搜档网
当前位置:搜档网 › 保险精算李秀芳1-5章习题答案

保险精算李秀芳1-5章习题答案

保险精算李秀芳1-5章习题答案
保险精算李秀芳1-5章习题答案

第一章 生命表

1.给出生存函数()22500

x s x e

-=,求:

(1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。

()()()10502050(5060)50(60)

50(60)

(50)

(70)(70)

70(50)

P X s s s s q s P X s s p s <<=--=

>==

2.已知生存函数S(x)=1000-x 3/2

,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x)

3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。

()()

()5|605606565(66)650.1895,0.92094(60)(60)65(66)

0.2058

(65)

s s s q p s s s s q s -=

===-∴=

=

4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60)

=0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表:

求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04

6.这题so easy 就自己算吧

7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整)

(1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11

(3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。

808081

8080800.07d l l q l l -=

== 808081

808080

0.07d l l q l l -=

== 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

612

P =(1-q 61)(1-q 62)=0.96334 60|2q =612P .q 62=0.01937

10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。

120

121

122

(20)0.92,(21)0.915,(22)0.909d d d d d d s s s l l l +

++

++

+=

==

==

=

13.设01000l =,1990l =,2980l =,…,9910l =,1000l =,求:1)人在70岁至80岁之间死亡的概率;2)30岁的人在70岁至80岁之间死亡的概率;3)30岁的人的取整平均余命。

18.

19.

24.答:当年龄很小时,性别差异导致的死亡率差异基本不存在,因此此时不能用年龄倒退法。

27.

28.设选择期为10岁,请用生存人数表示概率5|3q[30]+3

第二章 趸缴纯保费

1. 设生存函数为()1100

x

s x =-

(0≤x ≤100),年利率i =0.10,计算(保险金额为1元):(1)趸缴纯保费1

30:10ā的值。(2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

10

101

30:10

10

10

211222

230:1030:10

()1()1100()10011

0.0921.17011

()()0.0920.0920.0551.2170

t x x t t

t t x x t t

t t x x t x s x t s x p s x x

A v p dt dt Var Z A A v p dt dt μμμ+++'+=-

?=-=-??=== ?

??

??=-=-=-= ?

??????

2.设利力0.2

10.05t t

δ=

+,75x l x =-,075x ≤≤,求x A 。

5. 设0.25x =A , 200.40x +=A , :200.55x =A , 试计算:(1) 1:20x A (2) 1

:20x A 1 120:20:201 1:20

:20:201 1

:20:201 1

:20:201:20 1

:200.250.4

0.550.050.5

x x x x x x x x x x x x x A A A A A A A A A A A A A +?=+??=+???=+???=+???=???=?? 6.试证在UDD 假设条件下: (1) 1

1::x n x n i

δ

=

A A (2) 1

1

:::x x n n x n

i

δ

=+

āA A

8. 考虑在被保险人死亡时的那个

1

m

年时段末给付1个单位的终身寿险,设k 是自保单生效起存活的完整年数,j 是死亡那年存活的完整1m

年的时段数。 (1) 求该保险的趸缴纯保费 ()

m x A 。(2) 设

每一年龄内的死亡服从均匀分布,证明()

()m x x m i i

A A

9.

10.(x)购买了一份2年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,则在死亡年末可得保险金1元,()0.5,0,0.1771x q i Var z === ,试求1x q +。 11.已知,767677770.8,400,360,0.03,D D i ====求A A

12.设现年40岁的人购买一张保险金额为5000元的30年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试用换算函数计算该保单的趸缴纯保费。 500030:1

40A =5000×(M40-M70)/D40=388.66

13.现年30岁的人,付趸缴纯保费5 000元,购买一张20年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。 解:1

1

30:2030:20

5000

5000RA R A =?=

19

11

11

303030303030:20

30

3030303132492320

303050

30

111111

()1.06(1.06)(1.06)(1.06) k k k k

k k

k k

k k k k l

d A

v

p q v

v d l l l d d d d l M M D ∞

∞+++++++===+====++++

-=

∑∑∑

例查(2000-2003)男性非养老金业务生命表中数据

123

20

30:201111

1

(8679179773144)

9846351.06(1.06)(1.06)(1.06) 0.017785596281126.3727

A R =

+++

+

===283285.07

14.现年35岁的人购买了一份终身寿险保单,保单规定:被保险人在10年内死亡,给付金额为15 000元;10年后死亡,给付金额为20 000元。试求趸缴纯保费。 趸交纯保费为1

1

10|3535:101500020000A A +

9

9

11

11

353535353535:10

35

35353536374423

10

35354535111111

()1.06(1.06)(1.06)(1.06)13590.2212077.31

0.01187

127469.03

k k k k

k k

k k

k k k k l

d A

v

p q v

v d l l l d d d d l M M D ∞+++++++===+====++++

--=

==∑∑∑

70

70

70

11

11

353510|

35

35353510

10

10

35

3535

454647105

111213713545351

11111

()(1.06)(1.06)(1.06)(1.06)

