搜档网
当前位置:搜档网 › 三维云的建模和绘制

三维云的建模和绘制

三维云的建模和绘制
三维云的建模和绘制

重庆市三维两江四岸三维仿真模型数据标准-090117

重庆市城市规划三维仿真模型数据标准(试行) 1范围 本标准规定了三维仿真模型的术语、基本规定、成果内容及相关要求、建模要求及三维动画制作要求。 本标准适用两江四岸规划区及其他重点控制区域(以下简称规划控制区)的现状三维模型、城市设计三维成果,以及规划控制区内的新建、改造建设项目三维模型成果制作。 2术语 2.1现状三维模型 指真实反映现状地形、基础设施、自然景观以及建筑外观和风格的虚拟现实模型。 2.2城市设计三维模型 指侧重于城市空间形态和环境的整体构思和安排,表达规划编制范畴的城市空间布局、景观形象、地形、基础设施以及建筑设计的虚拟现实模型。 2.3建设项目三维模型 指在行政审批环节中反映的建设项目的建筑体量、建筑外形和风格、外立面及建筑布局的规划方案虚拟现实模型。 3基本规定 3.1基础地形建模要求 1)城市规划区域的数字高程模型必须采用1:500地形图,地表纹理信息根据规划设计方案的景观设计材质库中选取相应的图片。 2)城市建成区域的数字高程模型必须采用1:500地形图,地表纹理信息由实地拍摄的数码照片,拍照应使用500万像素以上的广角照相机。 3)其他区域的数字高程模型可采用用1:2000或1:1万地形图,地表纹理信息由1:2000真彩色正射影像或分辨率不小于1m的彩色卫星影像图片获取。 3.2空间参考系要求 1)大地基准:必须采用重庆市独立坐标系。 2)高程基准:必须采用1956年黄海高程系。 4成果内容及相关要求 4.1成果文件内容 三维模型成果必须经过烘培,能够真实而艺术地反映地形地貌、基础设施、自然景观以及建筑外观和设计风格。三维成果必须包含以下内容: 1)三维渲染整体效果图,图像分辨率不小于2048×2048,图片格式采用*.tif。 2)带材质贴图且经过烘培的三维仿真模型,文件格式为3DS MAX 7.0或以上的*.max,贴图为tif格式。 3)对于建设项目三维模型,必须提交项目总平面、剖面图、立面图、平面图等电子文件,文件格式为AutoCAD2005的*.dwg格式。 4)对于城市设计成果,必须提交相应三维动画(A VI)资料。

三维点云处理软件需求说明资料讲解

三维激光扫描仪点云数据处理软件需求说明 点云数据处理软件是专用扫描软件、数据处理软件、CAD软件接口及应用于检测监测、对比分析的软件。 基本描述 点云数据处理软件能够用于海量点云数据的处理(点云数量无限制,先进内存管理)及三维模型的制作。支持模型的对整、整合、编辑、测量、检测监测、压缩和纹理映射等点云数据全套处理流程。能够基于点云进行建模,拥有规则组建智能自动建模功能(一键自动建模)要求能够精细再现还原现场。具有真彩色配准模块,扫描物体点云的颜色即为物体真实的颜色。相机彩色图片可以配准贴图到三维模型。 1.可直接操作激光扫描仪进行数据采集、输入及输出。可接受多种数据格式,如AutoCAD dxf、obj、asc、dgn、pds、pdms等,可接受自定义格式的文本文件输入。 2.软件应具高精度和高可靠性,能够进行点云数据拼接、纹理贴图、特征线的提取、具有点云数据渲染、点云数据压缩、三角网模型生成、几何体建模等功能,软件快速、准确、易操作性。 3.可以智能地自动提取出特征线,同时也可提供人工方式进行特征线的提取。 4.能够提供多种断面生成方式,可以方便地生成一系列的断面线。生成的断面可以方便的导出到CAD及其它软件中做进一步加工处理和应用。应能够提供非常精确的量测物体尺寸的方法。 5.需要一体化软件且具备完整功能1). Registration模块:多种点云拼接模式、导线平差、引入地理参考、目标识别2). Office Survey模块:任意点云导入导出;点云的裁剪、取样、过滤;提取线形地物;在办公室任意量测数据;任意纵横断面;点云矢量化;3D等高线及标注;三角格网生成;任意形体建模;隧道及道路;任意体积面积计算;点云着色;纹理贴图;连续正射影像3).Modeling模块:

DEM三维模型Word版

在Arcgis中利用分层设色法实现DEM可视化分析,生成立体等高线、三维线框透视图、地形三维表面模型。 数据:汤国安ARCGIS数据里的DEM 分层设色法: 1、基于高程的分带设色 一、提取等高线 工具:空间分析里的,设置参数: 二、分层设色 对DEM进行分层设色。

生成的图: 2、基于高程数据的灰度影像 建立等立体等高线 打开ARCSCENE,添加等高线,在等高线的属性里面设置:

生成:

三维线框图 1、将等高线转换成点要素 执行命令【数据管理|要素|要素转点】 得到: 2、利用上述点建立TIN 执行命令【3D分析工具|TIN管理|建立TIN】 得到: 3、在Arcscene里面将TIN转换成三角形 执行命令【3D分析|转换|由TIN转出|TIN 三角形】,并调整填充颜色的显示得到:

地形三维表面模型 利用上述构成的三维线框图添加面的显示。 再把上述之前建立好的等高线加上来,并调整透明度【图层属性|符号系统|唯一值设置|高级|透明度】,得到 注:这里因为点数较少,所以得到的线框图比较简单,所以也就导致最后的三维表面模型有点生硬,不够贴合实际。 二、利用ARCGIS软件,基于地形晕渲法模拟一天中南京地形的光照变化(因为找到的南京地区的数据有问题,不能用,所以就用其他的DEM数据代替。) 1、提取坡度、坡向 利用【空间分析|表面|坡度、坡向】 得到:

2、利用山体阴影提取当地在不同太阳方位角和高度角(参考坡向和)得到的图: 太阳方位角=225°,高度角=15°方位角=315°,高度角=15° 太阳方位角=225°,高度角=60°方位角=315°,高度角=60° (注:可编辑下载,若有不当之处,请指正,谢谢!)

三维激光扫描分类及工作操作规范

三维激光扫描分类及工作 操作规范 Revised by Hanlin on 10 January 2021

一、地面激光扫描系统 1、概述 地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。 2、工作原理 三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。进而转 换成绝对坐标系中的三维空间位置坐标或三维模型。 3、作业流程 整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。(1)、数据获取 利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。这些原始数据一并存储在特定的工程文件

综治三维可视智能管理平台介绍

综治三维可视智能管理平台介绍 北京正安维视科技股份有限公司 2017年12月

1、综治信息化需求 随着信息化建设的不断发展,越来越多的监控摄像机被应用于综合治理工作中,但是摄像机数量的增长却与综合治理工作所需的快速反应需求呈现出反比趋势。随着空间离散视频的急剧增长,对管理人员的要求日益增高,相似场景混淆的概率亦在增加,对于整合优化空间离散视频数据的需求应运而生。 1. 综治重点区域无盲区无死角监控 在传统视频监控建设模式下,为了实现重点区域从全局到微观的无缝监控,一般是重叠和重复部署监控摄像机,而随着监控摄像机数量的增多并没有完全解决无盲区全覆盖的问题,既存在部分区域监控摄像机过多的问题,也存在部分区域由于前期不合理规划或者后期不及时维护带来的监控盲区,需提供有效的分析监控盲区工具,对摄像机资源进行优化布置,以便及时补充,彻底解决监控死角和盲点问题。 2.对综治全区域的实时动态有效掌控 现有综治指挥中心视频监控系统显示分镜头画面过多,指挥中心受到屏幕数量的制约,需要轮流切换多个分镜头画面。摄像机轮询模式与实际场景的空间位置没有关联,监控视角和轮巡切换方式不符合人的视觉习惯。指挥中心管理人员有限、精力有限,在海量视频数据冲击下,导致管理人员应接不暇,身心俱疲,使得视频监控沦为事后责任追究的被动工具,无法对综治重点区域整体场景进行连续的实时监测和有效掌控。同时,传统分镜头视频监控系统缺乏有效的手段识别多个体、多区域、跨镜头的协同活动,从而有可能造成分析的偏差或错误,决断的延迟或错漏,乃至应急响应的迟误。 3.突发异常情况下重点目标的快速锁定 综治区域一旦出现紧急警情,指挥人员需要快速锁定关注目标所在的位置,并选择最佳视角的实时视频以获得重要信息,尽快做出判断和响应。现有指挥中心视频监控系统中由于缺乏快速定位目标的方法,无法快速锁定重点目标位置,也无法快速调取重点目标最佳视角视频,不便于指挥协调和查处。 4.对综治全区域可疑行为的快速反查 在现有综治指挥中心视频监控系统中,主要依靠手工查验海量分镜头视频进行逐一回放和查询,以实现历史事件反查。分镜头监控视频方向感差,依靠分镜头进行事后追查不仅费时费力,而且公共区域现场历史事件整体布局难以体现,无法清晰的看出关注目标在全场景中的整体运动轨迹,需要提供一种能够直观的、全景的呈现历史事件发生始末的方法。 随着综治网格化管理工作的日益繁重,如何在不增加人力的情况下,依托现有视频监控

三维点云数据处理的技术研究

三维点云数据处理的技术研究 中国供求网 【摘要】本文分析了大数据领域的现状、数据点云处理技术的方法,希望能够对数据的技术应用提供一些参考。 【关键词】大数据;云数据处理;应用 一、前言 随着计算机技术的发展,三维点云数据技术得到广泛的应用。但是,受到设备的影响,数据获得存在一些问题。 二、大数据领域现状 数据就像货币、黄金以及矿藏一样,已经成为一种新的资产类别,大数据战略也已上升为一种国家意志,大数据的运用与服务能力已成为国家综合国力的重要组成部分。当大数据纳入到很多国家的战略层面时,其对于业界发展的影响那是不言而喻的。国家层面上,发达国家已经启动了大数据布局。2012年3月,美国政府发布《大数据研究和发展倡议》,把应对大数据技术革命带来的机遇和挑战提高到国家战略层面,投资2亿美元发展大数据,用以强化国土安全、转变教育学习模式、加速科学和工程领域的创新速度和水平;2012年7月,日本提出以电子政府、电子医疗、防灾等为中心制定新ICT(信息通讯技术)战略,发布“新ICT计划”,重点关注大数据研究和应用;2013年1月,英国政府宣布将在对地观测、医疗卫生等大数据和节能计算技术方面投资1(89亿英镑。 同时,欧盟也启动“未来投资计划”,总投资3500亿欧元推动大数据等尖端技术领域创新。市场层面上,美通社发布的《大数据市场:2012至2018年全球形势、发展趋势、产业

