搜档网
当前位置:搜档网 › 微生物燃料电池应用现状及发展前景

微生物燃料电池应用现状及发展前景

微生物燃料电池应用现状及发展前景
微生物燃料电池应用现状及发展前景

微生物燃料电池应用现状及发展前景

佚名

【摘要】简述了微生物燃料电池(MFCs) 的基本结构及运行原理,介绍了微生物燃料电池(MFCs )的技术发展现状与研究热点,并指出了未来燃料电池的发展趋势。

【关键字】微生物燃料电池,生物传感器,水处理

Abstract The microbial fuel cell ( MFCs ) of the basic structure and operation principle, describes microbial fuel cell ( MFCs ) technology development and research, and points out the future of fuel cell the development trend of.

Keywords microbial fuel cells, biological sensors, water treatment

1 引言

微生物燃料电池(Microbial Fuel Cells,MFCs),是一种以微生物为阳极催化剂,将有机物中的化学能直接转化为电能的装置。1911年,英国植物学家Potter便发现细菌培养液可产生电流,这是关于微生物燃料电池的最早报道。近年来,MFC技术因其诸多优点及应用范围的扩大,引起了世界各国研究者的高度关注。

毋庸置疑,微生物燃料电池(Microbial fuel cells,MFCs)是一种新兴的高效的生物质能利用方式,它利用细菌分解生物质产生生物电能,具有无污染、能量转化效率高、适用范围广泛等优点。因此MFCs逐渐成为现今社会的研究热点之一。

2 微生物燃料电池的工作原理

图1是典型的双室结构MFcs 工作原理示意图,系统主要由阳极、阴极和将阴阳极分开的质子交换膜构成。阳极室中的产电菌催化氧化有机物,使其直接生成质子、电子和代谢产物,氧化过程中产生的电子通过载体传送到电极表面。根据微生物的性质,电子传送的载体可以为外源、与呼吸链有关的NADH 和色素分子以及微生物代谢的还原性物质。阳极产生的H+透过质子交换膜扩散到阴极,而阳极产生的电子流经外电路循环到达电池的阴极.电子在流过外电阻时输出电能。电子在阴极催化剂作用下。与阴极室中的电子接受体结合,并发生还原反应。

图1 微生物燃料电池工作原理示意图

下面以典型的葡萄糖为底物的反应为例说明MFCs 的工作原理,反应中氧气为电子受体,反应完成后葡萄糖完全被氧化。

阳极反应:

_22612624246e H CO O H O H C ++→++

阴极反应:

O H e H O 2_21224246→+++

总反应:

O H CO O O H C 2226126666+→+

3 微生物燃料电池的应用现状

迄今为止,MFCs的性能远低于理想状态。制约MFCs性能的因素包括动力学因素、内阻因素和传递因素等。动力学制约的主要表现为活化电势较高,致使在阳极或者阴极上的表面反应速率较低,难以获得较高的输出功率。内电阻具有提高电池的输出功率的作用,主要取决于电极间电解液的阻力和质子交换膜的阻力。缩短电极间距、增加离子浓度均可降低内阻。不用质子交换膜也可以大大降低MFCs的内阻,这时得到的最大功率密度有质子交换膜的5倍,但必须注意氧气扩散的问题。另一个重要制约因素为电子传递过程中的反应物到微生物活性位间的传质阻力和阴极区电子最终受体的扩散速率。最终电子受体采用铁氰酸盐或阴极介体使用铁氰化物均可以获得更大的输出功率和电流。另外,微生物对底物的亲和力、微生物的最大生长率、生物量负荷、反应器搅拌情况、操作温度和酸碱度均对微生物燃料电池内的物质传递有影响。

当前针对微生物燃料电池主要研究其产电性能,同时由于其特殊的结构与原理,MFCs还有许多潜在应用领域,主要包括废水处理、电助产氢、传感器三方面。

3.1 废水处理

近年来,微生物燃料电池被尝试用来处理富含生物可降解有机物的废水,在废水降解的同时产电。表3.1列举了目前MFCs用于废水处理的现状。

微生物燃料电池用于污水处理的例子

此外,微生物燃料电池处理废水具有诸多优点,还可与传统厌氧、好氧工艺相结合,达到更好的处理效果。

3.2 电助产氢

微生物燃料电池由于输出效率低,难以直接应用,而MFC电助产氢技术是较有前途的一种方式。其工作原理为:无氧条件下,对双室MFC阴极施加一个远小于水分解电压的小电压,可促进转移到阴极的电子和质子结合生成氢气,达到利用MFC系统产氢的目的。

微生物燃料电池电助产氢反应器的优点是阴极省略了MFC常用的电子受体——氢气,可避免因氧气通过质子交换膜向阳极扩散而影响反应器运行;同时该工艺产生的氢气纯度较高,可积累、储存及运输,推动了MFC技术的实际应用。

3.3 生物传感器

根据MFCs的工作原理,在一定浓度范围内,MFCs的电流(或电压)输出与阳极的基质浓度有线性关系,因此可开发基于MFCs的传感器,最典型的是BOD

5

快速检

测。Lorenzo等以人工废水为燃料构建型BOD

5传感器,该传感器输出功率与BOD

5

浓度有良好的线性关系,且有非常高的重复性和稳定性,可连续运行7个月。

除了作为BOD

5

传感器外,有研究者尝试利用MFC型的传感器通过对UAFB中发酵液pH和沼气流速进行实时监测,实现对厌氧硝化过程动态变化的监测。还有研究者通过在MFCs的质子交换膜两侧添加2片微硅板作电流收集器,由电流变化来反映基质中的有毒化合物。这些研究都有助于扩大MFCs技术的应用领域。

4 微生物燃料电池技术发展前景

MFCs技术正在不断成长并且已经在许多方面取得了重大突破。但是,由于其功率偏低,该技术还没有实现真正的大规模实际应用。基于其产电性能的制约因素,今后的研究方向主要可归纳为以下几点。