12077.31

0.09475127469.03

k k k k

k k

k k k k k k l

d A v

p q v

v

d l l l d d d d l M D +++++++===+====++++

=

==∑∑∑ 所以趸交纯保费为1

1

10|3535:101500020000178.0518952073.05A A +=+=

15.年龄为40岁的人,以现金10 000元购买一份寿险保单。保单规定:被保险人在5年内死亡,则在其死亡的年末给付金额30 00元;如在5年后死亡,则在其死亡的年末给付数额R 元。试求R 值。

17.设年龄为50岁的人购买一张寿险保单,保单规定:被保险人在70岁之前死亡,给付金额为3000元;如至70岁仍生存,给付金额为1500元。试求该寿险保单的趸交纯保费。 解:该趸交纯保费为:1

1

50:2050:2030001500A A +

19

19

19

11

11

505050505050:20

50

5050

50515269

23200505070

50

1

11111

()1.06(1.06)(1.06)(1.06)

k k k k

k k

k k

k k k k l

d A

v

p q v

v

d l l l d d d d l M M D +++++++===+====++++

-=

∑∑∑ 17070

70

705050:2050

70

50

l A v p v l D D ===

18.设某30岁的人购买一份寿险保单,该保单规定:若(30)在第一个保单年度内死亡,则在其死亡的保单年度末给付5000元,此后保额每年递增1000元。求此递增终身寿险的趸交纯保费。 该趸交纯保费为:

303030303030

40001000()4000

1000M R

A IA D D +=+=3406.34 75

75

751

11

3030303030300

30

30303031321052376

303030

111111

()1.06(1.06)(1.06)(1.06) k k k k

k k

k k

k k k k l

d A v

p q v

v d l l l d d d d l M D +++++++===+====++++

=

∑∑∑

75

75

75

1

11303030

3030300

030

3030303132105

23763030

30

1()

(1)(1)(1)112376

()1.06(1.06)(1.06)(1.06)

k k k k

k k

k k

k k k k l

d IA k v

p q k v

k v d l l l d d d d l R D +++++++===+=+=+=+=++++

=

∑∑∑

19.

20. 某一年龄支付下列保费将获得一个n 年期储蓄寿险保单:

(1)1 000元储蓄寿险且死亡时返还趸缴纯保费,这个保险的趸缴纯保费为750元。

(2)1 000元储蓄寿险,被保险人生存n 年时给付保险金额的2倍,死亡时返还趸缴纯保费,这个保险的趸缴纯保费为800元。 若现有1 700元储蓄寿险,无保费返还且死亡时无双倍保障,死亡给付均发生在死亡年末,求这个保险的趸缴纯保费。

解:保单1)精算式为1

1

1

::::100075017501000750x n x n x n x n A A A A +=+= 保单2)精算式为1

1

1

1

:::::1000800100018002000800x n x n x

n x n x n A A A A A ++=+= 求解得1

1

::7/17,1/34x n x n A A ==,即

1 1

:::170017001700750x n x n x n

A A A =+= 21.设年龄为30岁者购买一死亡年末给付的终身寿险保单,依保单规定:被保险人在第一个保单年度内死亡,则给付10 000元;在第二个保单年度内死亡,则给付9700元;在第三个保单年度内死亡,则给付9400元;每年递减300元,直至减到4000元为止,以后即维持此定额。试求其趸缴纯保费。

=397.02

第三章 年金精算现值

1. 设随机变量T =T(x)的概率密度函数为0.015()0.015t

f t e

-=?(t ≥0),利息强度为δ=0.05 。(1)

计算精算现值 x a (2)基金x a 足够用于实际支付年金的概率

0.050.0150

11()0.01515.380.05

t

t

t x T v e a f t dt e dt δ

-+∞

+∞

---==?=?

?

2.设 10x a =, 2

7.375x a =, ()50T

Var a =。试求:

(1)δ;(2)x

ā 。

()

222

22

22222

111012114.7511(())50(())0.0350.650.48375

x x x

x x x T x x x x x x a A A a A A Var a A A A A A A δδδδδδδ??

=+??=+??=+?=+??????=-=-??

=??

?=??=?

3.设0.06x A =,0.05δ=。试求2

0.01x A =:1)x a ;2)()T Var a 。

5.某人现年50岁,以10000元购买于51岁开始给付的终身生存年金,试求其每年所得年金额。 7.某人现年23岁,约定于36年内每年年初缴付2 000元给某人寿保险公司,如中途死亡,即行停止,

所缴付款额也不退还。而当此人活到60岁时,人寿保险公司便开始给付第一次年金,直至死亡为止。试求此人每次所获得的年金额。

解:23:36

37|2323:3637|23

20002000a a R a R a =?=

35

35

3523232323:36

00

0232323242526582335

232359

23

37

37|232337236037

2360

23:37

11111

1

()

1.06(1.06)(1.06)(1.06) k

k

k

k k k

k k k l a v p v v l l l l l l l l l N N D a a a v p a E a ++=======+++++

-=

=-==∑∑∑82

82

82

232323373737

2323606062631052355

236023

1 1111

1

()

1.06(1.06)(1.06)(1.06) k

k

k

k k k

k k k l v p v v l

l l l l l l l l N D ++======

=+++++

=

∑∑∑

8.

