搜档网
当前位置:搜档网 › 结构化学基础习题答案分子的对称性

结构化学基础习题答案分子的对称性

结构化学基础习题答案分子的对称性
结构化学基础习题答案分子的对称性

04分子的对称性

【】和都是直线型分子,写出该分子的对称元素。

解:HCN:; CS2:

【】写出分子中的对称元素。

解:

【】写出三重映轴和三重反轴的全部对称操作。

解:依据三重映轴S3所进行的全部对称操作为:

,,

,,

依据三重反轴进行的全部对称操作为:

,,

,,

【】写出四重映轴和四重反轴的全部对称操作。

解:依据S4进行的全部对称操作为:

依据进行的全部对称操作为:

【】写出和通过原点并与轴重合的轴的对称操作的表示矩阵。

解:,

【】用对称操作的表示矩阵证明:

(a)(b)(c)

解:

(a),

推广之,有,

即:一个偶次旋转轴与一个垂直于它的镜面组合,必定在垂足上出现对称中心。

(b)

这说明,若分子中存在两个互相垂直的C2轴,则其交点上必定出现垂直于这两个C2轴的第三个C2轴。推广之,交角为的两个轴组合,在其交点上必定出现一个垂直于这两个C2轴轴,

在垂直于轴且过交点的平面内必有n个C2 轴。进而可推得,一个轴与垂直于它的C2 轴组合,

在垂直于的平面内有n个C2 轴,相邻两轴的夹角为。

(c)

这说明,两个互相垂直的镜面组合,可得一个轴,此轴正是两镜面的交线。推而广之,若两个镜面相交且交角为,则其交线必为一个n次旋转轴。同理,轴和通过该轴的镜面组合,可得n个镜面,相邻镜面之交角为。

【】写出(反式)分子全部对称操作及其乘法表。

解:反式C2H2C l2分子的全部对称操作为:

对称操作群的乘法为:

【】写出下列分子所归属的点群:,,氯苯,苯,萘。

【】判断下列结论是否正确,说明理由。

(a)凡直线型分子一定有轴;

(b)甲烷分子有对称中心;

(c)分子中最高轴次与点群记号中的相同(例如中最高轴次为轴);

(d)分子本身有镜面,它的镜像和它本身相同。

解:

(a)正确。直线形分子可能具有对称中心(点群),也可能不具有对称中心(点群)。但无论是否具有对称中心,当将它们绕着连接个原子的直线转动任意角度时,都能复原。因此,所有直线形分子都有轴,该轴与连接个原子的直线重合。

(b)不正确。因为,若分子有对称中心,则必可在从任一原子至对称中心连线的延长线上等距离处找到另一相当原子。甲烷分子(点群)呈正四面体构型,显然不符合此条件。因此,它无对称中心。按分子中的四重反轴进行旋转-反演操作时,反演所依据的“反轴上的一个点”是分子的中心,但不是对称中心。事实上,属于点群的分

子皆无对称中心。

(c)就具体情况而言,应该说(c)不全错,但作为一个命题,它就错了。

这里的对称轴包括旋转轴和反轴(或映轴)。在某些情况中,分子最高对称轴的轴次(n)与点群记号中的n相同,而在另一些情况中,两者不同。这两种情况可以在属于,和等点群的分子中找到。

在点群的分子中,当n为偶数时,最高对称轴是轴或轴。其轴次与点群记号中的n相同。例如,反式C2H2Cl2分子属点群,其最高对称轴为轴,轴次与点群记号的n相同。当n 为基数时,最高对称轴为,即最高对称轴的轴次是分子点群记号中的n的2倍。例如,H3BO3分子属点群,而最高对称轴为。

在点群的分子中,当n为基数时,最高对称轴为轴或轴,其轴次(n)与点群记号中的n相同。例如,C6H6分子属点群,在最高对称轴为或,轴次与点群记号中的n相同。而当n 为奇数时,最高对称轴为,轴次为点群记号中的n的2倍。例如,CO3-属点群,最高对称轴为,轴次是点群记号中的n的2倍。