分析、规模、份额和预测》报告指出,2012年全球大数据市场产值为63亿美元,预计2018年该产值将达483亿。国际企业巨头们纷纷嗅到了“大数据时代”的商机,传统数据分析企业天睿公司(Teradata)、赛仕软件(SAS)、海波龙(Hy-perion)、思爱普(SAP)等在大数据技术或市场方面都占有一席之地;谷歌(Google)、脸谱(Facebook)、亚马逊(Amazon)等大数据资源企业优势显现;IBM、甲骨文(Oracle)、微软(Microsoft)、英特尔(Intel)、EMC、SYBASE等企业陆续推出大数据产品和方案抢占市场,比如IBM公司就先后收购了SPSS、发布了IBMCognosExpress和InfoSphereBigInsights 数据分析平台,甲骨文公司的OracleNoSQL数据库,微软公司WindowsAzure 上的HDInsight大数据解决方案,EMC公司的 GreenplumUAP(UnifiedAnalyticsPlat-form)大数据引擎等等。 在中国,政府和科研机构均开始高度关注大数据。工信部发布的物联网“十二五”规划上,把信息处理技术作为四项关键技术创新工程之一提出,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分,而另外三项:信息感知技术、信息传输技术、信息安全技术,也都与大数据密切相 关;2012年12月,国家发改委把数据分析软件开发和服务列入专项指南;2013年科技部将大数据列入973基础研究计划;2013年度国家自然基金指南中,管理学部、信息学部和数理学部都将大数据列入其中。2012年12月,广东省启了《广东省实施大数据战略工作方案》;北京成立“中关村大数据产业联盟”;此外,中国科学院、清华大学、复旦大学、北京航空航天大学、华东师范大学等相继成立了近十个从事数据科学研究的专门机构。中国互联网数据中心(IDC)对中国大数据技术和服务市场2012,2016年的预测与分析指出:该市场规模将会从2011年的7760万美元增长到2016年的6。17亿美元,未来5年的复合增长率达51(4%,市场规模增长近7倍。数据价值链和产业链初显端倪,阿里巴巴、百度、腾

试论3D建模数据的类型、采集方式及建模方法

试论3D建模数据的类型、采集方式及建模方法 1.3D建模数据类型 由于二维GIS数据模型与数据结构理论和技术的成熟,图形学理论、数据库理论技术及其它相关计算机技术的进一步发展,加上应用需求的强烈推动,三维GIS的大力研究和加速发展现已成为可能。因为地理空间在本质上就是三维的,在过去的几十年里,二维制图和GIS的迅速发展和广泛应用,使得不同领域的人们大都接受了将三维世界中的空间实体转化为二维投影的概念数据模型。但随着应用的深入和实践的需要又渐渐暴露出二维GIS简化世界和空间的缺陷,所以有关人员又不得不重新思考地理空间的三维本质特征和在三维空间概念下的一系列地理处理方法。 从三维GIS的角度出发考虑,三维地理空间应有如下不同于二维空间的基本特征: (1)几何坐标增加了第三维信息(Z坐标信息或H坐标信息),即垂向坐标信息。 (2)垂向坐标的增加导致了复杂的空间拓扑关系。其中突出的一点是无论是零维、一维、二维还是三维,在垂向上都具有复杂的拓扑关系;如果说二维拓扑关系在平面上是呈圆状发散伸展的话,那么三维拓扑关系就是在三维空间中的无穷延伸。 (3)三维地理空间中的地理对象具有丰富的内部信息(如属性分布,结构形式、关联特征等)。 过去十来年中,国内外学者围绕三维地理空间构模、三维地质空间构模、以及三维地理空间与三维地质空间集成构模,研究提出了二十余种三维空间数据模型。围绕这些不同特色的,模型的研究和比较,人们试图对三维空间模型机三维空间构模方法进行某种分类,如基于几何描述的分类和基于拓扑描述的分类等。 1.1基于几何描述的分类 若不区分准三维和真三维,则根据三维空间模型对地学空间目标的几何特征的描述是以表面描述方式还是以空间剖分方式,可以分为面元模型和体元模型两类。其中,面元模型采用面元对三维空间对象的表面进行连续或非连续几何描述和特征描述,不研究三维空间对象的内部特征;体元模型采用体元对三维空间对象的内部空间进行无缝完整的空间剖分,不仅描述三维空间对象的表面几何,还研究三维空间对象的内部特征。 基于这两类三维空间模型,形成了3类三维空间模型构模方法,即单一三维构模(single 3Dmodeling)、混合三维构模(compound 3D modeling)和集成三维构模( intergral 3D modeling)。其中,单一三维构模是指采用单一的面元