9.某人现年55岁,在人寿保险公司购有终生生存年金,每月末给付年金额250元,试在UDD 假设下和利率6%下,计算其精算现值。

解:(12)(12)

3535351

1250*12250*12()250*12[(12)(12)]1212

a a a αβ=-=--

12

(12)(12)12

(12)(12)

(12)

(12)(12)(12)(12)0.0566037741110.05841060612110.058127667

12(12) 1.000281033,(12)0.46811975

d i

i i i d d d id i i i d i d

αβ=

=+??+=+?= ?

?

???-=-?= ??

?-====7171

713535352300

03523353637381052370

353535

11111

1

()1.06(1.06)(1.06)(1.06) k

k

k

k k k

k k k l a v p v v l l l l l l l l l N D ++=======+++++

=

∑∑∑

若查90-93年生命表换算表则

3535351985692

15.695458126513.8

N a D =

== 10. 在UDD 假设下,试证:

(1) ()()||()m x x n x n n a m a m E αβ=- 。

(2) ()()

::()(1)m n x x n x n a m a m E αβ=-- 。

(3)()()

::1

(1)m m n x x n x n a a E m

=-- 11.

12.

试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值,且给付方法为:(1)按年;(2)按半年;(3)按季;(4)按月。 (1)解:313030

1200N a D =

(2)(2)(2)

3030351110001000()1000[(2)(2)]22a a a αβ=-=--

2

(2)(2)2

(2)(12)(2)(2)(2)

(2)(2)0.0566037741110.059126028

2110.0574282762(2) 1.000212217

(2)0.257390809

d i

i i i d d d id

i d i i i d

αβ=

=+??+=+?= ??

???-=-?= ?

?

?==-== 30

3030

N a D =

(3)(4)(4)

3030301110001000()1000[(4)(4)]44

a a a αβ=-=--

4

(4)(4)4

(4)(4)

(4)(4)(4)

(4)(4)0.0566037741110.058695385

4110.0578465544(4) 1.000265271

(4)0.384238536

i

d i

i i i d d d id

i d i i i d

αβ=

=+??+=+?= ??

???-=-?= ??

?==-==

30

3030

N a D =

(4)(12)(12)

3030301

110001000()1000[(12)(12)]1212

a a a αβ=-=-- 12

(12)(12)12

(12)

(12)

(12)

(12)(12)(12)(12)0.0566037741110.058410606

12110.058127667

12(12) 1.000281033,(12)0.46811975

i

d i

i i i d d d id i i i d i d

αβ=

=+??+=+?= ??

???-=-?= ??

?-====

30

3030

a D =

15.试证 (1) ()

()

m x x

m a a i δ

=

(2) ()

:():m x n m x n

a a i δ

= (3) ()

lim m x x

m a a →∞= (4) 12

x x a a ≈-

16.很多年龄为23岁的人共同筹集基金,并约定在每年的年初生存者缴纳R 元于此项基金,缴付到64岁为止。 到65岁时,生存者将基金均分,使所得金额可购买期初付终身生存年金,每年领取的金额为3 600元。试求数额R 。

18.Y 是x 岁签单的每期期末支付1的生存年金的给付现值随机变量,已知 10x a =,2

6x a =,

1

24

i =

,求Y 的方差。 解:定义X=1+Y,则X 为x 期签单的每期起初支付1元的生存年金的给付现值随机变量

19.某人将期末延期终身生存年金1万元遗留给其子,约定延期10年,其子现年30岁,求此年金的精算现值。

20.某人现年35岁,购买一份即付定期年金,连续给付的年金分别是10元,8元,4元,2元,4元,6元,8元,10元,试求其精算现值。

35

35:135

3635:235:1353735:335:2353835:435:33535:535:41010

10119226.5

8()887.53919126513.8112348.9

6()66 5.328220126513.8105857.1

4()44 3.346895126513.82()2D a D D a a D D a a D D a a D D a a ==-===-===-===-=39354035:635:7354135:735:8354235:835:93535:99728.78