在点群的分子中,当n为奇数时,最高对称轴为轴或轴,其轴次与分子点群记号中的n 相同。例如,椅式环己烷分子属点群,其最高对称轴为或,轴次与点群记号中的n相同。当n为偶数时,最高对称轴为,其轴次是点群记号中n的2倍。例如,丙二烯分子属点群,最高对称轴为。轴次是点群记号中的n的2倍。

(d)正确。可以证明,若一个分子具有反轴对称性,即拥有对称中心,镜面或4m(m为正整数)次反轴,则它就能被任何第二类对称操作(反演,反映,旋转-反演或旋转-反映)复原。若一个分子能被任何第二类对称操作复原,则它就一定和它的镜像叠合,即全同。因此,分子本身有镜面时,其镜像与它本身全同。

【】联苯有三种不同构象,两苯环的二面角分别为:(a),(b),(c),试判断这三种构象的点群。

解:

【】分子的形状和相似,试指出它的点群。

解:SF6分子呈正八面体构型,属点群。当其中一个F原子被Cl原子取代后,所得分子SF5Cl 的形状与SF6 分子的形状相似(见图),但对称性降低了。SF5Cl分子的点群为。

图 SF5Cl的结构

【】画一立方体,在8个顶角上放8个相同的球,写明编号。若:(a)去掉2个球,(b)去掉3个球。分别列表指出所去掉的球的号数,指出剩余的球的构成的图形属于什么点群?解:图示出8个相同求的位置及其编号。

(a)去掉2个球:

【】判断一个分子有无永久偶极矩和有无旋光性的标准分别是什么?

解:凡是属于和点群的分子都具有永久偶极距,而其他点群的分子无永久的偶极距。由于,因而点群也包括在点群之中。

凡是具有反轴对称性的分子一定无旋光性,而不具有反轴对称性的分子则可能出现旋光性。“可能”二字的含义是:在理论上,单个分子肯定具有旋光性,但有时由于某种原因(如消旋或仪器灵敏度太低等)在实验上测不出来。

反轴的对称操作是一联合的对称操作。一重反轴等于对称中心,二重反轴等于镜面,只有4m次反轴是独立的。因此,判断分子是否有旋光性,可归结为分子中是否有对称中心,镜面和4m次反轴的对称性。具有这三种对称性的分子(只要存在三种对称元素中的一种)皆无旋光性,而不具有这三种对称性的分子都可能有旋光性。

【】作图给出可能的异构体及其旋光性。

解:见图

【】由下列分子的偶极矩数据,推测分子立体构型及其点群。

(a)

(b)

(c)

(d)

(e)

(f)

(g)

解:

注:由于N原子中有孤对电子存在,使它和相邻3个原子形成的化学键呈三角锥形分布。

【】指出下列分子的点群、旋光性和偶极矩情况:

(a)(b)(c)

(d)(环形)(e)(交叉式)

(f)(g)

3

【】请阐明表4.4.3中4对化学式相似的化合物,偶极矩不同,分子构型主要差异是什么?解:在C2H2分子中,C原子以sp杂化轨道分别与另一C原子的sp杂化轨道和H原子的1s 轨道重叠形成的两个键;两个C原子的轨道相互重叠形成键,轨道相互重叠形成键,分子呈直线形,属点群,因而偶极距为0。而在H2O2分子中,O原子以杂化轨道(也有人认为以纯p轨道)分别与另一个O原子的杂化轨道和H原子的1s轨道重叠形成的两个夹角为的键;两键分布在以过氧键为交线、交角为的两个平面内,分子呈弯曲形(见题答案附图),属点群,因而有偶极距。

