID 控制系统

模拟PID 控制器的微分方程为 :

Kp 为比例系数;TI 为积分时间常数;TD 为微分时间常数。

取拉氏变换 ,整理后得PID 控制器的传递函数为 :

其中: ——积分系数; ——微分系数。

在本题中可知系统的传递函数为:

4.3.1比例(P )控制器的设计

首先选择P 校正,即在系统中加入一个比例放大器,也就是在系统中加入一个比例放大器,为了大幅度降低系统的稳态误差,同时减小上升时间。P 校正后系统的闭环传递函数为

:

按文中数据我们取kp=600,原系统b=60,m=1200。利用MATLAB 进行闭环系s K s K K s T s T K s E s U s D D I P D I P ++=++==)11()()()(I

P

I T K K =D P D T K K =] ) ( ) ( 1 ) ( [ ) ( 0 dt t de T dt t e T t e K t u D t I P + + = ?

统的单位阶跃输入响应仿真。

仿真程序如下:

kp=600;

b=60;

m=1200;

t=[0:0.1:7];

y=[kp];

u=[m b+kp];

sys1=tf(y,u);

[y1,t]=step(sys1,t);

sys1;

plot(t,y1);

grid;

xlabel('Time (seconds)'), ylabel('Step Response')

具体分析:令

比较系数得T=16/17,一阶系统的阶跃响应是一个按指数规律单调上升的过程,其动态性能指标中不存在超调量、峰值时间、上升时间等项。按一阶系统的

过渡过程时间定义:,计算得,当增大系统的开环放大系数

会使T减小,减小。经过P校正后上升时间明显减小,但稳态误差约为4.9%,

还是不能满足要求,也不能再5秒内上升到稳定。

4.3.2比例积分(PI)控制器设计

利用PI校正改进系统,PI控制不仅给系统引进一个纯积分环节,而且还引进一个开环零点。纯积分环节提高了系统的型别,从而有效的改善系统的稳态性能,但稳定性会有所下降。所以,比例加积分环节可以在对系统影响不大的前提下,有效改善系统的稳态性能。PI校正后的闭环传递环数为:

利用MATLAB进行闭环系统的单位阶跃输入响应仿真程序如下:

b=60;

m=1200;

kp=300;ki=70;

t=[0:1:45];

y=[kp ki];

u=[m b+kp ki];

sys2=tf(y,u);

[y2,t2]=step(sys2,t);

plot(t2,y2);

grid;

xlabel('Time (seconds)'), ylabel('Step Response')

仿真结果图形如下图

仿真结果分析:

此系统为具有一个零点的二阶系统,零点对此系统的动态性能分析参考教材《自动控制原理》分析如下:

把上式写成为

系统的单位阶跃响应

=

=

不难发现,,根据拉氏变换的微分定理

由于,故

是典型二阶系统的单位脉冲响应(乘以系数)。

一般情况下,零点的影响是使响应迅速且具有较大的超调量,正如图所示。零点越靠近极点,对阶跃响应的影响越大。

(1)比例积分微分(PID)控制器的设计

4.3.3比例积分微分(PID)控制器设计

对原系统进行PID校正,加入PID控制环节后传递函数为

利用MATLAB进行闭环系统的单位阶跃输入仿真,经过多次比较取得kp=600,ki=100,kd=100.

程序代码为:

b=60;

m=1200;

kp=600;

ki=100;

kd=100;

t=[0:0.1:50];

y=[kd kp ki];

u=[m+kd b+kp ki];

sys4=tf(y,u);

[y4,t4]=step(sys4,t);

plot(t4,y4);

grid;

xlabel('Time (seconds)'), ylabel('Step Response')

text(25,9.5,'Kp=600 Ki=100 Kd=100')

PID仿真阶跃输入响应结果如下

从图中和程序运行结果中可以清楚的知道,系统的静态指标和动态指标,已经很好的满足了设计的要求。上升时间小于5s,超调量小于8%,约为6.67,具体值可由程序计算出。满足校正要求,虽然继续增大比例放大器系数,阶跃响应可以无限接近阶跃函数,但实际应用中由于实际器件限制K P不可能无限大。