三维激光扫描数据处理操作说明

三维激光扫描数据处理操作说明 中国地质大学三峡中心 钟成 2015年12月

1. 配置要求 扫描要求:密度高,扫描全面,站间重叠度高。 系统配置:XP系统,32位,有D盘盘符。 软件安装: ILIRS-3D软件包(绿色) polyworks_10_0_3_32bit.exe, chanzhuang.exe和配套库, Geomagic Studio10, TexCapture1.1。 Matlab 10.0 2. 数据预处理 2.1. 数据转换 2.1.1. 数据导入 打开ILIRS-3D软件包中Parser 5.0.1.4中Parser.exe,界面如图2.1.1: 图2.1.1 点击Add找到笔记本中存储扫描数据的文件夹:

出现以下界面: 图2.1.3 工具栏中放大缩小按钮可用于观察扫描范围。 2.1.2. 基本设置 然后点击setting对解压过程进行设置,出现如2.1.4界面。

图2.1.4 其中,Outputfile界面,主要设置输出路径和格式。默认路径在保存点云文件夹下,不用改。默认选择PIF格式,24-bit texture,也就是有颜色信息的点云,如果是8-bit scaled 则是点云强度信息。PIF格式是polyworks支持的格式。如果选择XYZ格式,则以ASCII码形式输出,也可以定义是否需要输出颜色信息。该格式可直接被Geomagic打开。 图2.1.5 2.1. 3. 颜色设置 然后,在最左边列表里选择Color Channel,出现如下界面:

选中, 默认的在会出现相应的照片信息,如果没有,则检查存储扫描数据的文件夹里是否有照片文件。 在里,默认是没有文件内容的,点击,到“ILIRS-3D”软件包,找到文件“10384 CameraCalParam.txt”即可。 2.1.4. 平移参数设置 然后在最左边列表里选择Pan tilt Transform,出现如下界面:

数据处理点云处理

非接触三维扫描测量数据的处理研究 1 点云数据的处理 1.1 噪声点的剔除和失真点的查找.在非接触三维扫描测量过程中,受测量方式、被测量物体材料性质、外界干扰等因素的影响,不可避免地会产生误差很大的点(噪声点)和失真点(跳点).因此在数据处理的第一步,就应利用相关专用软件所提供的去噪声点功能除去那些误差大的噪声点和找出可能存在的失真点[3].失真点的查找需要一定的技巧和经验,下面介绍3种方法供大家参考:①直观检查法.通过图形显示终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕上的孤点剔除.这种方法适合于数据的初步检查,可从数据点集中筛选出一些比较大的异常点.②曲线检查法.通过截面的首末数据点,用最小二乘法拟合得到一条样条曲线,曲线的阶次可根据曲面截面的形状决定,通常为3~4阶,然后分别计算中间数据点pi到样条曲线的距离‖e‖,如果‖e‖大于等于[ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除(见图1).③弦高差方法.连接检查点的前后2点,计算中间数据点pi到弦的距离‖e‖,如果‖e‖ [ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除.这种方法适合于测量点均匀且较密集的场合,特别是在曲率变化较大的位置(见图2). 图1 曲线检查法剔除坏点 图2 弦高差方法 1.2 数据精简.非接触三维扫描测量的突出特点是点云十分密集,数据量极其庞大(在1m2的范围内有数十万个点).若将如此庞大的数据量直接用于曲面构建不仅需要巨大的计算机资源(普通微机可能无法胜任)和很长的计算时间,而且整个处理过程也将变得难以控制,更何况并非所有的测试数据对曲面的构建都有用.因此,有必要在保证一定精度的前提下,对测试数据进行精简.数据精简的原则是在扫描曲率较大的地方保持较多的数据点,在曲率变化较小的地方保持较少的数据点.不同类型的点云采用不同的精简方式.散乱点云可通过随机采样的方法来精简,而对于扫描线点云和多边形点云可采用等间距、倍率、等量及弦偏差等方法进行精减.此外均匀网格法与非均匀网格法也可用来精减点云数据.其中均匀网格法只需选取其中的某些点,无需改变点的位置,可以很好地保留原始数据,特别适合简单零件表面瑕点的快速剔除.由于均匀网格法没有考虑被测物体的表面形状特征,因此它不适合对形状复杂的重要工程部件测试数据的处理.与之相反,非均匀网格法可以根据被测工程部件外部形状特征的实际需要来确定网格的疏密,因此它可在保证后继曲面构建精度的前提下减少数据量,这在处理尺寸变化较大的自由形体方面显得十分有效. 1.3 数据的平滑处理.点云数据中的随机误差将影响到后续曲面的构建及生成三维实体模

平安城市三维网格化安全隐患排查管理信息平台

智慧平安城市建设—三维网格化安全隐患排查管理信息平台 模 块 及 功 能 设 计

为规范全国安全隐患排查治理信息系统建设,满足政企 安全隐患排查治理工作对信息系统的功能需求,实现城市安 全网格化监管和隐患排查治理 标准化、信息化,结合“天眼” 工程,从静态到动态监管。打造出立体、可视化的智慧平安 城市,推进平安、维稳的社会服务体系建设, 深化安全隐患排 查治理建设全国最平安城市。 平台优势 三维网格化安全隐患排查管理信息平台具有以下几点特色优势: 1. 安全日常管理与应急管理的有效结合; 2. 确保与上级、同级应急指挥平台的互联互通; 3. 解决应急预案,满足“实战”需要,即快速有效调出相关信 息供有关人员使用; 5. 平台提供科学的决策工具; 6. 统一的规划,信息共享,多部门互用互享。 二、应急系统业务需求分析 平安城市三维网格化安全隐患排查管理信息平台整体划分为两 大功能模块,即:基础信息管理、应急指挥系统。 平安城市安全隐患排查管理信息系统