在C2H4分子中,C原子以杂化轨道分别与另一C原子的杂化轨道及两个H原子的1s轨道重叠形成共面的3个键;两C原子剩余的p轨道互相重叠形成键,分子呈平面构型,属点群()。对于N2H4分子,既然偶极距不为0 ,则其几何构型既不可能是平面的:

也不可能是反式的:

它应是顺式构型:

属点群[见题(f)],或介于顺式和反式构型之间,属点群。

反式-C2H2Cl2和顺式-C2H2Cl2 化学式相同,分子内成键情况相似,皆为平面构型。但两

者对称性不同,前者属点群,后者属点群。因此,前者偶极距为0,后者偶极距不为0。

分子的偶极距为0 ,表明它呈平面构型,N原子以杂化轨道与C原子

成键,分子属点群。分子的偶极距不为0,表明S原子连接的两苯环不共面。可以推测,S原子以杂化轨道成键,分子沿着连线折叠成蝴蝶形,具有点群的对称性。

【】已知连接苯环上键矩为,键矩为。试推算邻位、间位和对位的的偶极矩,并与实验值,,相比较。

解:若忽略分子中键和键之间的各种相互作用(共轭效应、空间阻碍效应和诱导效应等),则整个分子的偶极距近似等于个键距的矢量和。按矢量加和规则,C6H4ClCH3三种异构体的偶极距推算如下:

由结果可见,C6H4ClCH3 间位异构体偶极距的推算值和实验值很吻合,而对位异构体和邻位异构体,特别是邻位异构体两者差别较大。这既与共轭效应有关,更与紧邻的Cl原子和-CH3之间的空间阻碍效应有关。事实上,两基团夹角大于。

【】水分子的偶极矩为,而只有,它们的键角值很近,试说明为什么的偶极矩要比小很多。

解:分子和均属于点群。前者的键角为,后者的键角为。由于O和H两元素的电负性差远大于O和F两元素的电负性差,因而键矩大于键矩。多原子分子的偶极矩近似等于各键矩的矢量和,H2O分子和F2O分子的偶极距可分别表达为:

因为两分子键角很接近,而远大于,所以H2O分子的F2O分子的偶极距比F2O分子的偶极距大很多。不过,两分子的偶极距的方向相反,如图所示。

【】八面体配位的有哪些异构体?属什么点群?旋光性情况如何?

解:有如下两种异构体,它们互为对应体,具有旋光性,属点群,如图所示。

图配位结构式意图

【】利用表4.4.5所列有关键的折射度数据,求算分子的摩尔折射度值。实验测定醋酸折射率,密度为,根据实验数据计算出实验值并进行比较。

解:摩尔折射率是反映分子极化率(主要是电子极化率)大小的物理量。它是在用折射法测

定分子的偶极距时定义的。在高频光的作用下,测定物质的折光率n,代入Lorenz-Lorentz 方程:

即可求得分子的摩尔折射度。常用高频光为可见光或紫外光,例如钠的D线。

摩尔折射率具有加和性。一个分子的摩尔折射度等于该分子中所有化学键摩尔折射度的和。据此,可由化学键的摩尔折射度数据计算分子的摩尔折射度。将用此法得到的计算值与通过测定n,d等参数代入Lorenz-Lorentz方程计算得到的实验值进行比较,互相验证。

利用表中数据,将醋酸分子中各化学键的摩尔折射度加和,得到醋酸分子的摩尔折射

度:

R计

将n,d等实验数据代入Lorenz-Lorentz方程得到醋酸分子的摩尔折射度:

R实

结果表明,计算值和实验值非常接近。

【】用群的元进行相似变换,证明4个对称操作分四类。[提示:选群中任意一个操作为,逆操作为,对群中某一个元(例如)进行相似变换,若,则自成一类。]

解:一个对称操作群中各对称操作间可以互相交换,这犹如对称操作的“搬家”。若将群中某一对称操作X借助于另一对称操作S变换成对称操作Y,即:

则称Y与X共轭。与X共轭的全部对称操作称为该群中以X为代表的一个级或一类级。级的阶次是群的阶次的一个因子。

若对称操作S和X满足:

则称S和X这两个操作为互换操作。互换操作一定能分别使相互的对称元素复原。例如,反式-C2H2Cl2中和可使和复原。若一个群中每两个操作都是互换的,则这样的群称为互换群。可以证明,任何一个四阶的群必为互换群(读者可以用和等点群为例自行验证)。在任何一个互换群中,每个对称操作必自成一个级或类。这一结论可证明如下:

设X为互换群中的任一操作,S为群中X以外的任一操作,根据互换群的性质,有:

将上式两边左乘,得:

这就证明了X按S变换成的对称操作仍为X。即X自成一类。

点群为4阶互换群,它的4个对称操作是:。选以外的任一对称操作(例如)对进行相似变换:

(因为,故可以将第一个表示矩阵右上角的-1去掉)

根据上述说明,自成一类。同理,其它3个对称操作也各自成一类。这就证明了点群的4个对称操作分4类。

【】用群的元进行相似变换,证明6个对称操作分三类。

证明:点群是6阶群,其乘法表如下:

相应的对称图像和对称元素系表示于图。

(1)根据乘法表可得:

(反映操作与其逆操作相等)

由上题的说明可知,是相互共轭的对称操作,它们形成以为代表的一类。当然,亦可借助于以外的任一对称操作对进行相似交换,或借助于以外的任一对称操作对进行相似变换,结果相同。

(2)根据乘法表得:

根据(1)相同的理由,和共轭,形成一类。借助于以外的任一对称元素对进行相似变换,结果相同。

(3)在任何群中,,即主操作自成一类。

综上所述,群的6个对称操作分成三类,即3个反映操作形成一类,两个旋转操作也形成一类,主操作自成一类。

【】试述红外活性的判据。

解:严格意义上的红外光谱包括处在近红外区和中红外区的振动光谱及在远红外或微波区的转动光谱。但通常所说的红外光谱是指前者,而把后者称作远红外光谱。

分子在一定条件下产生红外光谱,则称该分子具有红外活性。判断分子是否具有红外活性的依据是选择定则或称选律。具体的说:

非极性双原子分子,,不产生振动-转动光谱,即无红外活性。极性双原子分子,……,,产生振动-转动光谱,即有红外活性。

在多原子分子中,每一种振动方式都有一特征频率,但并非所有的振动频率都能产生红外吸收从而得到红外光谱。这是因为分子的红外光谱起源于分子在振(转)动基态和振(转)动激发态之间的跃迁。可以证明,只有在跃迁过程中有偶极距变化的振(转)动()才会产生红外光谱。偶极距改变大者,红外吸收带就强;偶极距变化小者,吸收带弱;偶极距不变者,不出现红外吸收,即为非红外活性。

【】试述活性的判据。

解:Raman光谱的选律是:具有各向异性的极化率的分子会产生Raman光谱。例如H-H分子,当其电子在电场作用下沿轴方向变形大于垂直于键轴方向时,就会产生诱导偶极距,出现Raman光谱活性。

利用群论可很方便地判断分子的哪些振动具有红外活性,哪些振动具有Raman活性。判断的标准是:

(1)若一个振动隶属的对称类型和偶极距的一个分量隶属的对称类型相同,即和(或,或)隶属的对称类型相同,则它具有红外活性。

(2)若一个振动隶属的对称类型和极化率的一个分量隶属的对称类型相同,即一个振动隶属于这样的二元乘积中的某一个,或者隶属于这样的一个乘积的组

合,则它就具有Raman活性。

【】将分子或离子:,,,,,丁三烯,,等按下列条件进行归类:

(a)既有极性又有旋光性;

(b)既无极性又无旋光性;

(c)无极性但有旋光性;

(d)有极性但无旋光性。

解:

(a)FHC=C=CHF(C2)

(b)丁三烯(),(),()

(c)

(d)

【】写出,,,,椅式环己烷,等分子所属的点群。

解:

分子点群

椅式环己烷

【】正八面体6个顶点的原子有3个被另一个原子取代,有几种可能的方式?取代产物各属于什么点群?取代后所得产物是否具有旋光性和偶极矩?