(1)深入研究并完善MFCs的产电理论。MFCs产电理论研究处于起步阶段,电池输出功率较低,严重制约了MFCs的实际应用。MFCs中产电微生物的生长代谢过程,产电呼吸代谢过程以及利用阳极作为电子受体的本质是今后的研究重点。

(2)筛选与培育高活性微生物。目前大多数微生物燃料电池所用微生物品种单一。要达到实际应用的目的,需要寻找自身可产生氧化还原介体的高活性微生物和具有膜结合电子传递化合物质的微生物。今后的研究应致力于发现和选择这种高活性微生。

(3)优化反应器的结构。研究与开发单室结构和多级串联微生物燃料电池,利用微生物固定化技术、贵金属修饰技术等改善电极的结构和性能。选择吸附性能好、导电性好的材料作为阳极,选择吸氧电位高且易于扑捉质子的材料作为阴极。

5 建议

微生物燃料电池潜在的优点使研究者对其发展前景十分看好,但由于输出功率较低,限制了在生产生活中的应用。因此,建议研究者主要从以下三方面对MFCs 做进一步研究:

(1)加强MFCs的机理研究,通过分析阳极微生物确定电子产生和传递机理,实现对高效产电微生物的筛选和改造。

(2)通过优化MFCs的结构、材料和运行方式等,提高电子传质速率,降低电压损失,提高MFCs产电性能。尝试MFCs的工程放大,实现实际应用。

6 结语

MFCs作为一种可再生的清洁能源技术正在迅速兴起,并已逐步显现出它独有的社会价值和市场潜力。随着研究的不断深入以及生物电化学的不断进步,MFCs 必将得到不断地推广和应用。与微生物燃料电池相比,燃料电池目前使用存在着成本仍偏高, 利用率不太高的缺点,所以微生物电池有着广阔的应用前景。与现有的其它利用有机物产能的技术相比,微生物燃料电池具有操作上和功能上的优势:首先,它将底物直接转化为电能,保证了具有高的能量转化效率;其次,不同于现有的所有生物能处理,微生物燃料电池在常温环境条件下能够有效运作;第三,微生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,一般条件下不具有可再利用的能量;第四,微生物燃料电池不需要输入较大能量,因为若是单室微生物燃料电池仅需通风就可以被动的补充阴极气体;第五,在缺乏电力基础设施的局部地区,微生物燃料电池具有广泛应用的潜

力,同时也扩大了用来满足我们对能源需求的燃料的多样性。研究微生物电池是一件造福人类的伟大举措,我们应该投入更多的人力和物力。

7 参考文献

[1]姜秀华.微生物电池技术研究[D].科技资讯,2013(12).

[2]张静,张宝刚,冯传平,等.微生物燃料电池技术最新研究进展[J].三峡环境与生态,2013(2).

[3]詹亚力,张佩佩,闫光绪,等.微生物燃料电池及其应用研究进展[J]

微生物燃料电池的意义

1.研究目的 微生物燃料电池是一种利用微生物作为催化剂,将燃料中的化学能直接转化为电能的生物反应器。 本文通过一定室型MFC反应器,选择最优的电极材料,并对电极间距,电极面积进行参数调整,进一步对反应器构型,循环流速,膜结构和反应条件进行优化,提高微生物燃料电池的输出功率。 2.研究意义 微生物燃料电池(Microbial fuel cell, MFC)是基于传统的燃料电池(Fuel cell, FC)与微生物相结合发展起来的由阴阳两极及外电路构成的装置。在MFC系统内,微生物通过新陈代谢氧化有机物后将电子胞外传递给阳极,电子再通过外电路到达阴极从而产生电能。从MFC的构成来看,阳极作为产电微生物附着的载体,不仅影响产电微生物的附着量,而且影响电子从微生物向阳极的传递,对提高MFC产电性能有至关重要的影响。因此,从提高MFC的产电能力出发,选择具有潜力的阳极材料开展研究,解析阳极材质和表面特性对微生物产电特性的影响,对提高MFC的产电能力具有十分重要的意义。在MFC中,高性能的阳极要易于产电微生物附着生长,易于电子从微生物体内向阳极传递,同时要求阳极内部电阻小、导电性强、电势稳定、生物相容性和化学稳定性好。目前有多种材料可以作为阳极,但是各种材料之间的差异,性对电池性能的影响并没有得到深入的研究。以及各种阳极特 阳极厚度对填料型微生物燃料电池产电性能的影响(清华,钟登杰,小论文) 作为一种新型的清洁能源生产技术,MFC在产电的同时还能处理废水、去除硫化氢、产氢和修复地下水。与传统的废水处理工艺相比,MFC产泥量少、不产生甲烷,从而节省污泥和气体处理费用。但MFC的产电功率密度低,与氢氧燃料电池相比,差3~4个数量级。为了提高MFC的产电功率和处理废水的效率,目前的研究主要集中在产电微生物筛选和MFC结构优化两个方面。对于优化MFC结构,可以通过优化阳极、阴极和质子膜材料,提出新型的MFC结构和运行方式等来实现。 微生物燃料电池处理有机废水过程中的产电特性研究(哈工,尤世界,博士论文) MFC是一个新生事物,该项技术具有废水处理和电能回收的双重功能,它的出现是对传统有机废水处理技术和观念的重大革新,目前正在引起世界范围内的广泛关注,日渐成为环境科学与工程和电化学领域一个新的研究热点。尤其是在能源供需矛盾日益突出,环境污染日益严重的今天,MFC更显示出其它技术无法比拟的优越性。MFC技术一旦实现产业化,将会使废水处理技术发生一次新的革命,产生不可估量的社会、环境和经济效益。但是由于受到技术和经济方面等众多因素的限制,MFC离实际工程应用的距离还很遥远,相关研究刚刚起步,目前正处于可行性探索和基础研究阶段。本课题正是在这一背景下提出的。由于功率密度低,材料造价昂贵,反应器型式的不确定,有关MFC的研究目前主要停留在实验室的规模和水平上,很难实现商业化应用。因此,为了进一步提高MFC的产电功率密度,降低系统的基础和运行费用,研发适合废水处理工艺特点的MFC结构型式,为进一步的研究提供切实可行的依据与支撑,促进该项技术早日应用于有机废水处理的工程实践,需要在现有研究水平的基础上充分把握MFC研究中多学科交叉的特点,开展MFC的电化学特性和有机物降解特性的基础研究;弄清阳极特性对MFC性能的影响及阴极电子受体在MFC功率密度提高中起到的重 1