1.基础信息管理模块主要是系统管理员对企业重大危险源、应急资源、GIS地理信息、应急预案、知识库、传感器信息、“天眼” 视频监控点信息、事故响应级别分级标准信息以及应急生产调度方案的管理和维护。 应急资源管理模块实现对企业应急救援人员、救援物资、救援装备、医疗救护、专家信息的管理和更新。 GIS地理信息管理模块实现对企事业单位内部及周边地区人口分布、道路属性、建筑物、城市部件、生产装置和管线等信息的管理、更新和地图定位。其中,周边地区是指企业周边2公里的范围。系 统电子地图包括并不限于如下图层:三维地图层、影像(二维)地图层、危险源图层、应急资源图层、道路图层、电话分布图层、传感器分布图层、视频监控点分布图层、避难场所图层和人员分布图层。 应急预案管理模块是对企业应急预案的数字化管理维护。用户可以通过系统完成对应急预案的编制、评审、分级、发布、统计分析、演练、培训等工作。 系统提供知识库管理功能,用户可以在知识库管理界面进行新建、修改、删除和打印等操作。系统知识库包括:常见危险化学品理化性质表、常见危险化学品事故处置程序、常见危化品事故救援人员防护措施和危化品中毒人员救治措施等内容。 系统提供传感器信息管理功能,用户可以在传感器信息管理界面进行浏览、新建、修改、删除和查询等操作,其中传感器信息主要包括:传感器编号、传感器类型和传感器状态等信息。 系统提供视频监控点信息管理功能,用户可以在视频监控点信息管理界面进行浏览、新建、修改、删除和查询等操作。其中,视频监控点信息主要包括视频监控点编号和状态等信息。 系统提供事故响应级别分级标准信息管理功能,用户可以在事故响应级别分级标准信息管理界面进行浏览、新建、修改、删除和查询等操作。其中,事故响应级别分级标准信息主要包括级别名称和分级标准等信息。 系统提供应急生产调度方案管理功能,用户可以在应急生产调度方案管理界面进行浏览、新建、修改、删除和查询等操作。其中,应急生产调度

【WO2019216707A1】使用点云数据处理三维物体图像的方法和设备【专利】

( 1 (51)International Patent Classification:(81)Designated States(unless otherwise indicated,for every G06T15/10(2006.01)G06T15/08(2011.01)kind o f national protection av ailable).AE,AG,AL,AM, AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ, (21)International Application Number: CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO, PCT/KR2019/005655 DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN, (22)International Filing Date:HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP, 10May2019(10.05.2019)KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME, MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ, (25)Filing Language:English OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW, SA, (26)Publication Language:English SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN, TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW. (30)Priority Data: 20184101767910May2018(10.05.2018)IN(84)Designated States(unless otherwise indicated,for every 20184101767930April2019(30.04.2019)IN kind o f regional protection available).ARIPO(BW,GH, GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ, (71)Applicant:SAMSUNG ELECTRONICS CO.,LTD.UG,ZM,ZW),Eurasian(AM,AZ,BY,KG,KZ,RU,TJ, [KR/KR];129,Samsung-ro,Yeongtong-Gu,Suwon-Si,TM),European(AL,AT,BE,BG,CH,CY,CZ,DE,DK, Gyeonggi-do16677(KR).EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV, (72)Inventors:VELAPPAN,Raghavan;A204,Rajini Ashish MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM, Apartments,Tuberahalli,Varthur Road,Bangalore,Kar?TR),OAPI(BF,BJ,CF,CG,Cl,CM,GA,GN,GQ,GW, nataka,560066(IN).VETTUKUZHYPARAMBHIL,KM,ML,MR,NE,SN,TD,TG). Suresh Kumar KrishnanKutty;VettuKuzhiParambhil, Kottamuri P O,Throkkodithanam Changanacherry,Kerala,Published: 686105(IN).DUSI,Pavan Kumar;202,Shivaganga Com?—with international search report(Art.21(3)) plex,Kaggadasapura Main road,Bangalore,Karnataka, 560065(IN).HOLLA,Raghavendra;28/180,15th Main Road,J C Nagar,Bengalur,Karnataka,560086(IN).YA- DAV,Amit;Flat002,Pragathi Corel,K.G.F.Munireddy Layout,B Narayanapura,Mahadevapura,Bangalore,Kar? nataka,560048(IN).DAS,Nachiketa;F6,Chennu homes, 1st cross,Kaggadasapura main road,Bangalore,Karnata? ka,560093(IN).CHUCHRA,Divyanshu;A-302,Nagar- juna Greenwoods Apts,Kadubeesnahalli,Outer Ring Road, Bangalore,Karnataka,560103(IN). (74)Agent:Y.P.LEE,MOCK&PARTNERS;12F Daelim Acrotel,13Eonju-ro30-gil,Gangnam-Gu,Seoul06292 (KR). (54)Title:METHOD AND APPARATUS FOR PROCESSING THREE DIMENSIONAL OBJECT IMAGE USING POINT CLOUD DATA (57)Abstract:An apparatus and method are provided for compressing a three-dimensional(3D)object image represented by point cloud data.The method includes positioning the3D object image into a plurality of equi-sized cubes for compression;determining3D local coordinates in each of the plurality of equi-sized cubes and a cube index for each point of the3D object image positioned in the plurality of equi-sized cubes;generating two-dimensional(2D)image data based on the3D local coordinates and the cube indexes;and storing the2D image data in a memory.The2D image data includes at least one of2D geometry data,2D meta data,or2D color data.