解:只有下列两种取代方式,产物a属于点群,产物b属于点群。两产物皆无旋光性,而皆有偶极距。

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

结构化学课后答案第四章

04分子的对称性 【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。 解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞ 【4.2】写出3H CCl 分子中的对称元素。 解:()3,3C υσ 【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。 解:依据三重映轴S 3所进行的全部对称操作为: 1133h S C σ=,2233S C =, 33h S σ= 4133S C =,52 33h S C σ=,63S E = 依据三重反轴3I 进行的全部对称操作为: 1133I iC =,2233I C =,3 3I i = 4133I C =,5233I iC =,63I E = 【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。 解:依据S 4进行的全部对称操作为: 1121334 4442444,,,h h S C S C S C S E σσ==== 依据4I 进行的全部对称操作为: 11213344442444,,,I iC I C I iC I E ==== 【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。 解: 100010001xz σ????=-??????, ()1 2100010001x C ?? ??=-?? ??-?? 【4.6】用对称操作的表示矩阵证明: (a ) ()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ= 解: (a ) ()()11 2 2xy z z x x x C y C y y z z z σ-?????? ??????==-?????? ??????--??????, x x i y y z z -????????=-????????-????

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

分子的对称性与点群

分子的对称性与点群 摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。 关键词:对称性点群对称操作 一.对称操作与点群 如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。描述分子的对称性时,常用到“点群”的概念。所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。而全部对称元素的集合构成对称元素系。每个点群具有一个持定的符号。一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。 二.分子中的对称元素和对称操作 2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。作 分别用E、E^表示。这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。

2.2旋转轴和旋转操作 分别用C n 、 C ^n 表示。 如果一个分子沿着某一轴旋转角度α能使分 子复原,则该分子具有轴C n , α是使分子复原所旋转的最小角度, 若一个分子中存在着几个旋转轴,则轴次高的为主轴 (放在竖直位 置),其余的为副轴。分子沿顺时针方向绕某轴旋转角度 α,α=360° /n (n=360°/α(n=1,2,3……) 能使其构型成为等价构型或复原, 即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分 子具有 n 次对称轴。n 是使分子完全复原所旋转的次数, 即为旋转 轴的轴次, 对应于次轴的对称操作有n 个。 C n n =E ﹙上标n 表示操 作的次数,下同﹚。 如NH3 (见图 1) 旋转 2π/3 等价于旋转 2π (复 原), 基转角 α=360°/n C3 - 三重轴;再如平面 BF3 分 子, 具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以 上 的旋转轴,则轴次最高的为主轴。 2.3 对称面与反映操作 分别用σ、σ^表示。对称面也称为镜面, 它将分子分为两个互为镜 像的部分。对称面所对应的操作是反映, 它使分子中互为镜像的两 个部分交换位置而使分子复原。 σ^?=E ^ ﹙n 为偶数﹚, σ^2n =E ^﹙n 为奇数﹚。 对称面又分为: σh 面﹙垂直于主轴的对称面﹚、σ v 面﹙包含主轴的对称面﹚与σd 面﹙包含主轴并平分垂直于主轴的两 个C 2轴的夹角的平面﹚, σd 是σv 面的特殊类型。 图1