燃料电池的应用及发展状况

简述燃料电池的应用及发展状况 摘要:燃料电池是一种高效、清洁的电化学发电装置,近年来得到国内外普遍重视。目前燃料电池在宇宙飞船、航天飞机及潜艇动力能源方面已得到应用,在汽车、电站及便携式电源等民用领域成功地示范,但低成本、长寿命仍是商业化面临的瓶颈问题。而且我国在燃料电池方面的研究与外国还有一定差距,需要科研工作者更多的努力。 关键字:燃料电池分类应用发展状况 1. 燃料电池的概念 燃料电池(Fuel Cell)是一种电化学设备,它直接、高效地将持续供给的燃料和氧化剂中的化学能连续不断地转化为电能。燃料电池的基本物理结构由一个 电解质层组成,它的一边与一个多孔渗透 的阳极相连,另一边与一个多孔渗透的阴 极相连,气态燃料电池连续不断地输入阳 极(负电极),同时氧化剂连续不断地输 入阴极(正电极),在两个电极上发生电 化学反应,产生电流[1]。其基本结构如图 所示: 2. 燃料电池的分类及其优点 随着现代文明发展,人们逐渐认识到传统的能源利用方式存在两大弊病:一是储存于燃料中的化学能要首先转变成热能后才能被转变成电能或机械能,受卡诺循环及现代材料的限制,转化效率低(33~35%),造成严重的能源浪费;二是传统的能源利用方式造成了大量的废水、废气、废渣、废热和噪声污染,严重威胁着人类的生存环境。现代社会所建立起来的庞大的能源系统已无法适应未来社会对高效、清洁、经济、安全的能源体系的要求,能源发展正面临着巨大的挑战:能源短缺与环境污染,因此探索新能源以及新的能源利用方式,是全球可持续发展迫切需要解决的重大课题。 燃料电池是一种电化学发电装置,等温地按电化学方式将化学能转化为电

燃料电池及其发展前景

燃料电池及其发展前景 燃料电池及其发展前景 作者: Raymond George Klaus Hassmann燃料电池具有非同寻常的性能:电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market.燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。最适于用来驱动汽车的是低温型燃料电池。根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,

微生物燃料电池设计3027407

微生物燃料电池设计3027407

摘要 微生物燃料电池(Microbialfuelcell,MFC)能够在处理污水的同时将污水中蕴含的化学能转化为电能,是一种低能耗的水处理技术,近年来成为环境领域的研究热点。目前制约MFC 实际应用的主要因素是成本过高和产电性能偏低。由于电极成本在MFC 总成本中所占比例最大,同时电极性能也是决定MFC 性能的关键,因此降低电极成本和优化电极性能对于MFC 的实用化具有重要意义。本文以推进MFC 实用化为目标,筛选用于阳极和生物阴极的廉价填料型电极材料,通过电极材料特性和构型的优化提高其产电性能,并将其应用于放大的MFC 装置。本研究选择廉价的半焦和活性炭与传统的石墨和碳毡电极材料进行产电性能对比。用于阳极时,活性炭产电性能最好,半焦较差。导电性过低是限制半焦阳极性能的主要因素。并分析了不同阳极材料表面的产电微生物、产电过程、产电机理和产电能力的区别。本文可为MFC阳极材料优化、产电微生物的富集、MFC构型改造等组合提供思路,其中着重讨论的不同阳极材料对微生物燃料电池的产电性能影响的相关内容,可为筛选廉价、产电效率高的阳极材料,推动微生物燃料电池实用化提供参考。 关键词:微生物燃料电池;产电微生物;阳极材料;产电性能;成本;大型化

Microbial fuel cell (MFC) is a low energy-consuming water treatment technology which can purify wastewater and simultaneouslyconvert its chemical energy.Inrecentyears, ithasbe comeonehottopicint the environment field. The practical application of MFC shasbeen limited. Due to high costsand lowyield sofpower generation.The electrode is the largest contribu. Tortotota lcost of MFC and the key componentinde ciding the MFC performance. Thuselectrode costreduction and electrode performance optimization both have great. Significance onpractical application of MFC. To push forward the practical application of MFC, inthisdissertation low costpackedelectrode materialsforanodeandbio-cathodewere selected,and the performance of electrode wasimprovedby optimizing electrode characteristics and configuration. Then the optimized electrode wasused in a largescale MFC.

微生物燃料电池应用现状及发展前景

微生物燃料电池应用现状及发展前景 佚名 【摘要】简述了微生物燃料电池(MFCs) 的基本结构及运行原理,介绍了微生物燃料电池(MFCs )的技术发展现状与研究热点,并指出了未来燃料电池的发展趋势。 【关键字】微生物燃料电池,生物传感器,水处理 Abstract The microbial fuel cell ( MFCs ) of the basic structure and operation principle, describes microbial fuel cell ( MFCs ) technology development and research, and points out the future of fuel cell the development trend of. Keywords microbial fuel cells, biological sensors, water treatment 1 引言 微生物燃料电池(Microbial Fuel Cells,MFCs),是一种以微生物为阳极催化剂,将有机物中的化学能直接转化为电能的装置。1911年,英国植物学家Potter便发现细菌培养液可产生电流,这是关于微生物燃料电池的最早报道。近年来,MFC技术因其诸多优点及应用范围的扩大,引起了世界各国研究者的高度关注。 毋庸置疑,微生物燃料电池(Microbial fuel cells,MFCs)是一种新兴的高效的生物质能利用方式,它利用细菌分解生物质产生生物电能,具有无污染、能量转化效率高、适用范围广泛等优点。因此MFCs逐渐成为现今社会的研究热点之一。 2 微生物燃料电池的工作原理