网格化三维数字社区管理创建

网格化三维数字社区管理系统创建 为了创新社会管理,进一步完善社区服务管理体系,强化服务功能,提高工作效能,各个城市均在实行试点社区全力推行网格化覆盖,以求达到“精细化管理、人性化服务、多元化参与、信息化支撑”的网格化社会服务管理新模式。 何谓社区网格化管理?从广义上说是依托统一的社区管理数字化平台,将社区管理辖区按照一定的标准划分成为单元网格。通过加强对单元网格的部件和事件巡查,建立一种监督和处置互相分离的形式,将过去被动应对问题的社会管理模式转变为主动发现问题、解决问题的新模式。 从落实方面来说,就是将社区按50-100户、人口150-300人(数量各社区自定),划成若干个网格管理责任区,每个网格都有专人负责,承办民政、计生、就业、社保等社会事务,并负责信息收集、便民服务、问题处理等,力求做到每一寸土地都有人管、每一项服务都有人落实,还包括辖区内的企业和学校。一个社区,就是由一个个“格子”组成的“网”,所有居民都被一一“定位”到单元网格中,每个网格都配备了社区居干为主的服务团队,主动联系服务居民,并帮助协调解决居民反映的问题和困难,居民的大事小事将一“网”管尽。突破以前条线管理模式,创立一个网格化管理和条线管理相结合的新模式。 系统突出功能 1、三维地图信息平台

目前网上有卫星地图,系统数据无法与地图关联,更无法在地图上直接操作。因此网格化管理最亮眼的地方是三维仿真地图,通过三维立体仿真地图展示辖区内标注楼栋,人口信息,事件,企业基本信息,学校和其他服务性行业等网格数据,达到直观、立体的显示效果。 (以下为示例图,取自网络) 2、手持终端平台 通过手机、pad等终端,及时录入和上报采集的信息、受理的服务申请、发现的问题、接收信息平台发出的任务指令,可以随时反馈社情民意。

(完整版)三维信息系统模型数据标准(转)

三维信息系统模型数据标准 总则 为了提高规划审批决策的科学性、规范性和高效性,为规范廊坊市报建单位项目方案三维数据的提交,特制定本技术规定。 范围 本规范适用建筑新建方案、改扩建项目方案虚拟三维模型制作及项目周边现状建筑物三维模型制作。方案三维模型是指在行政审批环节中反映建设项目的建筑体量、建筑外形风格、小区环境及建筑布局的规划方案虚拟现实模型。建设项目方案虚拟实景三维模型必须与报建方案总平图包含内容一致。 空间参照系要求 建成的方案三维模型场景空间参照系必须与系统中所用平面坐标系统和高程系统相一致。 平面坐标系统:1980西安坐标系。 高程系统:1985国家高程基准。 三维模型总体要求 1.1制作软件: 3ds max9 1.2 模型单位:必须采用米(m)作为单位,所有模型必须按照实际尺寸制作且模型坐标必须定位准确,不得存在闪面及

漏面现象,模型的scale值为1。模型坐落位置坐标要与项目用地红线图、地形图一致。(整数部分:X坐标6位,Y坐标7位,小数点后保留3-6位) 1.3 模型要求:能够完整反映出三维模型的外观及楼体上的的附属结构,精度控制合理,在保证三维模型视觉效果的前提下,减少模型面数、数据量和材质数,做到数据的精简(单体建筑物模型面数控制在2500以内)。 三维模型具体要求 2.1模型制作位置的确定(坐标必须定位准确) 导入模型的边界dwg文件,最终完成的模型位置必须与给定的范围位置保持一致。 2.2材质和贴图 2.2.1使用standard标准材质,材质类型使用blinn。除diffuse通道后可加贴图其他通道不能加贴图,其他参数也不能调节,用max默认设置。 2.2.2不能在max材质编辑器里对贴图进行裁切。 2.2.3纹理图片的格式采用tif文件格式,纹理图片的单位尺寸必须采用2的n次方。例如:32x32,64x128等。但图片的最大尺寸不要超过512x512,最小尺寸不要小于16。纹理图片的命名不能含有空格。 2.2.4不能在材质编辑器中对材质的透明度进行调节。表现