五、Simulink控制系统仿真设计及其PID参数整定

利用MATLAB的Simulink仿真系统进行汽车控制系统的系统仿真,首先在Simulink仿真系统中画出系统仿真图,如图5-1所示。

图5-1二阶系统仿真图

5.1利用Simulink对于传递函数的系统仿真

建立的是路程s时间t的坐标图,传递函数为:

选择T=0.1s来进行验证。对PID控制器中的三个参数K

P 、K

I

、K

D也

利用试凑法进

行设定。

5.1.1 输入为600N时,KP=600、KI=100、KD=100得到如下图:

图5-1.1

从图6-1.1中可以看到仿真达到的最大值约为10. 25,则最大超调误差为2%远小于10%;由于100s远大于5s,所以我们可以取50s处为无穷远点,读图可知在50s处的值为10,所以其稳态误差为0.4%远小于2%;另外系统在5s时就达到了10m/s,满足题设要求。

5.1.2输入为600N时,KP=700、KI=100、KD=100得到如下图:

图5-1.2

从图6-1.2中可以看到仿真达到的最大值约为 5.14,则最大超调误差为0.07%远小于10%;在30s处的值为5,所以其稳态误差为0;另外系统在5s时就达到了5m/s,符合题设要求。

5.2 PID参数整定的设计过程

从系统的原始状态出发,根据阶跃响应曲线,利用串联校正的原理,以及参数变化对系统响应的影响,对静态和动态性能指标进行具体的分析,最终设计出满足我们需要的控制系统。具体设计过程如下:

5.2.1未加校正装置的系统阶跃响应:

系统在未加入任何校正环节时的传递函数表达式为G(s)=1/(1200s+60),相应的程序代码如下:

num=[1];

den=[1200 60];

printsys(num,den);

G=tf(num,den)

bode(G)

得到的系统阶跃响应如图6-2.1所示。从图中可以看出,系统的开环响应曲线未产生振荡,属于过阻尼性质。为了大幅度降低系统的稳态误差,同时减小上升时间,我们希望系统各方面的性能指标都能达到一个满意的程度,应进行比例积分微分的综合,即采用典型的PID校正。

图5-2.1未加入校正装置时系统的阶跃响应曲线

5.2.2 PID 校正装置设计

对于本例这种工程控制系统,采用PID 校正一般都能取得满意的控制结果。此时系统的闭环传递函数为:

)()(s U s Y =i

p d i p d K s K b s K m K K s K )()(22 Kp ,Ki 和Kd 的选择一般先根据经验确定一个大致的范围,然后通过MATLAB 绘制的图形逐步校正。程序代码为:

num0=[5 600 40];

den0=[1005 650 40];

G=tf(num0,den0)

[num,den]=cloop(G);

得到加入PID 校正后系统的闭环阶跃响应如图5-2.2所示。从图3和程序运行结果中可以清楚的知道,系统的静态指标和动态指标,上升时间小于5s ,超调量小于10%。

图5-2.2 PID 校正后系统的闭环阶跃响应曲线

六、收获和体会

从该设计我们可以看到,对于一般的控制系统来说,应用PID 控制是比较有效的,而且基本不用分析被控对象的机理,只根据Kp ,Ki 和Kd 的参数特性以及MATLAB 绘制的阶跃响应曲线进行设计即可。在MATLAB 环境下,我们可以根据仿真曲线来选择PID 参数。根据系统的性能指标和一些基本的整定参数的经验,选择不同的PID 参数进行仿真,最终确定满意的参数。这样做一方面比较直观,另

一方面计算量也比较小,并且便于调整。

通过这次试验,我懂得了更多的知识,虽然刚开始时好多都不懂。但是经过和同学的讨论,在各位老师的悉心培育下,对MATLAB的Simulink仿真有了更深的理解。参数的设定也是一个麻烦的过程,采样周期的选择既不能过大也不能过小,经过分析,最终选择T=0.1S,另外,为满足题目要求,对PID控制器中的