分子结构和对称性

普化无机试卷(分子结构和对称性) 一、填空题 1. (1801) ClO 2F 的结构是 ,其点群是 。 2. (1802) 用VSEPR 理论判断H 2Se 和H 3O +的结构和点群分别是H 2Se 和H 3O + 。 3. (1804) 如果金属三羰基化合物分别具有C 3v 、D 3h 和C s 对称性,其中每一种在IR 光谱中的CO 伸缩振动谱带数各有 , 和 个。 4. (1806) PF 5分子和SO 32 -离子的对称群(若有必要,可利用VSEPR 理论确定几何形状)分别是 和 。 5. (1807) NH 4+中的C 3轴有 个,各沿 方向。 6. (1808) 二茂钌分子是五角棱柱形,Ru 原子夹在两个C 5H 5环之间。该分子属 点群, 极性(有、无)。 7. (1809) CH 3CH 3具有S 6轴的构象是 。 8. (1813) (H 3Si)3N 和(H 3C)3N 的结构分别是 和 ,原因是 。 9. (1814) 下列分子(或离子)具有反演中心的是 ,具有S 4轴的是 。 (1) CO 2,(2) C 2H 2,(3) BF 3,(4) SO 42 - 10. (1815) 平面三角形分子BF 3,四面体SO 42 -离子的点群分别是 和 。 11. (1817) 确定下列分子或离子的点群: (1) CO 32 - ;(2) SiF 4 ;(3) HCN ; (4) SiFClBrI 12. (1818) (1) 手性的对称性判据是 。

(2) NH2Cl,CO32-,SiF4,HCN,SiFClBrI,BrF4-中具有光学活性的是。 13. (1822) 分子中的键角受多种因素的影响,归纳这些因素并解释下列现象。 OF2< H2O AsF3 > AsH3 101.5?104.5?96.2?91.8? 14. (1829) 配离子[Cr(ox)3]3-(其中ox代表草酸根[O2CCO2]2-)的结构属于D3群。该分子(是、否)为手性分子。因为。 二、问答题 15. (1800) 绘出或写出AsF5及其与F-形成的配合物的分子形状(若需要,可使用VSEPR理论),并指出其点群。 16. (1803) 有关O2配位作用的讨论中认定氧有O2、O2-和O22-等三种形式。试根据O2的分子轨 道能级图,讨论这些物种作为配体时的键级、键长和净自旋。 17. (1805) 已知N、F、H的电负性值分别为3.04、3.98和2.20,键的极性是N—F大于N—H,但分子的极性却是NH3 >NF3,试加以解释。 18. (1810) (一) 试说明哪些对称元素的存在使分子没有偶极矩? (二) 用对称性判断确定下列分子(或离子)中哪些有极性。 (1) NH2Cl,(2) CO32-,(3) SiF4,(4) HCN,(5) SiFClBrI,(6) BrF4- 19. (1811) 长久以来,人们认为H2与I2的反应是典型的双分子反应:H2和I2通过侧向碰撞形成一个梯形活化配合物,然后I—I键、H—H键断裂,H—I键生成。请从对称性出发,分析这种机理是否合理。 20. (1812) 画出或用文字描述下列分子中对称元素的草图: (1) NH3分子的C3轴和σv对称面; (2) 平面正方形[PtCl4]2-离子的C4轴和σh对称面。 21. (1816) 确定下列原子轨道的对称元素: 轨道。 (1) s轨道;(2) p轨道;(3) d xy轨道;(4) d z2 22. (1819) H2O和NH3各有什么对称元素?分别属于什么点群? 23. (1820)

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

函数的对称性应用

函数的对称性应用(一) ──含绝对值函数的图象 内蒙古赤峰市翁牛特旗乌丹一中熊明军 在学习函数时,若将函数的自变量或应变量带上绝对值“”,再研究其性质就不仅仅要从函数的角度来考虑,还得结合绝对值的意义来共同探讨。 图象是刻画变量之间关系的一个重要途径。函数图象是函数的一种表示形式,是形象直观地研究函数性质的常用方法,是数形结合的基础和依据。本文针对含绝对值函数的性质进行分析,然后利用对称性作出函数图象,并借助图象来展示绝对值对函数性质特征的影响。 一、含绝对值的函数常见情况的分类: 已知函数,叫做函数的自变量;叫做函数的应变量(函数值)。 ①对自变量取绝对值:;②对应变量取绝对值:; ③对全都取绝对值:;④对整个函数取绝对值:; ⑤对都取绝对值:;⑥部分自变量取绝对值:。 二、分析不同情况含绝对值函数的性质特点及图象作法: ①对自变量取绝对值: 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象