三维激光扫描仪点云数据处理与建模

三维激光扫描仪点云数据处理与建模点云的预处理由于三维激光扫描仪在扫描过程中,外界环境因素对扫描目标的阻挡和遮掩,如移动的车辆、行人树木的遮挡,及实体本身的反射特性不均匀,需要对点云经行过滤,剔除点云数据内含有的不稳定点和错误点。实际操作中,需要选择合适的过滤算法来配合这一过程自动完成。 点云配准使用控制点配准,将点云配准到控制网坐标系下;靶标缺失的点云,利用公共区域寻找同名点对其进行两两配准,当同名点对不能找到时,利用人工配准法。后两种方法均为两两配准,为了将所有点云转换到统一的控制网坐标系下与控制点配准法得到点云配在一起,两两配准时要求其中一站必须为已经配到控制网坐标系下的点云。 点云拼接外业采集的数据导入至软件时会根据坐标点自动拼接,但由于人为操作和角架的误差,一些点云接合处不太理想,这时需要进行手动拼接,对一些无坐标补扫面的拼接也需手动处理。手动拼接时对点云应适当压缩,选择突出、尖角、不同平面的特征点,以降低操作误差。如采用1cm激光间隔扫描时拼接后的误差在3mm以下较为理想。 建立三维模型当建筑物数字化为大量离散的空间点云数据后,在此基础上来构造建筑物的三维模型。

点云的漏洞修复由于点云本身的离散性,会导致模型存在一定缺陷,需要在多边形阶段对其进行修补、调整等操作后,才能得到准确的实物数字模型。由于建筑物形状复杂多样,所以目前网格的修补难以实现全自动化。三维激光扫描仪点云数据的漏洞修复主要采用两种方法:当空洞出现在平面区域内,比如窗户或者墙面上的洞,可采用线性插值的方法填补空洞数据;当空洞出现在非平面区域,如圆柱上出现的漏洞,可采取二次曲面插值方法。

点云数据实现三维实体建模方法探索

第43卷第15期山西建筑Vol.43No.15 2 0 1 7 年 5 月SHANXI ARCHITECTURE May.2017 ? 257 ??计算机技术及应用? 文章编号:1009-6825 (2017)15-0257-02 点云数据实现三维实体建模方法探索 赵吉潘永刚陈佳慧 (新疆大学建筑工程学院,新疆乌鲁木齐830000) 摘要:介绍了三维激光扫描技术的特点,以奇台县半截沟镇镇大门为研究对象,阐述了基于三维激光扫描数据的镇大门三维建 模流程与方法,指出利用该技术创建的模型精度符合测量要求。 关键词:三维激光扫描,点云数据,三维建模,纹理贴图 中图分类号:TP319 文献标识码:A 〇引言 三维激光扫描技术又被称为实景复制技术,它是测绘技术领 域内继G P S技术之后的又一次技术革命。它不同于传统的单次 单点测绘方法,而是使用激光束进行整条线上的扫描,一次获取 目标物上一整条的数据信息,具有效率高、精度高的特点。利用 这种线式的高速扫描测量方法,结合激光扫描仪自身配备的C D D 专业相机,可以在很大范围内快速获取对象表面具有高分辨率的 点云数据,这种新的结合模式为外业测绘提供了一种全新的技术 手段。 近年来,国内外学者将地面三维激光扫描系统用于物质文化 遗产的研究、保护和文化旅游综合服务中。Pesci等[1]对将三维 激光扫描技术应用于比萨斜塔的研究之中;Teza等[2]利用点云 数据监测了意大利倾斜钟楼情况;Hinzen等[3]利用点云数据分析 了古罗马大剧场看台石阶的倾斜特征。在国内,赵煦等[4]在研究 云冈石窟时使用了三维激光扫描技术;李德仁等研究的敦煌石窟 项目,采用双目立体相机与激光扫描相结合进行三维建模[5];王 茹[6]采用三维激光扫描结合人工作业和照片的形式完成古建筑 3D模型重建。 1点云数据三维建模基本流程 通过野外现场数据采集过程得到了镇大门建筑表面的原始 点云数据。要对原始的多站点数据进行配准拼接、去噪简化等处 理,才能获得完整的镇大门点云数据。然后进行镇大门的三维实 体重建,具体包括基本几何体创建、平面创建和纹理贴图三个部 分(见图1)。三维实体重建利用3ds M a x建模软件,对镇大门的 所有部分进行建模。 |原始点云@ 点云数据处理 |配准拼接噪简化 实体点云数据| I模型三维实体重建 | !|几何体创建|—?|平面创建P{纹理贴图| ! 1r————: J I实体模型生成1 图1基于三维激光扫描数据的镇大门三维建模流程本文着重讲解建筑物基本几何体的创建、平面创建和纹理贴 图部分。对于点云数据的处理,包括配准拼接和去噪简化不加以介绍。 2点云数据的三维实体建模过程 2.1 点云数据导入 我们所使用的建模软件版本是Autodesk 3ds Max 2017,在新 版本中,创建面板增加了对点云系统的支持。通过三维激光扫描 仪扫描出来的点云数据生成格式为.res的数据库文件,将该种格 式的文件导人到3ds M a x中进行建模。 在界面右上方呈“十”字形的“创建”面板中点击“几何体”按 钮,在下拉栏中点击“加载点云”按钮。在弹出的对话框中找到镇 大门点云文件并将其打开。在m a x任意视窗中创建点云对象。 2_ 2模型三维实体重建 本文以奇台县某镇的镇大门为例,经过实地调研以及使用三 维激光扫描仪扫描测量后。得到了该大门格式为.res的点云数 据文件(见图2)。 图2镇大门点云数据 点云数据只包含物体表面测点的空间坐标信息,经过对点云 数据的处理后,便可对镇大门进行三维实体重建,使其具有实体 三维造型。三维重建包括基本几何体创建、平面创建和纹理贴图三个步骤。 2.2.1 基本几何体创建 由实地调研可知,该大门的主要构成部分可分为下部左右两 边的梯形台、4根长立柱、若干横长柱以及大门上部的斗拱和房 顶等。 首先,我们可以看到大门下部主体为左右两个大致对称的梯 形台,在m a x中没有可以直接使用的标准几何体,所以我们选择 先建立一个长方体,然后对长方体使用修改器列表中的F F D2 x 2 x2工具。选中建立的长方体体块,点击右侧命令面板F F D2 x 2 x2工具下的控制点按钮。我们会发现长方体的8个顶点处于 可移动的状态,接下来分别将各个顶点移动至对应位置,在移动 的过程中要将捕捉开关打开,方便选取点云顶点。对该长方体的 顶点进行位置变化后,便得到了我们所需要的梯形台。这里需要 收稿日期:2017-03-13 作者简介:赵吉(1991-),男,在读硕士;潘永刚(1966-),男,硕士生导师,副教授;陈佳慧(1992-),女,在读硕士