三个参数K

P 、K

I

、K

D

利用试凑法进行设定,这里只能根据系统以及三个参数的特

性,反复的试凑,直到满足要求。再试凑的过程中我发现饱和器saturation 对系统特性曲线也有很大影响,通过试凑,在一阶中,我选择了最大限制参数为12000,二阶中,输入500N时最大限制参数设为40000,输入10N时为75000。这次实验的目的在最终的努力下,终于做到了。虽然很困难,但是也是值得的。也让我们更懂得了团结的重要。同学一起互相帮助很重要。也多谢老师给我们足够的耐心。以后对于专业知识,我还是会更努力学习的。

参考文献

[1] 阮毅,陈伯时.电力拖动自动控制系统. 北京:机械工业出版社,2009

[2] 李国勇等.计算机仿真技术与CAD. 北京:电子工业出版社,2008

[3] 王正林等.MA TLAB/Simulink与控制系统仿真,电子工业出版社,2012

[4] 涂植英等.自动控制原理.重庆大学出版社,2005

[5] 苏金明,阮沈勇编著. MATLAB6.1使用指南[M]. 北京:电子工业出版社,2002,1.

[6] 赵文峰等编著. MA TLAB控制系统设计与仿真[M].西安:电子科技大学出版社,2002,3.

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴

2013 年12 月13 日 汽车运动控制系统仿真设计 10级自动化2班姜鹏 2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

计算机仿真课程设计报告

、 北京理工大学珠海学院 课程设计任务书 2010 ~2011 学年第 2学期 学生姓名:林泽佳专业班级:08自动化1班指导教师:钟秋海工作部门:信息学院一、课程设计题目 : 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容|

! " [2 有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 , 1、求被控对象传递函数G(s)的MATLAB描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳 定的要求。(8分)

6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。 (3分) ! 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。 (8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际 闭环系统稳定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。 & (8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) 三、进度安排 6月13至6月14:下达课程设计任务书;复习控制理论和计算机仿真知识,收集资料、熟悉仿真工具;确定设计方案和步骤。 6月14至6月16:编程练习,程序设计;仿真调试,图形仿真参数整定;总结整理设计、 仿真结果,撰写课程设计说明书。 6月16至6月17:完成程序仿真调试和图形仿真调试;完成课程设计说明书;课程设计答 辩总结。 [ 四、基本要求

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

运动控制系统双闭环直流调速系统仿真

运动控制系统双闭环直流调速系统仿真 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

本科生课程论文课程名称运动控制系统 学院机自学院 专业电气工程及其自动化学号 1212XXXX 学生姓名翟自协 指导教师杨影 分数

题目: 双闭环直流调速系统仿真 对例题设计的双闭环系统进行设计和仿真分析,仿真时间10s 。具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为: P P =60kW , P P =220V , P P =308 A , P P =1000 r/min , 电动势系数 P P = V ·min/r ,主回路总电阻 R =Ω,变换器的放大倍数 P P =35。电磁时间常数 P P =,机电时间常数 P P =,电流反馈滤波时间常数 P PP =,转速反馈滤波时间常数 P PP =。额定转速时的给定电压(P P ?)P =10V ,调节器ASR ,ACR 饱和输出电压P PP ?= 8V , P PP =。 系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量 ≤5% ,空载起动到额定转速时的转速超调量 ≤10%。试求: (1)确定电流反馈系数β(假设起动电流限制在 以内)和转速反馈系数α。 (2)试设计电流调节器ACR.和转速调节器ASR 。 (3)在matlab/simulink 仿真平台下搭建系统仿真模型。给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。 (4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。并与仿真结果进行对比分析。

课程设计之matlab仿真报告

西安邮电大学 专业课程设计报告书 院系名称:电子工程学院学生姓名:李群学号05113096 专业名称:光信息科学与技术班级:光信1103 实习时间:2014年4月8日至2014年4月 18日