燃料电池客车发展情况与技术发展趋势

燃料电池客车发展情况及技术发展趋势一、燃料电池汽车政策分析 《关于2016-2020年新能源汽车推广应用财政支持政策方的通知》(财建(2015)134号)中明确:“2017-2020年,除燃料电池汽车外,其他车型补助标准适当退坡”,明确了国家对燃料电池汽车产业发展的支持态度。而《“十三五”国家战略性新兴产业发展规划》中提出,要系统推进燃料电池汽车研发与产业化,到2020年,实现燃料电池汽车批量生产和规模化示应用。 在财政补贴层面,国家也给予了大力支持,包括整车补贴、加氢站补贴、免征购置税以及运营补贴等。其中,整车补贴额度从20万到50万每辆不等,一个加氢站则补贴400万元,运营补贴中,燃料电池客车补贴为6万元/辆/年。 二、氢燃料电池产业链概述 氢燃料电池汽车产业链包括制氢、储氢、运氢、加氢、应用(燃料电池汽车/有轨电车)等环节。 氢气制造一般是通过将化石原料、化工原料、工业尾气、可再生能源以及水等经过处理来获取,每种获取途径其成本和环保属性都不同。中国目前主要通过工业尾气处理以及电解水来制氢。长河认为,对于燃料电池来说,现在配套基础设施还有待进一步完善,需要政府以及行业机构以及专家尽快推进立法和相应的技术标准予以规。

长河表示,制氢的方法和方案比较多,而目前燃料电池汽车使用最大瓶颈和最大的障碍是缺乏加氢站。据其统计,截止到2013年底,全球加氢站只有228座,对于我国来说,我国真正投入商业化、用于燃料电池的加氢站只有两座,仅仅限于国比较大的城市,就是和,处于示运营阶段,与国外说的氢高速公路,也就是一条高速公路有多个加氢站相比,差距比较大。 在整个氢燃料电池产业链中,氢燃料电池发动机处于绝对的核心地位,氢燃料经过发动机转化为电能应用到终端。长河表示,目前制约中国燃料电池汽车发展的瓶颈,就是氢燃料电池发动机。虽然国有不少高校和相应科研机构以及企业,在就燃料电池发动机技术展开相应研究和示性运营应用,但是氢燃料电池发动机核心技术,这两年通过评估,能够达到产业化或者达到工业化应用的,核心技术仍然掌握在国外企业手中。

浅谈燃料电池的发展

浅谈燃料电池的发展 [摘要] 本篇文章收集了当前国内外从事燃料电池及燃料电池电动车公司或科研机构的大量资料、信息。综合介绍了燃料电池的工作原理、结构特点、优缺点、研制动向,并对国内外汽车公司的燃料电池电动车的研制现状、技术难点、发展趋势、市场预测及竞争的态势作了客观的介绍。 关键词:汽车燃料电池混合动力汽车 前言 当人类步人21世纪,开始面临着三大难题:减少大气污染、改善人类生态环境、节省石油资源。而汽车被认为是上述三大难题的始作俑者。据介绍全球大气污染的近一半是由于汽车造成的,全球80%以上的石油资源被汽车消耗。汽车的排放物被认为是全球温室效应的第三大制造者,它导致了全球变暖。同时人类无节制的开采导致传统的能源(主要是不可再生的化石燃料)正日趋枯竭,过度依赖石油进口引起地缘政治不稳定而且化石燃料燃烧后排放的废气造成严重的空气污染,甚至加速气候变化,因此要实现经济、社会的可持续发展,寻找新的替代能源迫在眉睫。 节能、高效、低污染的燃料电池,是解决上述三大难题的最理想的动力源,它将成为第三代动力源(第一代蒸汽机,第二代内燃机)。它的成功将会是汽车工业的又一次重大变革,也将带来下一个工业革命。所以研究开发燃料电池电动车具有战略意义。因此受到世界发达国家的高度重视,投入了大量人力物力进行研究开发并取的了很大的进展。 1 什么是燃料电池(Fuel Cell) 燃料电池是一种化学电池,但是,它工作时需要连续地向其供给活物质(能起反应的物质)——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释放出的能量转变为电能输出,所以才被称为燃料电池。具体来说,燃料电池是一种将储存在燃料和氧化剂中的化学能,通过催化剂的作用,使氢与氧发生化学反应,等温、高效、无污染地转化为电能的发电装置,其反应过程不涉及到燃烧,能量转化率可高达80%,实际使用效率是普通内燃机的2倍以上。 燃料电池(FC)具有能量转化率高,燃料多样化,环境污染小、噪声低、可靠性强、维修性好等特点。因此开发燃料电池汽车,在能源环保形式日益严峻的情况下倍受瞩目。 2 燃料电池的种类及用途 汽车用FC研究最多、最成功的是固体高分子交换膜燃料电池(PEMFC)。PEMFC作为第五代FC,由于具有能量转化率高、低温启动、无电解质泄漏等特点,被公认为最有希望成为电动汽车的理想动力源。但是由于PEMFC需采用贵金属Pt作为电极催化剂,不仅提高了成本;而且限制了燃料只能采用纯氢,因为燃料中的微量CO也可导致Pt中毒。近年来,PEMFC技术取得了重大突破,燃料已经实现内重整,使得系统体积大为减少,有望进一步“减负”;更重要的是催化剂中pt载量大为降低,成本问题有望得到解决,相信PEMFC汽车在不久的将来能够实现商业化。 在PEMFC的基础上,以甲醇代替纯氢直接作为燃料,可以大为简化系统,这种PEMFC称为直接甲醇燃料电池(DMFC)。DMFC具有体积小、重量轻、燃料来源丰富、价格便宜、储存携带方便等优点,是理想的汽车动力源。对于DMFC而言,甲醇的阳极氧化迟缓及甲醇通过Nafion膜(全氟磺酸膜)的渗透所引起的阳极性能衰减是限制DMFC发展的主要问题。目前许多研究人员正在开发新的替代Nafion膜的聚合物膜,也取得了很大的进展。提高甲醇氧化的催化剂活性,减少贵金属用量也是DMFC技术实用化的关键。专家们认为这项技术距离实用化至少还需7年时间。尽管如此,许多人仍把它作为FCV的首选技术进行开发和研究。 固体氧化物燃料电池(SOFC)是一种全陶瓷结构FC,其能量转化效率最高,操作方便,无腐蚀,与PEMFC相比,燃料适用面广,不须用贵金属催化剂,而且不存在DMFC的液体燃料渗透问题。但是SOFC 受电解质所限,须高温(1000℃左右)工作,导致启动慢,这是SOFC在汽车上应用的致命弱点。随着SOFC 技术的发展,低温SOFC的研究取得了突破性进展,采用新型低温固体电解质和高活性的电极材料,使工