2 1.576567126513.893942.98

4()44 2.970205126513.888479.16

6(

)6

6 4.196182126513.883319.66

8()88 5.258652126513.8

10(D D a a D D a a D D a a D a ==-===-===-===439

35:83578446.8

)1010 6.20065

126513.8

D a D -===

该题若考虑的是连续性的年金计算则复杂很多

3536

1 135:1

35:1

35:1

3535

35:1111101010

10

0.06126.18119226.5

10.058268908126513.8126513.8 10

9.7090955

0.058268908

C D i i

A

A

A D D a δδ

δ

δδ

-+-+-===-

+

==

11 1 135:135:235:135:2

35:135:2

35:235:1363637

3535

()()8()8

8 =8

i A A A A A A a a C D D i D D δ

δδ

δδ

-+---==--+

=

第四章 分期纯保费与毛保费

1.设()0x t t μμ+=>,利息强度为常数δ,求 ()

x P A 与Var(L)。

()0

2

22002

221

2()()()2t t t x t x t

t t x t x x t t t t x t x x t x

x x

x x x a v p dt e e dt A v

p dt e e dt A v p dt e e dt A P A a A A Var L a δμδμδμμδ

μ

μμμδ

μμμμδ

μμ

δμδ

+∞+∞

--+∞

+∞

--++∞+∞--+===

+===+===

+∴=

=-==

+????

??

3.设 ()

50500.014,0.17,P A A δ==则利息强度=()0.0684

()50505050500.17

0.014,10.171A A P A A a δ

δ

δ=

===--?=0.068

4.有两份寿险保单,一份为(40)购买的保额2 000元、趸缴保费的终身寿险保单,并且其死亡保险

金于死亡年末给付;另一份为(40)购买的保额1 500元、年缴保费P 的完全离散型终身寿险保单。已知第一份保单的给付现值随机变量的方差与第二份保单在保单签发时的保险人亏损的方差相等,且利率为6%,求P 的值。

P=28.3

5.已知 1

40:20604040:20

0.029,0.005,0.034,6%,P P P i a ====求 。

40:2040:20

40:2040:20

40:2040:201 1

140:2040:2040:20204040:2040:20

40:2040:2040:20

20

406060

606060

0.05661

10.02911.68220.0240.2803710.i

d i A da P a a a A A A E P P

a a a E A da P a a =

=+-===?=--====?

=-===&&&&&&&&&&&&&&&&&&&&604020406040:2003411.037514.77679

a a a E a ?==+=&&&&&&&&

6.已知 6262630.0374,0.0164,6%,P q i P ===求。

8.已知L 为(x)购买的保额为1元、年保费为:x n P 的完全离散型两全保险,在保单签发时的保险人亏损随机变量,2

::0.1774,0.5850x n x n P A d

==,计算Var(L)。0.103

9.

P=11.91

10. 已知x 岁的人服从如下生存分布:()105105

x

s x -=

(0≤x ≤105),年利率为6%。对(50)购买的保额1 000元的完全离散型终身寿险,设L 为此保单签发时的保险人亏损随机变量,11. 已知

20.19,0.064,0.057,0.019,X X x A A d π====,其中x π为保险人对1单位终身寿险按年收取的营

业保费。求保险人至少应发行多少份这种保单才能使这些保单的总亏损为正的概率小于等于0.05。[这里假设各保单相互独立,且总亏损近似服从正态分布,Pr (Z≤1.645)=0.95,Z 为标准正态随机变量。]

11.

12.A,C 永远正确

寿险精算习题及答案

习题 第一章人寿保险 一、n 年定期寿险 【例4.1】设有100个40岁的人投保了1000元5年期定期寿险,死亡赔付在死亡年年末,利率为3%。 I 、如果各年预计死亡人数分别为1、2、3、4、5人,计算赔付支出; II 、根据93男女混合表,计算赔付支出。 解:I 表4–1 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1 1000 103.1- 970.87 2 2 2000 203.1- 1885.19 3 3 3000 303.1- 2745.43 4 4 4000 403.1- 3553.9 5 5 5 5000 503.1- 4313.04 合计 --- 15000 --- 13468.48 根据上表可知100张保单未来赔付支出现值为: 48.13468)03.1503.1403.1303.1203.11(100054321=?+?+?+?+??-----(元) 则每张保单未来赔付的精算现值为134.68元,同时也是投保人应缴的趸缴纯保费。 解:II 表4–2 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1000*40q =1.650 1650 103.1- 1601.94 2 1000*40|1q =1.809 1809 203.1- 1705.16 3 1000*40|2q =1.986 1986 303.1- 1817.47 4 1000*40 | 3q =2.181 2181 403.1- 1937.79