②对应变量取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象 ③对全都取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,它与点关于轴对称、与点关于轴对称且与点关于原点对称。因为点、、 与都在函数上,所以函数图象关于轴、轴及原点对称。 【作图步骤:】 (1)作出函数的图象; (2)保留(第一象限)时函数的图象; (3)利用对称性作出(2)中图象关于轴、轴及原点对称后的图象。

高中函数对称性总结分析

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

函数的对称性

函数的对称性 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点 ()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

函数的对称性完美

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

高考数学复习专题函数的对称性与周期性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x += 轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x += 为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到 ()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。 3、中心对称的等价描述: (1)()()f a x f a x -=-+?()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数) (2)()()()f a x f b x f x -=-+?关于,02a b +?? ??? 轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

高一数学函数的对称性知识点总结

高一数学《函数的对称性》知识点总结 高一数学《函数的对称性》知识点总结 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得:

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析 对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。 一、 几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称。 4、如果函数 )(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。 5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。 6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与)(x f y -=关于X 轴对称。 2、曲线)(x f y =与)(x f y -=关于Y 轴对称。 3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。 4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。 5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。 6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。 7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时, 512)(+=x x f ,则=)20(log 2f ________。 2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。 3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。 4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________ 对称。 5、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=+,则)1(+=x f y 的图象关于__________对称。)(x f y =图象关于__________对称。 6、设)(x f y =的定义域为R ,且对任意R x ∈,有)2()21(x f x f =-,则)2(x f y =图象关于__________对称,)(x f y =关于__________对称。 7、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18 8、设函数 )(x f y =的定义域为R ,则下列命题中,①若)(x f y =是偶函数,则)2(+=x f y 图象

分子结构和对称性

普化无机试卷(分子结构和对称性)答案 一、填空题 1. (1801) 锥形,C s 2. (1802) 弯曲形,C2v;锥形,C3v 3. (1804) 2,1,3 4. (1806) D3h,C3v 5. (1807) 4,1个N—H键 6. (1808) D5h,无 7. (1809) “交错式”构象 8. (1813) 平面三角形,三角锥,Si上的空d轨道和N上的孤对电子有π成键作用,降低了N上孤对电子的电子云密度。 9. (1814) 2- CO2,C2H2;SO 4 10. (1815) D3h,T d 11. (1817) (1) D3h;(2) T d;(3) C∞v;(4) C1 12. (1818) (1) 没有S n对称元素;(2) SiFClBrI。 13. 1 分(1822) (1) 中心原子的孤对电子的数目将影响键角,孤对电子越多、键角越小。 (2) 配位原子的电负性越大,键角越小,中心原子的电负性越大,键角越大。 (3) 多重键的存在使键角变大。 在上述OF2和H2O分子中,F的电负性大于H,成键电子对更靠近F,排斥力减小,故键角减小。 在AsF3和AsH3、除上述电负性因素外,主要还因As—F之间生成反馈p - dπ键,使As与F之间具有多重键的性质,故键角增大。 14. (1829) 是,D3群由对称元素E、C3、3C2组成,不含非真旋转轴(包括明显的和隐藏的), 二、问答题( 共16题90分) 15. (1800) AsF5三角双锥(D3h);AsF6-正八面体(O h)。