微生物燃料电池

微生物燃料电池 12级新能源材料,程妮,学号106 微生物燃料电池(microbial fuel cells ,MFCs)是一种利用微生物作为催化剂,将燃料中的化学能直接转化为电能的装置,是一种生物反应器。自1911年英国植物学家Potter 发现微生物可以产生电流开始,有关MFCs 的研究一直在进行,但进展缓慢。直到研究人员发现某些微生物能在无介体的条件下直接将体内产生的电子传递到电极,MFCs 的研究获得了突破性进展。目前,MFCs 研究的主要内容是无介体MFCs 产电性能的改善,体现在污水处理、生物传感器的应用和生物修复等方面。 一、原理 微生物燃料电池以附着于阳极的微生物作为催化剂,通过降解有机物(例如,葡萄糖、乳酸盐和醋酸盐等),产生电子和质子。产生的电子传递到阳极,经外电路到达阴极产生外电流。产生的质子通过分隔材料(通常为质子交换膜、盐桥),也可以直接通过电解液到达阴极。在阴极与电子、氧化物发生还原反应,从而完成电池内部电荷的传递。如图所示为 MFCs 的工作原理示意图。 典型反应如下:阳极:C 6H 1206+6H 20一 6C02+24H ++24e - 阴极:602+24H ++24e -一一12H 20 二、微生物燃料电池的结构 微生物燃料电池主要有三种结构类 型,即单室结构、双室结构和填料式结构。[1] (一)、单室结构的MFCs 单室MFCs 通常直接以空气中的氧气作为氧化剂,无需曝气,因而具有结构简单、成本低和适于规模化的优势。单室的功率密度为480~492mW /m 2,单室MFCs 无分隔材料和阴极液,内阻较双室小。但是单室MFCs 的库仑效率(CE)比双室低(单室库仑效率为10%,而双室则为42%~61%)。 (二)、双室结构的MFCs 典型的双室MFCs 包括阳极室和阴极室,中间由PEM 或盐桥连接。双室的功率密度为38~42mW /m 2。 MFCs 从外形上又分为平板型和管

燃料电池的应用和发展现状

收稿日期:2005-11-03 作者简介:杨润红(1974-),女,北京交通大学机械与电子控制工程学院工程热物理专业硕士研究生,研究方向为能量转换与工质热物性. 燃料电池的应用和发展现状 杨润红,陈允轩,陈 庚,陈梅倩,李国岫 (北京交通大学,北京100044) 摘 要:能源和环境是全人类面临的重要课题,考虑可持续发展的要求,燃料电池技术正引起能源工作者的极大关注.主要在介绍燃料电池的工作原理、发展简史、分类及特性的基础上,详细分析和论述了燃料电池的应用和研发现状,并对其发展前景作了展望. 关 键 词:燃料电池;工作原理;特性;研发现状 中图分类号:TM911.4 文献标识码:A 文章编号:1673-1670(2006)02-0079-05 1839年,英国的William Grove 首次发现了水解过程逆反应的发电现象[1],燃料电池的概念从此开始.100多年后,英国人Francis T.Bacon 使燃料电池走出实验室,应用于人们的生产活动[2].20世纪60年代,燃料电池成功应用于航天飞行器并逐步发展到地面应用[3].今天,随着社会经济的飞速发展,随之而来的不仅是人类文明的进步,更有能源危机,生态恶化.寻求高效、清洁的替代能源成为摆在全人类面前的重要课题.继火力发电、原子能发电之后,燃料电池发电技术以其效率高、排放少、质量轻、无污染,燃料多样化等优点,正进一步引起世界各国的关注. 1 燃料电池的工作原理 人们常用的普通电池有碱性干电池、铅酸蓄电池、镍氢电池和锂离子电池等.燃料电池和普通电池相比,既有相似,又有很大的差异.它们有着相似的发电原理,在结构上都具有电解质,电极和正负极连接端子.二者的不同之处在于,燃料电池不是一个储存电能的装置,实际上是一种发电装置,它所需的化学燃料也不储存于电池内部,而是从外部供应.在燃料电池中,反应物燃料及氧化剂可以源源不断地供给电极,只要使电极在电解质中处于分隔状态,那么反应产物可同时连续不断地从电池排出,同时相应连续不断地输出电能和热能,这便利了燃料的补充,从而电池可以长时间甚至不间断地工作.人们之所以称它为燃料电池,只是由于在结构形式上与电池有某种类似:外特性像电池,随负荷的增加,它的输出电压下降[4]. 燃料电池实际上是一个化学反应器[5],它把燃料同氧化剂反应的化学能直接转化为电能.它没有传统发电装置上的原动机驱动发电装置,也没有直接的燃烧过程.燃料和氧化剂从外部不断输入,它就能不断地输出电能.它的反应物通常是氢和氧等燃料,它的副产品一般是无害的水和二氧化碳.燃料电池的工作不只靠电池本身,还需要燃料和氧化剂供应及反应产物排放等子系统与电池堆一起构成完整 的燃料电池系统.燃料电池可以使用多种燃料,包括氢气、碳、一氧化碳以及比较轻的碳氢化合物,氧化剂通常使用纯氧或空气.它的基本原理相当于电解反应的逆向反应,即水的合成反应.燃料及氧化剂在电池的阴极和阳极上借助催化剂的作用,电离成离子,由于离子能够通过二电极中间的电解质在电极间迁移,在阴电极、阳电极间形成电压.当电极同外部负载构成回路时,就可向外供电(发电).图1是燃料电池的工作原理图[6]. 2 燃料电池的发展简史、分类及各自特性 1839年,William Grove 提出了氢和氧反应可以发电的 原理,并发明了第一个燃料电池.他把封有铂电极的玻璃管浸入稀硫酸中,电解产生氢和氧,连接外部装置,氢和氧就发生电池反应,产生电流. 1896年,W.W.Jacques 提出了用煤作为燃料电池的燃 料,但由于无法解决环境污染的问题,没有取得满意的效果. 1897年,W.Nernst 用氧化钇和氧化锆的混合物作为电 解质,制作成了固体氧化物燃料电池. 1900年,E.Baur 研究小组发明了熔融碳酸盐型燃料 电池(MCFC ).此后,I.Taitelbaum 等人就此进行了一些拓展性的研究. 1902年,J.H.Reid 等人先后开始研究碱质型燃料电 池(AFC ). 1906年,F.Haber 等人用一个两面覆盖铂或金的玻璃 圆片作为电解质,与供气的管子相连,做出了固体聚合物燃料电池(SPFC )的雏形. 1952年,英国学者F.T.Bacon 在借鉴前人研究经验 的基础上研制出具有实用性的培根电池并获得专利.它的研制思路是避免采用贵金属并设法获得尽可能高的输出功率.采用双层孔径烧结镍做电极,氢氧化钾水溶液做电解质,以纯氢和纯氧为燃料及氧化剂.副产物是纯水.培根电 第21卷第2期2006年4月 平顶山学院学报Journal of Pingdingshan University Vol.21No.2 Apr.2006