保险精算习题及答案

保险精算习题及答案 第一章:利息的基本概念 练习题 21(已知,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,atatb,,,, 在时刻8的积累值。 2((1)假设A(t)=100+10t, 试确定。 iii,,135 n(2)假设,试确定。 An,,1001.1iii,,,,,,135 3(已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4(已知某笔投资在3年后的积累值为1000元,第1年的利率为,第2年的利率为,i,10%i,8%12第3年的利率为,求该笔投资的原始金额。 i,6%3 5(确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 2226(设m,1,按从大到小的次序排列与δ。 vbqep,,,xx 7(如果,求10 000元在第12年年末的积累值。 ,,0.01tt 8(已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 t9(基金A以每月计息一次的年名义利率12%积累,基金B以利息强度积累,在时刻t (t=0),两笔,,t6 基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X中的投资以利息强度(0?t?20), 基金Y中的投资以年实际利率积累;现分别,,,0.010.1tit 投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基 金Y的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 nmvviaa,,,1(证明。,,mn 1 2(某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首 期付款额A。 3. 已知 , , , 计算。 a,5.153a,7.036a,9.180i71118 4(某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其 每年生活费用。 5(年金A的给付情况是:1,10年,每年年末给付1000元;11,20年,每年年末 给付2000元;21,30年,每年年末给付1000元。年金B在1,10年,每年给付额为K元;11,20年给付额为0;21,30年,每年

保险精算试题

共 4 页 第 1 页 保险精算复习自测题(90分钟) 选择题(20分) 1.(20)购买了一种终身生存年金,该年金规定第一年初给付500元,以后只要生存每年初增加100元,该生存年金的精算现值为( )。 A... .. 2020400100()a I a + B.2020400100()a I a + C... .. 2020500100()a I a + D.2020500100()a I a + 2. UDD 假设 若q 50=0.004,在UDD 假设下0.5p 50等于( )。 3. 每次期初支付10000元,一年支付m 次,共支付n 年的生存年金的精算现值表示为( )。 A.() ..:10000m x n m a B.() :10000m x n ma C.() ..:10000m x n nm a D.() :10000m x n nm a 4.关于(x )的一份2年定期保险,有如下条件:(1)0.02(1)x k q k +=+ 0,1k =(2)0.06i =(3)在死亡年末支付额如下: k 1k b + b1 1 b2 若 z 是死亡给付现值的随机变量则()E Z 等于( )。

共 4 页 第 2 页 填空题(20分) 1.按缴费方式和保险金的给付方式,把寿险分为 、 、 。 2.若一个人在x 岁时死亡,此时随机变量T (30)= ,K(50)= 。 3. = ,35:]1000n n V 。 4.日本采用的计算最低现金价值的方法是 。 5.专业英语:Nominal interest 中文意思是 。 6.生存年金精算现值的计算方法 和 。 7.假设i=5%,现向银行存入1万元,在以后的每年末可取出 元。 8.假设40l =A ,50l =B ,则1040q = 。 9.责任准备金的两种计算方法为 、 。 1 20:] 1000t t V

最新保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100 (5)300180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

保险精算李秀芳1-5章习题答案

第一章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 ()()()10502050(5060)50(60) 50(60) (50) (70)(70) 70(50) P X s s s s q s P X s s p s <<=--= >== 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 ()() ()5|605606565(66)650.1895,0.92094(60)(60)65(66) 0.2058 (65) s s s q p s s s s q s -= ===-∴= = 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60) =0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 808081 8080800.07d l l q l l -= == 808081 808080 0.07d l l q l l -= == 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

保险精算第二版习题及答案

保险精算第二版习题及 答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。、

8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6 t t δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。 10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. D. 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 225 213 C.7 136 987 第二章:年金 练习题 1.证明()n m m n v v i a a -=-。

保险精算第1章习题答案

第1章 习题答案 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 解: 100)0(100)0(.k )0(2=+?==b a a A 或者由1)0(=a 得1=b 180)15(100)5(100)5(2=+?=?=a a A 得032.0=a 以第5期为初始期,则第8期相当于第三期,则对应的积累值为: 4.386)13032.0(300)3(2=+??=A 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 解:(1)A(0)=100;A(1)=100+10×1=110;A(2)=120;A(3)=130;A(4)=140;A(5)=150 ; ; 。 (2)A(0)=100;;;;; 。 ; ; 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 解:单利条件下: 得; 则投资800元在5年后的积累值:; 在复利条件下: 得 则投资800元在5年后的积累值:。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率

为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 解: 得元。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 解:(1) 元 (2) 得 10000元在第3年年末的积累值为: 元 6.设m >1,按从大到小的次序排列,,,与。 解:,所以,。 ,在的条件下可得。 ,在的条件下可得 。 对其求一阶导数得得 对其求一阶导数,同理得。 由于,所以,同理可得。 综上得: 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。 解:元 8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 解:注意利用如下关系:则 则根据上述关系可得:

保险精算例题

保险精算例题

第二章 【例2.1】某人1997年1月1日借款1000元,假设借款年利率为5%,试分别以单利和复利计算: (1)如果1999年1月1日还款,需要的还款总额为多少? (2)如果1997年5月20日还款,需要的还款总额为多少? (3)借款多长时间后需要还款1200元。 解:(1)1997年1月1日到1999年1月1日为2年。 在单利下,还款总额为: A(2)=A(0)(1+2i)=1000×(1+2×5%)=1100(元) 在复利下,还款总额为: A(2)=A(0)(1+i)2=1000×(1+5%)2=1102.5(元) (2)从1997年1月1日到1997年5月20日为140天,计息天数为139天。 在单利下,还款总额为: 1000×(1+ 139 365×5%)=1019.04(元) 在复利下,还款总额为: 1000×139365 % (1+5)=1018.75(元)(4)设借款t年后需要还款1200元。 在单利下,有 1200=1000×(1+0.05t) 可得:

t=4(年) 在复利下,有 1200=1000×(1+0.05)t 可得: t≈3.74(年) 【例2.2】以1000元本金进行5年投资,前2年的利率为5%,后3年的利率为6%,以单利和复利分别计算5年后的累积资金。 解:在单利下,有 A(5)=1000×(1+2×5%+3×6%)=12800(元) 在复利下,有 A(5)+1000×(1+5%)2 ×(1+6%)3=13130.95(元) 【例2.3】计算1998年1月1日1000元在复利贴现率为5%下1995年1月1日的现值及年利率。 解:(1)1995年1月1日的现值为: 1000×(1-0.05)3=857.38(元) (2)年利率为: i=d 1-d =0.050.95 =0.053 【例2.4】1998年8月1日某投资资金的价值为14000元,计算: (1) 在年利息率为6%时,以复利计算,这笔资金在1996年8月1 日的现值。 (2) 在利率贴现率为6%时,这笔资金在1996年8月1日的现值。 解:(1)以知利率时,用折现系数计算现值,14000元2年前的现值

保险精算试卷及答案

保险精算试卷 1. A.104 B.105 C.106 D.107 E.108 2. (A) 77,100 (B) 80,700 (C) 82,700 (D) 85,900 (E) 88,000 3.Lucky Tom finds coins on his way to work at a Poisson rate of 0.5 coins per minute. The denominations are randomly distributed: (i) 60% of the coins are worth 1; (ii) 20% of the coins are worth 5; (iii) 20% of the coins are worth 10. Calculate the variance of the value of the coins Tom finds during his one-hour walk to work. (A) 379 (B) 487 (C) 566 (D) 670 (E) 768 game. If 4.A coach can give two ty pes of training, “ light” or “heavy,” to his sports team before a the team wins the prior game, the next training is equally likely to be light or heavy. But, if the team loses the prior game, the next training is always heavy. The probability that the team will win the game is 0.4 after light training and 0.8 after heavy training. Calculate the long run proportion of time that the coach will give heavy training to the team.

保险精算练习题

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。(2)在年利率8%的复利下,求1994年5月1日的存款额。解:(1)5000×(1+4×10%)=7000(元) 4.33=7556.8(元) 5000×(1+10%)(2) 2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。 55=12385(元)×(1+11%解:5000(1+8%)) 3.李美1994年1月1日在银行帐户上有10000元存款。(1)求在复利11%下1990年1月1日的现值。(2)在11%的折现率下计算1990年1月1日的现值。 -4=5934.51(元)1+11%)(1)10000×(解:4=6274.22(元)) 2)10000×(1-11%( 4.假设1000元在半年后成为1200元,求 (2)(3)id。⑴ i, ⑶,⑵(2)i(2)1000?(1?)?12004.??i0;所以解:⑴ 2(2)i2)1?i?(1?44?0.i⑵;所以2(n)(m)di?1?mn(1?)?1?i?(1?d)?(1?) ⑶;mn(3)d3?1(1?)?(1?i))(3?0.34335d;所以,3 (n)(n)???id?id?。时,证明:5.当1?n(n)dd?证明:①,为因 (n)(n)(n)(n)dddd012n323))(C)C1CC(1d(1????????????? d1?? nnnn nnnn(n)

)(n dd?所以得到,;(n)??d②?????????423423 ?)??1C?1??C?()?C?()??(e m?)(n)e(1?d?m m; ??i③ nnn mmmmm?)n(??)](1?d?m[1?所以,m(n) (n)i)(n i n[1?]?1?i??)1?iln(1?)?ln(n?即,,n n? ????? (n)i?n?(e?1)n所以,? 434232?1??)C?e?1?C?()??()?C?(n? nnn mmmmm ?(n)??])?1?n[(i1?n(n)?ii④ (n)(n)(n)iii)(n i)n22(n01[1?]?C?1?C??C?()???1?i n[1?]?1?i nnn,nnn n )(n ii?所以, 6.证明下列等式成立,并进行直观解释:m aav?a? ⑴;nnm?m m v?1n?nmm v1?vv?n?m v1?a?mm?va?v a? i m ii n,,解: i n?m n?mmm v?1?v?v m a?ava?? i mnnm?所以, m sva?a?nm?nm⑵;m v1?n?m v?1nmm?v?v?a a?m??vs i m i n?m,解:, i n nmm?m vv??1?v m a??a?vs i mnm?n所以, m as?s?(1?i)nmm?n⑶;