一、课程设计题目: 用matlab 仿真光束的传输特性。 二、任务和要求 1、用matlab 仿真光束通过光学元件的变换。 ① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲 率半径,设为100mm ,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 ② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121==' n n (K9玻璃), 502-=r ,0.12=' n ,物点A 距第一面顶点的距离为100,由A 点计算三条沿光轴夹角分别为10、20、 30的光线的成像。试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。 ③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。用matlab 仿 真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。) 2、用MATLAB 仿真平行光束的衍射强度分布图样。(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。) 3、用MATLAB 仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布和平面的灰度图。) 4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab 对不同传输距离处的光强进行仿真。 三、理论推导部分 第一大题 (1)十条近轴光线透过透镜时,理想情况下光线汇聚透镜的焦点上,焦点到像方主平面的距离为途径的焦距F ,但由于透镜的折射率和厚度会影响光在传输过程中所走的路径(即光程差Δ)。在用MATLAB 仿真以前先计算平行光线的传输路径。,R 为透镜凸面的曲率半径,h 为入射光线的高度,θ1为入射光线与出射面法线的夹角,θ2为出射光线与法线的夹角,n 为透镜材料的折射率。设透镜的中心厚度为d ,则入射光线经过透镜的实际厚度为:L=(R-d) 光线的入射角为:sinq1=h/R 折射角度满足:sinq2=nsinq1 而实际的光束偏折角度为:θ2-θ1。 由此可以看出,当平行光线照射透镜时,在凸面之前光线平行于光轴,在凸面之后发生了偏折,于光轴交汇一点,这一点成为焦点f ,折线的斜率为(-tan(θ2-θ1))。 (2)根据题意可得,本题所讨论的是与光轴夹角不同的三条光线,经过透镜的两次反射后的成像问题。利用转面公式计算。

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

汽车运动控制方案

南京工程学院 课程设计说明书 题目汽车运动控制系统的 / 设计与仿真 课程名称MATLAB 的控制系统 院(系、部、中心) 专业) 班级 学生姓名 学号 设计时间 ? 设计地点基础实验楼B114 指导教师 \

2012年1月南京 目录 一、课设目的 (3) ^ 二、控制对象分析 (3) 、控制设计对象结构示意图 (3) 、机构特征 (3) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (4) 、系统建模 (4) 、PID控制器的设计 (4) 五、控制系统仿真结构图 (5) — 六、仿真结果及指标 (6) 对于二阶传递函数的系统仿真 (6) 输入为500N时,K P=700、K I=100、K D=100。 (6) 输入为50N时,K P=700、K I=100、K D=100 (7) PID校正的设计过程 (7) 未加校正装置的系统阶跃响应: (7) PID校正装置设计 (8)

七、收获和体会 (9) >

Matlab 与控制系统仿真设计 一、课设目的 针对具体的设计对象进行数学建模,然后运用经典控制理论知 识 设计控制器,并应用Matlab 进行仿真分析。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。 二、控制对象分析 、控制设计对象结构示意图 : 图1. 汽车运动示意图 、机构特征 汽车运动控制系统如图1所示。忽略车轮的转动惯量,且假定汽 车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反。 根据牛顿运动定律,该系统的模型表示为: ?? ?==+v y u bv v m (1) 其中,u 为汽车驱动力(系统输入),m 为汽车质量,b 为摩擦阻 力与运动速度之间的比例系数,v 为汽车速度(系统输出),v 为汽车加速度。 假定kg m 1000=,m s N b /50?=,N u 500=。

基于Simulink仿真双闭环系统综合课程设计报告书

课程设计 双闭环直流调速系统设计及仿真验证 学院年级:工程学院08级 组长:陈春明学号200830460102 08自动化1班成员一:陈木生学号 200830460103 08自动化1班 指导老师: 日期: 2012-2-28 华南农业大学工程学院