微生物燃料电池简介

微生物燃料电池简介 摘要:微生物燃料电池是一种新型的能源装置,具有污废弃物处理与同步产电的优点,应用范围广,具有巨大的潜在应用价值,本文对其做了一个简要的介绍。 关键词:微生物燃料电池污水处理产电 前言:微生物燃料电池(MFC)是一种通过微生物代谢生物质将化学能直接转变为电能的装置,兼具处理废水与产电的功能,从而大大降低污水处理成本。早在1911年英国植物学家Potte就发现利用酵母菌和大肠杆菌可以产生电流[1];但是一直未受到人们的关注。直到20世纪80年代美国科学家设计了一种利用宇航员的排泄物和活细菌作为电极活性物质的细菌电池,这种电池可为宇宙飞船提供电能,但其发电效率较低;到2004年,废水首次被用作MFC的燃料来发电,并获得了146±8mW m-2的功率密度。此后大量研究表明多种类型的废水都可以用于MFC中,MFC在废水处理方面的研究获得了较大进展。在近20年的研究中,MFC的规模在逐步扩大。目前,实验室所用MFC的大小从几微升到几升之间。产电功率得到了明显提升,产电功率已达到2.8kW m-3。近年来,对MFC 的研究逐渐引起了国内外研究学者的关注。 一、MFC的工作原理 一个典型的MFC 共由四部分组成:阳极、阴极、电解池和外电路。它以阳极室中的微生物作为催化剂,以阳极液中的有机物质作为燃料,利用微生物降解生物质,从而产生电子,产生的电子到达阳极,由阳极转移到外电路,最后通过外电路传递到阴极。微生物在降解有机物质产生电子的同时还产生质子,产生的质子通过两极室之间的质子交换膜到达阴极。在阴极催化剂的作用下,质子、电子和氧化剂发生反应生成还原剂。从而完成电池内的电流传递过程,产生电能。当外电路接入负载时,MFC 产生的电能足够多时,MFC 便能够支持负载工作。 二、MFC的分类 根据分类标准的不同,MFC的分类方法有所不同。 (一)根据不同类型的微生物,MFC可分为沉积物型、异养型和光能异养型三种类型。 (二)依据电池中电子不同的传输方式,MFC可分为介体MFC和无介体MFC。 (三)根据电子不同的传递方式可将MFC分为直接MFC和间接MFC。 (四)根据反应器外观上的不同可分为:双极室MFC和单室MFC。

微生物燃料电池电极材料的研究进展.

微生物燃料电池电极材料的研究进展 作者:*** 北京化工大学化学工程学院,北京 *联系人,E-mail:********@https://www.sodocs.net/doc/1c13294407.html, 摘要微生物燃料电池(Microbial Fuel Cell,MFC)是将有机物转化为电能的装置,而电极材料对微生物燃料电池的产电性能起着重要作用。本文简单介绍了微生物燃料电池的发展历史及工作原理,详细说明了各种微生物燃料电池电极材料的结构特点、产电性能及应用情况。最后,对微生物燃料电池的应用前景做出展望。 关键词:微生物燃料电池,电极材料,产电性能 微生物燃料电池是一种利用微生物将废水中的有机物转化为电能的装置。早在1911年,英国杜伦大学植物学家M.C.Potter首先发现微生物具有产电功能,提出了微生物燃料电池这一概念。但是由于当时微生物燃料电池发展地十分缓慢。直到20世纪80年代,伦敦皇家学院的M.J.Allen和H.Peter Bennetto对最初的微生物燃料电池做出来一系列变革性的改进,最终形成了沿用至今的微生物燃料电池基本模型。到了20世纪90年代,燃料电池产生新的突破,韩国科学技术研究院的研究员B-H.kim发现某些物种的细菌具有电化学活性,这意味着微生物燃料电池将不用介质就能将电子转移到阳极。发展至今,微生物燃料电池越发受到科研工作者的重视,因为与其他有机产能技术相比,在操作和功能上,微生物燃料电池都具有明显的优势,比如说它既能保证能量转化的高效率,而且工作条件温和,因为产物大多数为Co2等无害气体,所以又不需要进行废气处理。但是微生物燃料电池由于产电量小,产电性能不够高等因素影响其进行大规模产业化,当我们能做到微生物燃料电池大规模产业化时,对能源短缺的形势会带来意想不到的福音。本文对微生物燃料电池电极材料进行了综述,尽量全面的介绍最新的有关燃料电池电极材料的研究。 1微生物燃料电池的基本工作原理 微生物燃料电池依据氧化还原反应原理。如图1所示,在阳极室,有机燃料被氧化失去电子并且产生质子,电子直接或间接到达阳极材料,然后通过外电路到达阴极形成电流,而质子通过质子交换膜到达阴极室,然后氧化剂在阴极的电子被还原。虽然只是简单的氧化还原反应,在其间存在较为复杂的电子转移问题,根据电子转移方式不同可把微生物燃料电池分为直接微生物燃料电池和间接微生物燃料电池。直接微生物燃料电池燃料在电极上氧化,电子从燃料分子直接到电极上,此时,生物催化剂催化在电极表面的反应,而间接微生物燃料电池是有机燃料在电解质溶液或者其他地方被氧化,通过一些介质的传递作用才使电子运输到电极上,这些有电子传递作用的介质叫做介体,在微生物燃料电池的研究中具有重要意义。