保险精算习题及答案

第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 800元在28%i =,第3为 t (t=0),i 积累; 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 1.证明() n m m n v v i a a -=-。

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。 4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。 5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10 1 2 v = ,计算K 。 6. 化简() 1020101a v v ++ ,并解释该式意义。 5 。 n 年每年,那么v=( 2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。 3. 已知800.07q =,803129d =,求81l 。 4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 5. 如果221100x x x μ= ++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。 A.2073.92 B.2081.61 C.2356.74 D.2107.56

保险精算李秀芳章习题答案

第一章生命表 1.给出生存函数() 2 2500 x s x e- =,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 2.已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr[5<T(60)≤6]=0.1895,Pr[T(60)>5]=0.92094,求q 65 。 4.已知Pr[T(30)>40]=0.70740,Pr[T(30)≤30]=0.13214,求 10p 60 Pr[T(30)>40]=40P30=S(70)/S(30)=0.7074 S(70)=0.70740×S(30) Pr[T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴ 10p 60= S(70)/S(60)=0.70740/0.86786=0.81511 5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q . 612 P =(1-q 61)(1-q 62)=0.96334 60|2q =612P .q 62=0.01937 10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 13.设01000l =,1990l =,2980l =,…,9910l =,1000l =,求:1)人在70岁至80岁之间死亡的概率;2)30岁的人在70岁至80岁之间死亡的概率;3)30岁的人的取整平均余命。 18. 19.

保险精算练习题

保险精算练习题

————————————————————————————————作者: ————————————————————————————————日期:

4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ )3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明: i i d d n n <<<<) () (δ。 证明:①) (n d d < 因为, +?-?+?-?=-=-3)(3 2)(2) (10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d ->所以得 到,) (n d d <; ② δ<)(n d )1() (m n e m d δ - -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 所以, δ δ =- -<)]1(1[) (m m d n ③ )(n i <δ i n i n n +=+1]1[)(, 即,δ=+=+?)1ln()1ln()(i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ + >+?+?+?++ =1)( )( )( 144 33 22 δ δ =-+>]1)1[()(n n i n ④ i i n <)( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8,125 300*100(5)300180 300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=?= ==?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---====== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---====== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08 800(5)800(15)1120 500(3)500(1)6200.0743363 800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1) (0)794.1A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

保险精算练习题

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ )3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以 4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明: i i d d n n <<<<) () (δ。 证明:①) (n d d < 因为,Λ+?-?+?-?=-=-3)(3 2)(2) (10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d ->所以得到, )(n d d <; ② δ<) (n d )1() (m n e m d δ - -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 Λ 所以, δ δ =- -<)]1(1[) (m m d n ③) (n i <δ i n i n n +=+1]1[)(, 即,δ=+=+?)1ln()1ln()(i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ + >+?+?+?++ =1)( )( )( 144 33 22 Λ

δ δ =-+>]1)1[() (n n i n ④ i i n <)( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+Λ 所以, i i n <) ( 6.证明下列等式成立,并进行直观解释: ⑴n m m n m a v a a +=+; 解:i v a n m n m ++-= 1, i v a m m -= 1,i v v i v v a v n m m n m n m +-=-=1 所以,n m n m m m n m m a i v v v a v a ++=-+-=+1 ⑵n m m n m s v a a -=-; 解: i v a n m n m ---= 1,i v a m m -= 1,i v v s v n m m n m --= - 所以,n m n m m m n m m a i v v v s v a --=-+-=-1 ⑶ n m m n m a i s s )1(++=+; 解: i i s m m 1)1(-+=,i i i i i i s i m n m n m n m )1()1(1)1() 1()1(+-+=-++=++ 所以,n m m n m m n m m s i i i i a i s ++=+-++-+=++)1()1(1)1()1( ⑷ n m m n m a i s s )1(+-=-。

保险精算期末复习试题

1 假设某人群的生存函数为()1,0100100 x S x x =-≤≤ 求: 一个刚出生的婴儿活不到50岁的概率; 一个刚出生的婴儿寿命超过80岁的概率; 一个刚出生的婴儿会在60~70岁之间死亡的概率; 一个活到30岁的人活不到60岁的概率。 2 已知给出生存函数()20S x = ,0100x ≤≤,计算(75),(75)F f ,()75μ 3、已知 10000(1)100 x x l =- 计算下面各值: (1)30203030303010,,,d p q q (2)20岁的人在50~55岁死亡的概率。 (3)该人群平均寿命(假定极限年龄为100)。 4、设 ()1 , 0100100 0.1x S x x i =- ≤≤= 求:第一问: 130:101 (2)()t A Var z () 第二问: 30:101 (2)()t A Var z () 5、设(x)投保终身寿险,保险金额为1元,保险金在死亡即刻赔付,签单时,(x)的剩余寿命的密度函数为 1 , 060(t)60 0 , T t f ?<≤?=???其它 计算 0.90.91(2)() (3)Pr()0.9. x t A Var z z ξξ≤=()的 6、假设(x )投保延期10年的终身寿险,保额1元。保险金在死亡即刻赔付。已知0.040.06(),0x S x e x δ-==≥, 求:10t (1) (2)Var(z )x A ,