摘要 转速、电流双闭环调速系统是应用最广的直流调速系统,由于其静态性能良好,动态响应快,抗干扰能力强,因而在工程设计中被广泛地采用。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。 Matlab是一高性能的技术计算语言,具有强大的科学数据可视化能力,其中Simulink具有模块组态简单、性能分析直观的优点,方便了系统的动态模型分析。应用Simulink来研究双闭环调速系统,可以清楚地观察每个时刻的响应曲线,所以可以通过调整系统的参数来得出较为满意的波形,即良好的性能指标,这给分析双闭环调速系统的动态模型带来很大的方便。 本研究采用工程设计方法,并利用Matlab协助分析双闭环调速系统,依据自动控制系统快、准、稳的设计要求,重点分析系统的起动过程。 关键词:双闭环直流调速 Simulink 自动控制

目录 1、直流电机双闭环调速系统的结构分析....................... 1.1 双闭环调速系统的组成............................... 1.2 双闭环调速系统的结构.................................... 2 、建立直流电机双闭环调速系统的模型............................ 2.1 小型直流调速系统的指标及参数......................... 2.2 电流环设计............................................... 2.3 转速环设计................................................ 3、直流电动机双闭环调速系统的MATLAB仿真.................... 3.1 系统框图的搭建............................................. 3.2 PI控制器参数的设置...................................... 3.3 仿真结果.................................................... 4、结论与总结....................................................... 5、参考资料.......................................................

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

汽车运动控制系统仿真

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计内容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计内容 1.系统的模型表示

MATLAB仿真课程设计报告

北华大学 《MATLAB仿真》课程设计 姓名: 班级学号: 实习日期: 辅导教师:

前言 科学技术的发展使的各种系统的建模与仿真变得日益复杂起来。如何快速有效的构建系统并进行系统仿真,已经成为各领域学者急需解决的核心问题。特别是近几十年来随着计算机技术的迅猛发展,数字仿真技术在各个领域都得到了广泛的应用与发展。而MATLAB作为当前国际控制界最流行的面向工程和科学计算的高级语言,能够设计出功能强大、界面优美、稳定可靠的高质量程序,而且编程效率和计算效率极高。MATLAB环境下的Simulink是当前众多仿真软件中功能最强大、最优秀、最容易使用的一个系统建模、仿真和分析的动态仿真环境集成工具箱,并且在各个领域都得到了广泛的应用。 本次课程设计主要是对磁盘驱动读取系统校正部分的设计,运用自动控制理论中的分析方法,利用MATLAB对未校正的系统进行时域和频域的分析,分析各项指标是否符合设计目标,若有不符合的,根据自动控制理论中的校正方法,对系统进行校正,直到校正后系统满足设计目标为止。我组课程设计题目磁盘驱动读取系统的开环传递函数为是设计一个校正装置,使校正后系统的动态过程超调量δ%≤7%,调节时间ts≤1s。 电锅炉的温度控制系统由于存在非线性、滞后性以及时变性等特点,常规的PID控制器很难达到较好的控制效果。考虑到模糊控制能对复杂的非线性、时变系统进行很好的控制, 但无法消除静态误差的特点, 本设计将模糊控制和常规的PI D控制相结合, 提出一种模糊自适应PID控制器的新方法。并对电锅炉温度控制系统进行了抗扰动的仿真试验, 结果表明, 和常规的PI D控制器及模糊PI D复合控制器相比,模糊自适应PI D控制改善了系统的动态性能和鲁棒性, 达到了较好的控制效果。