F F 16. (1803) 电中性O 2,双键,较短,三重态; O 2-键级1.5,键较长,二重态; O 2 2-较长的单键,单重态。 17. (1805) 键的极性和分子的极性分别由键的偶极矩和分子的偶极矩来度量。偶极矩是一个矢量,有大小、方向,其大小等于偶极长度乘以电荷,其方向是由正向负。分子的偶极矩等于分子中各偶极矩的矢量之和。因此: NH 3分子的偶极矩等于由三条键偶极矩的矢量之和加上由孤 对电子产生的偶极矩。二者均由下向上,相加的结果 +=, 偶极矩较大。 在NF 3中,由于孤对电子产生的偶极矩与键偶极矩方向不一 致,相加的结果+=,偶极矩较小。 18. (1810) (一) 含有i ,或其它对称元素有公共交点的分子没有偶极矩,或者说不属于C n 或C n v 点群的分子; (二) (1)、(4)、(5)可能是。 19. (1811) 根据分子轨道能级图,H 2的HOMO 是σ (s )MO ,LUMO 是σ*(s ),而I 2的HOMO 是π *(p ),而LUMO 是σ*(p )。如果进行侧碰撞,有两种可能的相互作用方式: (1) 由H 2的HOMO 即σ (s )MO 与I 2分子LUMO 即σ*(p )相互作用。显然对称性不匹配, 净重叠为0,为禁阻反应。 (2) 由I 2的HOMO 即π*(p )与H 2的LUMO 即σ*(s )相互作用,对称性匹配,轨道重叠不为0。然而若按照这种相互作用方式,其电子流动是I 2的反键流向H 2的反键,对I 2来讲电子流动使键级增加,断裂不易;而且,从电负性来说,电子由电负性高的I 流向电负性低的 H 也不合理。 N H H H N F F F H 2 HOMO I 2 LUMO I 2 HOMO H 2 LUMO

函数图象的对称性在高考中的应用

函数图象的对称性在高考中的应用 众所周知,函数历来是高考的重点内容之一,高考对函数的考查离不开函数性质的研究应用,特别是函数的单调性与奇偶性更是高考命题的热点,理应成为高三复习的重点.函数图像的对称性作为奇偶性拓展与延伸,在各类高考试题和模拟题中更是屡见不鲜,同时也是出错率非常高的题目. 如果从图象的角度审视函数,有两类比较特殊的函数,一类是它们图象成中心对称,一类是它们图象成轴对称,那么这样的函数具有什么性质呢?不难发现,这两类函数图象总可以通过适当的平移,转化为具有奇偶性的函数,下面就对有关函数对称性和奇偶性的性质做一总结. 有关函数对称性与奇偶性的一些重要性质:自对称与互对称问题 (1)若函数()f x 为奇函数,则()()()()0f x f x f x f x -=-+-=;;()f x 的图象关于原点对称,反之亦成立. (2)若函数()f x 为偶函数,则()()()()2()f x f x f x f x f x -=+-=;;()()f x f x =;()f x 的图象关于y 轴对称,反之亦成立. 推论:函数()-f x a 的图象关于直线x a =对称. (3)若函数()f x 对任意自变量x 都有()()f x a f a x -=-,则()f x 的图象关于直线0x =对称,反之亦成立. (4)若函数()f x 对任意自变量x 都有()()f a x f a x -=+,则()f x 的图象关于直线x a =对称,反之亦成立. (5)若函数()f x 对任意自变量x 都有()+()=2f a x f a x b -+,则()f x 的图象关于点(,)a b 对称,反之亦成立. (6)若函数()f x 对任意自变量x 都有(2)()f a x f x -=,则()f x 的图象关于直线x a =对称,反之亦成立. (7)若函数()f x 对任意自变量x 都有()()f a x f b x +=-,则()f x 的图象关于直线2 a b x +=对称,反之亦成立. (8)函数()f x 与函数()f x -的图象关于y 轴对称,反之亦成立.

知识点:函数的对称性总结

知识点:函数的对称性总结 函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个 方面来探讨函数与对称有关的性质。 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P

与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且 2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, f (x) + f (2a-x) =2c,用2b-x代x得: f (2b-x) + f [2a-(2b-x) ] =2c(*)

相关主题