7、90岁的人生存情况如下表。求 1、死亡年末给付1000元的趸缴浄保费 8、现年30岁的人购买了一份递减的5年定期寿险保单。保险金于死亡年末给付,第一个保单年度内死亡,则给付5万元;第二个保单年度内死亡,则给付4万元——;第5个保单年度内死亡,则给付1万元,设年利率为6%,用中国人寿保险业经验生命表非养老金业务男表计算其趸缴纯保费。 9、假设有100个相互独立的年龄为x 岁的被保险人都投保了保险金额10元的终身寿险,随机变量T 的概率密度是()()0.04,0t T f t e t μμμ-==≥.保险金于被保险人死亡时给付,保险金给付是从某项基金中按利息强度0.06δ=计息支付.试计算这项基金在最初()0t =时的数额至少为多少时,才能保证从这项基金中足以支付每个被保险人的死亡给付的概率达到95% 10、 假定寿命服从[0,110]上的均匀分布,且0.05δ=,计算(30)所购买的终身连续生存年金。用三种方法计算。 11、有一种终身年金产品,每年连续给付生存年金1000元。 现在开发一种新产品,在原来年金给付的基础上增加死亡即刻给付X 万元。 假定利息力为5%,求:当死亡赔付定为多大时,该产品赔付现值的方差最小? 12、 在死亡力为常数0.04,利息力为常数0.06的假定下,求 (1)x a (2)T a 的标准差 (3) T a 超过x a 的概率。 13、 8x a =,25x a =,0.05δ= 14、 设一现值变量为,0(),()n T a T x n Y a T x n ≤≤??=?>?? 计算()x n E Y a - 15—20题 课本45页课后习题。

中国精算师考试:中国精算师风险与精算习题解答

中国精算师考试:中国精算师风险与精算习题解答 1.风险的含义包括哪两个基本方面?请举例说明。 答:风险与三个因素直接有关:自然状态的不确定性、人的主观行为及两者结合所蕴涵的潜在后果。形象地说,从潘多拉魔盒中飞出去的各种天灾人祸与被留在魔盒中的不可预知或不确定性结合在一起便构成了形成风险的两个方面。例如,股票的涨跌与炒股者的买卖或不买或不买不卖行为便构成了形成风险的两个方面。 2.何谓风险态度?如何能够定量地刻画风险态度? 答:从某个决策问题出发,讨论一个决策者面对某种风险的反应或态度,常称之为风险态度,或者说是比较一群人各自的风险态度之间的差异程度。假如有n个决策者DM1,DM2,...,DMn为了达到某个决策目标O而提出一系列备选方案.f,g,...,h,要在其中选择一个或最满意的方案,在这个问题框架下,可以研究相对于某项或某些方案的潜在后果来考察某个决策者的风险态度或者比较决策者之间风险态度的差别。 3.简要四个保险精算问题。 答:(1)厘订费率:根据大数法则,保险人必须聚合足够多的同质性风险,把承保风险的保费大量地汇集,用以抵消少数小概率事件发生所造成的较大额度的赔付。但进行这项工作的一个基本前提是要对标的的损失分布包括损失的频度和每次损失的额度大小进行正确的预测;而在实务上要汇集大量同质风险这一条件是较为苛刻的,保险人承保多种从属于不同类别的风险,因而,对于风险非同质性的衡量,也同样是费率厘订所要解决的问题。 (2)准备金及其分配:保险人收取保险费以后,就要随时准备履行其承担的保险责任,及时地赔付可能发生的损失。为此,保险人必须从所收的保险费中提留部分资金作为准备金,并将该准备金分配至各险种业务,尤其是需要对所承保的巨灾风险提留恰当的准备金。这些工作都建立在对潜在风险的正确评估基础之上。 (3)再保险与自留额:保险人承保被保险人的风险,保险人为保证自己的财务稳定,可以将承保风险的一部分转移给再保险人。再保险决策不仅包括选择再保险的种类,更重要的是要根据公司的偿付能力决定公司的自留额以及相应的再保险额。这一决策对于不同的风险也不同,对风险评估的要求更高。 (4)资产负债配比与偿付能力:保险公司作为承担被保险人风险和保障被保险人经济利益的专门机构,必须有能力来保证对被保险人作出的承诺,这就是保险公司的偿付能力。按我国保险法的定义,它是"保险公司的实际资产减去实际负债的差额";但偿付能力是一个动态的、具有相当不确定性的变数,它不仅与保险运营的诸多环节有关,更是与保险公司的基本精算问题如风险评估、费率厘订、准备金提留、投资策略、动态偿付测试等直接相关。这是个更具综合性的、更核心的保险决策问题之一。

相关主题