网格化管理系统简介

网格化管理系统简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、什么是社区网格化管理系统 根据属地管理、地理布局、现状管理等原则,将管辖地域划分成若干网格状的单元,并对每一网格实施动态、全方位管理,实现网格内“人、地、事、物、组织”等全要素信息的常态化管理,为辖区内的居民提供主动、高效、有针对性的服务,从而达到提高公共管理服务职能、密切党群干群关系、完善为民办实事长效机制的目的。 二、建设社区网格化系统的意义 1.由原来的单一模式向组团式模式转变。 2.网格化的定位。 3.由原来的单一模式的服务向多元化服务模式转变。 4.信息化管理代替手工操作,增加了效率,减少了错误。 5.由原来单方面的覆盖向全方位的覆盖转变。 三、社区网格化管理能解决的问题 1.实现网格内“人、地、事、物、组织”等全要素信息的常态化管理。 2.小事化解不出网格,大事调解不出街道 3.粗放型管理向精细型管理转变。 4.防范控制型管理向人性化、服务型管理转变。 四、系统功能模块简介 (一)地图管理模块 1、反映辖区内真实的地形地貌 2、能直观的反映出各网格的管理范围 3、三维地图上能实际的标出各网格管理的每一栋建筑物,对建筑物 形态能更加直观的管理 4、选择相应建筑物能对建筑物内人口信息、单位信息等可以进行详 细的查询。 5、通过地图的管理,能非常直观的对事、地、人、物、组织等进行 更加方便的管理 (二)基础信息管理 1、小区信息资料管理 2、楼栋信息资料管理 3、房屋信息资料管理 4、单位信息资料管理 5、人口信息资料管理 6、党建信息查询 7、民政信息查询 8、计划生育信息查询 9、重点人群信息查询 10、人口移入、移出、人口注销:能实时的管理辖区内每一建筑物内 每一个房间的内的人口信息情况。例:自住房、空置房、出租房的管 理,固定人口、流动人口的管理、对房屋内的家庭、单位能进行很好的管理。

点云数据处理

点云数据处理 ICP点云配准就是我们非常熟悉的点云处理算法之一。实际上点云数据在形状检测和分类、立体视觉、运动恢复结构、多视图重建中都有广泛的使用。点云的存储、压缩、渲染等问题也是研究的热点。随着点云采集设备的普及、双目立体视觉技术、VR和AR的发展,点云数据处理技术正成为最有前景的技术之一。PCL是三维点云数据处理领域必备的工具和基本技能,这篇博客也将粗略介绍。 三维点云数据处理方法 1. 点云滤波(数据预处理) 1. 点云滤波(数据预处理) 点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,比如下图为滤波前后的点云效果对比。 点云滤波的主要方法有:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致滤波、VoxelGrid滤波等,这些算法都被封装在了PCL点云库中。 2. 点云关键点 我们都知道在二维图像上,有Harris、SIFT、SURF、KAZE这样的关键点提取算法,这种特征点的思想可以推广到三维空间。从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理了速度,故而,关键点技术成为在2D和3D 信息处理中非常关键的技术。

常见的三维点云关键点提取算法有一下几种:ISS3D、Harris3D、NARF、SIFT3D 这些算法在PCL库中都有实现,其中NARF算法是博主见过用的比较多的。 3. 特征和特征描述 如果要对一个三维点云进行描述,光有点云的位置是不够的,常常需要计算一些额外的参数,比如法线方向、曲率、文理特征等等。如同图像的特征一样,我们需要使用类似的方式来描述三维点云的特征。 常用的特征描述算法有:法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image等。 PFH:点特征直方图描述子,FPFH:跨苏点特征直方图描述子,FPFH是PFH的简化形式。这里不提供具体描述了,具体细节去谷歌吧。 4. 点云配准 点云配准的概念也可以类比于二维图像中的配准,只不过二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的移动和对其,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。严格说来是6个参数,因为旋转矩阵也可以通过罗格里德斯变换转变成1*3的旋转向量。 常用的点云配准算法有两种:正太分布变换和著名的ICP点云配准,此外还有许多其它算法,列举如下: ICP:稳健ICP、point to plane ICP、point to line ICP、MBICP、GICP NDT 3D、Multil-Layer NDT

相关主题