燃料电池发展现状与应用前景

燃料电池发展现状与应用前景 摘要: 介绍了各种类型燃料电池( 碱性燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、磷酸燃料电池及质子交换膜燃料电池) 的技术进展、电池性能及其特点。其中着重介绍了当今国际上应用较广泛、技术较为成熟的磷酸燃料电池和质子交换膜燃料电池。对燃料电池的应用前景进行探讨, 并对我国的燃料电池研究提出了一些建议。 关键词: 燃料电池; 磷酸燃料电池; 质子交换膜燃料电池 燃料电池有多种类型, 按使用的电解质不同来分类, 主要有碱性燃料电池(AFC) 、熔融碳酸盐燃料电池(MCFC) 、固体氧化物燃料电池( SOFC) 、磷酸燃料电池( PAFC) 及质子交换膜燃料电池( PEMFC) 等。 1 各种燃料电池发展状况 1. 1 碱性燃料电池(AFC) 20 世纪50 年代起美国就开始对碱性燃料电池进行研究, 并在60 年代中期成功地用于Apollo 登月飞行。AFC 的优点在于除贵金属外, 银、镍以及一些金属氧化物都可以作电极催化剂, 它的阴极性能也比酸性体系要好, 而且电池的结构材料也较便宜。缺点在于对CO2 和N2 十分敏感, 故不适用于地面。在国外, 将AFC 用于潜艇及汽车的尝试已不再继续, 目前AFC 主要用作短期飞船和航天飞机的电源。 中科院长春应用化学研究所1958 年就开始研究培根型燃料电池。60 年代初开展碱性石棉膜型燃料电池的研究, 1968 年承担航天用碱性石棉膜型燃料电池的研制。中科院大连化学物理研究所在60 年代初也开始研究碱性石棉膜型燃料电池。70年代初承担了航天用碱性石棉膜型燃料电池的研制, 研制成两种类型的电池。80 年代初, 研制了潜艇用20kW的大功率碱性石棉模型燃料电池样机。 1. 2 熔融碳酸盐燃料电池( MCFC) MCFC 的电解质由Li2CO3 和K2CO3 组成, 工作温度在650 e 左右, 阴极、阳极电化学反应快, 无需贵金属催化剂。由于在较高温度工作, 可以对天然气、煤炭气化燃料进行内部重整, 直接加以利用。不需要复杂昂贵的外重整设备。另外, 燃料转换效率高, 余热利用效率也较高。但MCFC 在高温下长期工作时电解质损失造成的电池失效、隔板腐蚀对电池寿命的影响, 以及镍电极缓慢溶解所造成的性能下降都是有待解决的课题。 由美国能源研究公司(ERC) 建造, 使用内部重整的2MWMCFC 装置已经安装在加利福尼亚并入电网运行了720h, 供电1710MWh, 1997 年3 月停运,为建造和运行这类电站提供了宝贵经验。日本熔融碳酸盐研究协会在日本月光计划和新日光计划的支持下, 一个1000kW系统正在组装以评价此技术。 长春应用化学研究所于90 年代初开始研究MCFC, 在LiAlO2 微粉的制备方法和利用金属间化合物作MCFC 的阳极材料等方面取得了很大的进展。大连化学物理所从1993 年起在中科院资助下开始研制, 自制LiAlO2 微粉制造的MCFC 单体电池性能已达国际80 年代初的水平。 1. 3 固体氧化物燃料电池( SOFC) SOFC 工作温度高达1000 e , 反应速度快, 不需要贵重金属做催化剂, 不存在电解质腐蚀金属问题。碳氢化合物燃料可自动在燃料电池内部重整, 并迅速地在电极上被氧化, 燃料中杂质对电池的性能、寿命影响均很小。其燃料转换效率高, 高温余热可很好利用, 从而提高燃料的总利用效率。SOFC 可以与燃气轮机相结合, 即用燃料电池的动力代替燃气轮机的燃烧段, 总效率可望达到60%~ 70% 。SOFC 的主要问题是固体氧化物电解质所用的陶瓷材料脆性大, 目前仍很难制造出大面积的固体电解质膜, 这严重制约了建造大功率SOFC。另外, SOFC 还存在诸如电流密度小、电压降高、制造工艺复杂、成膜设备昂贵等问题。

燃料电池的发展现状及研究进展

应用电化学 论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了100 多年的历程。于能源与环境已成为人

燃料电池的发展研究应用概况

燃料电池的发展研究应用概况 摘要:燃料电池是一种高效、清洁的电化学发电装置,近年来得到国内外普遍重视。本文详细阐述了燃料电池的近期研究进展与面临的挑战及未来发展方向。燃料电池在宇宙飞船、航天飞机及潜艇动力源方面已经得到应用,在汽车、电站及便携式电源等民用领域成功地示范,但低成本、长寿命仍然是商业化面临的瓶颈问题。未来我国应大力推进燃料电池在水下潜器、航天飞行器等特殊领域的应用,解决高可靠性与安全性及环境适应性等关键问题;同时,在民用领域要实现燃料电池寿命与成本兼顾,从材料、部件及系统等3个层次深入技术改进与创新,尽快推进燃料电池的商业化。 关键词:燃料电池;发展;应用 能源是国民经济的动力,也是衡量综合国力和人民生活水平的重要指标。随着世界范围内工业的高速发展,全世界对能源的需求日益增加。另外,能源的使用以化石燃料为主,排放了大量CO2、N2O及硫化物等污染物,造成了环境污染,严重危害人民健康。因此,采用清洁、高效的能源利用方式,积极开发新能源,有利于国家和社会经济的可持续发展。燃料电池是一种电化学的发电装置,等温的按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,正在成为理想的能源利用方式。同时,随着燃料电池技术不断成熟,以及西气东输工程提供了充足天然气源,燃料电池的商业化应用存在着广阔的发展前景。 一、燃料电池的原理 燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应,其工作原理如下图所示。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极和阴极通入。燃料气在阳极上放出电子,电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。