Matlab汽车运动控制系统设计

1绪论 1.1选题背景与意义 汽车已经成为人们日常生活不可缺少的代步交通工具,在汽车发达国家,旅客运输的60%以上,货物运输的50%以上由汽车来完成,汽车工业水平和家庭平均拥有汽车数量已经成为衡量一个国家工业发达程度的标志。进行汽车运动性能研究时.一般从操纵性、稳定性和乘坐舒适性等待性着手。但近年来.随着交通系统的日趋复杂,考虑了道路环境在内的汽车运动性能开始受到关注。因此,汽车运动控制系统的研究也显得尤为重要,在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,确定期望的静态指针(稳态误差)和动态指针(超调量和上升时间)。然后对汽车运动控制系统进行设计分析。从而确定系统的最佳静态和动态指针。 2 论文基本原理分析 2.1.1汽车运动横向控制 (1)绝对位置的获得方法 汽车横向方向的控制使用GPS(全球定位系统)的绝对位置信息。GPS信息的精度与采样周期、时间滞后等有关。为提高GPS的数据精度和平滑数据.采用卡尔曼滤波对采样数据进行修正。GPS的采样周期为200ms相对应控制的周期采用50ms。另外考虑通信等的滞后、也需要进行补偿,采用航位推测法(dead reckoning)解决此问题。通过卡尔曼滤波和航位推测法推算出的值作为汽车的绝对位置使用来控制车速、横摆角速度等车辆的状态量。GPS 的数据通过卡尔曼滤波减少偏差、通过航位推测法进行误差和迟滞补偿.提高了位置数据推算的精度。 (2)前轮转角变化量的算出方法 这里对前轮目标转角变化量(?δ)的算出方法作简要说明,横方向控制采用预见控制,可以从现在汽车的状态预测经过时间t p秒后的汽车位置,由t p秒后的预测位置和目标路径

仿真课设报告

仿真课程设计报告 题目: 柔性生产线仿真案例 班级:物流 姓名: 学号: 指导教师: 2015年9月23日

目录 一、课程设计目的 (3) 二、课程设计内容 (3) 三、设计步骤 (3) 3.1案例分析 (3) 3.1.1案例说明 (3) 3.1.2建模步骤 (5) 3.1.3主要技术设计 (5) 3.2模型搭建 (6) 3.2.1基础空间总体布局 (6) 3.2.2Track设计 (6) 3.2.3加工设备的设计 (7) 3.2.4工件和AGV的属性设计 (9) 3.2.5表的设计 (10) 3.2.6工件生成器和消灭器的设计 (12) 3.2.7Method和Variable的设计 (12) 3.3仿真实现 (13) 3.3.1工件加工流程及时间设计 (13) 3.3.2任务队列设计 (13) 3.3.3小车的运行规则设计 (14) 3.3.4其它控制方法 (17) 四、仿真分析 (20) 4.1设备利用率 (20) 4.2轨道利用率 (21) 4.3加工总时间 (22) 五、模型优化 (22) 5.1订单投产优化 (22) 5.2小车优化 (23) 5.3其它优化 (26) 六、课设总结 (29)

一、课程设计目的 本课程设计是与物流工程专业教学配套的实践环节之一,结合《现代生产管理》、《设施布置与规划》、《离散系统建模与仿真》等课程的具体教学知识点开展。在完成以上课堂教学的基础上,进行一次全面的实操性锻炼。设计采用企业的实际案例数据,要求完成生产线物流仿真建模和生产线物流优化方案设计两大方面的实际设计内容。 通过本环节的设计锻炼,我们可以加深对本课程理论与方法的掌握,同时具备分析和解决生产运作系统问题的能力,改变传统的理论教学与生产实际脱节的现象。 二、课程设计内容 以某企业柔性制造系统(FMS)为对象,按该企业的生产实际资料为设计依据。对该柔性制造系统进行建模和仿真,通过模拟该制造系统的物流状况,寻找优化的物流方案进行产能平衡,并针对优化后的方案再次进行仿真,对比两个仿真结果在交货期要求,设备利用率等方面的不同,并制定该柔性制造系统生产作业计划。 三、设计步骤 3.1案例分析 3.1.1案例说明 1.柔性制造系统状况: 某企业柔性制造系统共有5台加工中心,定义加工中心名称分别为CNC_1、CNC_2、CNC_3、CNC_4、CNC_5。该制造系统内有一辆AGV小车,运行速度为1米/秒,可控制其实现不同的运送策略。每台设备入口和出口前有容量为4的缓冲,工件在由设备完成加工前后必须经过入口缓冲和出口缓冲,每台设备由一工人负