燃料电池研究现状与未来发展

燃料电池研究现状与未来发展香山科学会议第59次学术讨论会于1996年8月24~27日举行。会议主题是“燃料电池研究现状与未来发展”。会议执行主席路甬祥与王佛松院士主持了会议。42位来自中国科学院、全国高校及公司等25个单位的燃料电池及相关学科的专家学者共同研讨燃料电池的发展现状和未来走向,以及发展我国燃料电池技术大计。 会议综述报告及中心议题讨论内容主要包括3部分:(1)燃料电池的总体评价;(2)目前处于研究开发阶段的3种类型燃料电池的评价;(3)我国发展此技术应采取的战略与策略。 一、燃料电池的技术评价 燃料电池(Fuel cell缩写FC)是将气体燃料的化学能直接转化为电能的电化学连续发电装置。电池电化学基本反应:H2十l/202=H20和CO十1/202=C02。自150余年前被发明以来,现已发展了6种形式。它们分别为碱性(AFC)、磷酸(PAFC)、熔融酸盐(MCFC)、固体氧化物(SOFC)、聚合物离子膜(PEMFC或SPFC)及生物燃料电池(BEFC)。 概括而言,燃料电池具有以下优点:(1)能量转换效率高达45—60%。而火电和核电为30一40%;(2)有害气体SO x、NO x及噪音排放很低;CO2排放因能量转换效率高而大幅度降低;元机械振动;(3)燃料适用范围广,凡能

转化为H2和CO燃料均可使用;(4)积木性强;规模及安装地点灵活;规模小(数十千瓦级)影响能量转换效率不明显。 现PAFC在发达国家已商业化;AFC在60年代末即用于航天器。其它方面的应用不如PEMFC更具优势;BEFC尚处于实验室的探索性基础研究阶段。目前各国的燃料电池的研究开发重点主要集中在MCFC、SOFC和PEMFC上。 1.MCFC运行温度650℃,燃料适用范围广,电催化剂为非贵金属,余热可为燃气轮机所利用,适用于固定式发电电站。在各国对燃料电池的经费投入中,MCFC所占比例最大。现国外(美、日、西欧)已有100kW级发电系统的运行,预计美国2000年实现商业化,日本计划2005年实现商业化。目前MCFC研究需要解决的关键技术问题有:(1)阴极(NiO)溶解,这是影响电池寿命的主要因素;(2)阳极蠕变;(3)熔盐电质对电池双极板的腐蚀;(4)电解液流失。 2.SOFC作为运行温度最高的燃料电池(800—l000℃),功率密度高,采用全固体结构,无腐蚀性液体,燃料适用范围广,天然气可不经重整直接使用。其尾气温度高达900℃,可为燃气轮机和蒸汽轮机所用,发电效率可达70%,如加上余热利用其燃料利用率可达90%,可用于大中小型电站,作为运载工具的驱动电源也有应用前景。目前SOFC研究十分活跃,电池模块的制备规模在美、日、德三国已达20一30kW。2000一2010年间可实现商业化。目

微生物燃料电池

微生物燃料电池 1.引言 能源紧张和环境污染是可持续发展面临的重大挑战。经济发展的同时,能源消耗也在急剧增长,而现有的化石能源消耗则带来了环境质量的不断恶化。寻找新型能源,实现经济、社会和环境的可持续发展是当今社会的主要研究问题。清洁能源的发展则成为解决问题的关键。与此同时,不断发展的生物燃料电池成为了人们关注的焦点。 微生物燃料电池的兴起为可再生能源的生产和废弃物的处理开辟了新途径。首先,微生物电池的燃料来源比较多样化,如多种有机无机材料,甚至能够直接利用废液、废物作为原料产生电能,净化环境。其次,微生物燃料电池能够实现无污染、零排放、无需能量输入,满足环境友好型电池的需求。此外,微生物燃料电池的能量转化效率非常高,可以发展成长效、低廉的能量系统;加上其操作条件是在常温常压的温和条件下工作,实现了电池的低维护成本和高安全性[1]。 微生物燃料电池的发展历史中,经历了几次重大进步。1911年Potter用酵母和大肠杆菌进行实验,首次实现了微生物产电,从此开启了微生物燃料电池发展的道路[2]。20世纪80年代,细菌发电取得重大进步,随后微生物燃料电池的输出功率也有了较大的提高,其作为小功率电源使用的实际应用也进一步成为可能。2002年以后,微生物燃料电池的研究更是进入了飞速发展阶段,研究人员不仅发明了无需电子传递中间体的燃料电池,也在降低内阻、功率输出、优化结构和降低成本等方面都取得了重大进步。近年来,微生物燃料电池的应用领域也更加宽泛。 2.微生物燃料电池的原理 微生物燃料电池是一种利用微生物进行能量转换,把呼吸作用产生的电子传递到电极上的装置,能够通过产电菌代谢可生物降解的有机物,并将代谢产生的电子传递到外电路输出电能。原理如图1所示[3]。微生物燃料电池中,氧化底物的细菌通常在厌氧条件下将电子通过电子传递中介体或者细菌自身的纳米导线传递给阳极,电子通过连接阴阳两极的导线传递给阴极,而质子通过隔开两极的质子交换膜(Proton exchange membrane, PEM)到达阴极,在含铂的阴极催化下与电路传回的电子和O2反应生成水[4]。

相关主题