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

基于PLC的小车自动往返运动控制系统2

第一章概述 1完成本次循环工作后,停止在最初位置。其运动路线示意图如下图1-1所示。 如图1-1 小车运动路线示意图 第二章硬件设计 2.1 主电路图 如图2-1为小车循环控制的主电路原理图。该电路图利用两个接触器的主触点KM1、KM2分别接至电机的三相电源进线中,其中相对电源的任意两相对调,即可实现电机的正反转,也可达到小车左右运行的目的。假设接通KM1为正转(小车右行),则接通KM2为反转(小车左行)。

图2-1小车循环控制的主电路原理 2.2 I/O地址分配 如表2-1为小车循环运动PLC控制的I/O分配表。在运行过程中,这些I/O口分别起到了控制各阶段的输入和输出的作用,并且也使小车的控制过程更清晰明了,动作与结果显示更加方便直接。 表2-1

2.3 I/O接线图 如图2-2为小车循环运动PLC控制的I/O接线图。在进行调试过程时,在PLC模块上,当I0.0有输入信号,即按下SQ1;当I0.1有输入信号,也即按下SQ2,以此类推,I/O接线图就是把实际的开关信号变成调试时的输入信号。同理,输出信号也是利用PLC模块把小车的实际运动用Q0.0、Q0.1的状态表现出来。 图2-2小车循环运动PLC控制的I/O接线图 2.4 元件列表 如表2-2为小车循环运动PLC控制的元件列表。在本次设计中就是利用这些元件,用若干导线连接起来组成了我们需要的原理图、I/O接线图。 表2-2

第三章软件设计 3.1 程序流程图 如图3-1为小车循环运动PLC控制的程序流程图。小车在一个周期内的运动由4段组成。设小车最初在左端,当按下启动按钮,则小车自动循环地工作,若按下停止按钮,则小车完成本次循环工作后,停止在最初位置。 首先小车位于初始位置,按下SB1启动后,小车向右行驶;当碰到行程开关SQ4,小车转向,向左行驶;碰到行程开关SQ2,小车再一次转向,向右行驶;碰到行程开关SQ3,小车又向左行驶,直到再次碰到SQ1,然后开始依次循环以上过程。若不按下停止按钮SB2则小车一直进行循环运动,若此时按下停止按钮SB2,小车又碰到行程开关SQ1,则小车回到初始位置。

对汽车控制系统建模与仿真

对汽车控制系统建模与仿真 摘要:PID 控制是生产过程中广泛使用的一种最基本的控制方法,本文分别采用用简单的比例控制法和用PID控制来控制车速,并用MATLAB对系统进行了动态仿真,具有一定的通用性和实用性。 关键词:MATLAB 仿真;比例控制;PID 控制 1 MATLAB和PID概述 MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 2车辆行驶过程车速的数学模型 对行驶在斜坡上的汽车的车速进行动态研究,可以分析车辆的性能,指导车辆的设计。MATLAB软件下的SIMULILNK模块是功能强大的系统建模和动态仿真的软件,为车辆行驶过程车速控制分析提供了一种有效的手段。 汽车行驶如图7.4.1所示的斜坡上,通过受力分析可知在平行于斜面的方向上有三个力作用于汽车上:发动机的力、空气阻力和重力沿斜面的分量下滑力。

Matlab与通信仿真课程设计报告材料

《MATLAB与通信仿真》课程设计指导老师: 水英、汪泓 班级:07通信(1)班 学号:E07680104 :林哲妮

目录 目的和要求 (1) 实验环境 (1) 具体容及要求 (1) 实验容 题目一 (4) 题目容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目二 (8) 题目容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目三 (17) 题目容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目四 (33) 题目容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 心得与体会 (52)

目的和要求 通过课程设计,巩固本学期相关课程MATLAB与通信仿真所学知识的理解,增强动手能力和通信系统仿真的技能。在强调基本原理的同时,更突出设计过程的锻炼。强化学生的实践创新能力和独立进行科研工作的能力。 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 实验环境 PC机、Matlab/Simulink 具体容及要求 基于MATLAB编程语言和SIMULINK通信模块库,研究如下问题: (1)研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系; (2)研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系; 分析突发干扰的持续时间对误码率性能的影响。 (3)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰) 的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。 (4)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰) 的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

相关主题