搜档网
当前位置:搜档网 › ansysworkbench15.0边界条件

ansysworkbench15.0边界条件

Abaqus学习笔记.

Abaqus 使用日记 Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。 建模方法: 一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。 1.首先建立“部件” (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。××××特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除××××× 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。 (2)刚体是不能够施加质量、惯性轴等特性的,建立刚体后必须给刚体指定一个参考点(reference point)。在加载模块里对参考点施加约束和定义其运动,对参考点施加的荷载或运动就相当于施加给了整个刚体。 4.模型装配 (1)在装配(assemble)模块里首先建立部件实例(part instance),一个部件实例可以看作部件的代表,但并不是原部件的拷贝。实例一直和原部件保持关联,当原部件几何形状发生变化时,实例也发生相应变化。不能对部件实例直接编辑,一个装配模型可以包含一个部件的多个实例。所有装配模型中的实例都是该装配模型的特征体,在创建第一个实例时所生成的装配模型总体坐标系也是该装配模型的一个实例。 同一个部件中所有特征体在装配模块中对该部件建立实例时会形成一个整体,也即形成了装配模型中一个特征体。选择该实例时,该实例在装配之前原部件中所有特征体都被选择了,原部件中所有特征体在装配后形成了一个整体。

边界条件的设置

第二章:边界条件 这一章主要介绍使用边界条件的基本知识。边界条件能够使你能够控制物体之间平面、表面或交界面处的特性。边界条件对理解麦克斯韦方程是非常重要的同时也是求解麦克斯韦方程的基础。 §2.1 为什么边界条件很重要 用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。 作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的。对边界条件的不恰当使用将导致矛盾的结果。 当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HFSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HFSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间,Ansoft HSS使用了背景或包围几何模型的外部边界条件。 模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。 §2.2 一般边界条件 有三种类型的边界条件。第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义。材料边界条件对用户是非常明确的。 1、激励源 波端口(外部) 集中端口(内部) 2、表面近似 对称面 理想电或磁表面 辐射表面 背景或外部表面 3、材料特性 两种介质之间的边界 具有有限电导的导体 §2.3 背景如何影响结构 背景边界:所谓背景是指几何模型周围没有被任何物体占据的空间。任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件。你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料。 有耗边界:如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与

各类边界条件fluent

Fluent技巧 边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域 2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变 (如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件

ABAQUS-二次开发-边界条件

这个例子模拟三峡库区的水位涨落时,涉水土质滑坡的渗流场分布情况的,是以前做的,蛮好玩的。如果大家关心些新闻的话,三峡库区有涨水、蓄水、排水、枯水这个一年一次循环的周期,关键问题就在于怎么在数值模拟中考虑这个 时间单位这里用的是“天”,任何问题,只要把单位统一化,就可以实现自己所定义的单位系统下的问题,这个大家应该是很熟悉的了。 t=2天 t=4天 t=8天 t=16天 t=20天t=26天 图2 浸润线位置随涨水时间t变化图

数值模拟中实现这个问题,需要对边界条件上加载孔隙水压力的方式动手脚了,首先把时间定下来,然后把每个时间对应的水位高度定下来,然后就是写对应的程序了,关键就在于,需要在各个位置的节点处定义不同的pp_t幅值曲线。这个问题使用子程序会很方便,也可以不用,只需要定义一堆关键字吧,但是GUI方式是完全没法实现的。其实软件关键字的背后也就是他的脚本语言,就好像是FLAC里写一句struct cable,这个命令本身只有给你看懂那么一个傻瓜意义意义。看看关键字怎么定义的: *AMPLITUDE,name=down1,VALUE=ABSOLUTE 0,0,30,-300,180,-300 *AMPLITUDE,name=down2,VALUE=ABSOLUTE 0,10,1,0,30,-290,180,-290 *AMPLITUDE,name=down3,VALUE=ABSOLUTE 0,20,2,0,30,-280,180,-280 *AMPLITUDE,name=down4,VALUE=ABSOLUTE 0,30,3,0,30,-270,180,-270 *AMPLITUDE,name=down5,VALUE=ABSOLUTE 0,40,4,0,30,-260,180,-260 *AMPLITUDE,name=down6,VALUE=ABSOLUTE 0,50,5,0,30,-250,180,-250 *AMPLITUDE,name=down7,VALUE=ABSOLUTE 0,60,6,0,30,-240,180,-240 *AMPLITUDE,name=down8,VALUE=ABSOLUTE 0,70,7,0,30,-230,180,-230 *AMPLITUDE,name=down9,VALUE=ABSOLUTE 0,80,8,0,30,-220,180,-220 *AMPLITUDE,name=down10,VALUE=ABSOLUTE 0,90,9,0,30,-210,180,-210 *AMPLITUDE,name=down11,VALUE=ABSOLUTE 0,100,10,0,30,-200,180,-200 *AMPLITUDE,name=down12,VALUE=ABSOLUTE 0,110,11,0,30,-190,180,-190 *AMPLITUDE,name=down13,VALUE=ABSOLUTE 0,120,12,0,30,-180,180,-180 *AMPLITUDE,name=down14,VALUE=ABSOLUTE 0,130,13,0,30,-170,180,-170 *AMPLITUDE,name=down15,VALUE=ABSOLUTE 0,140,14,0,30,-160,180,-160 *AMPLITUDE,name=down16,VALUE=ABSOLUTE

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

Abaqus学习笔记

Abaqus学习笔记 Abaqus 使用日记Abaqus 标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。建模方法:一个模型(model)通常由一个或几个部件(part)组成,部件又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴、数据平面、装配体的装配约束、装配体的实例等等。1.首先建立部件 (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options 选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。 (3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除。 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、离散刚体和解析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow… 标题: [fluent相关]湍流边界条件参数的设置 作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型 有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具 体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边 界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的 叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简 化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物 理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。在 Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍 流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上 的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg 上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强 度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟 风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中, 自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如 果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公 式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 其中Re_DH是Hy draulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特 征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L 式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形 时,L可以取为管道的水力直径。

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

进出口边界条件各种说法

问:用了很长时间的fluent,但一直没有把压力出入口边界条件弄明白。请大侠给予正确指导... 有的文档说亚声速流下initial是0或者不填,而有的出版物则把total和initial设置成几乎想等的值,或者差值为大气压,很困惑! 比如说在一个喷射(亚声速流)流场中,实际条件为喷嘴入口压力40MPa,出口压力20MPa,即流场内围压20MPa,这时,在压力入口边界条件的总压、初始表压以及压力出口的表压分别应该设置多少?如果是超声速流,又有什么区别? 还有,operating condition下的operating pressure是否设置成0或者大气压有什么说法吗? A:有的出版物则把total和initial设置成几乎想等的值。 我在使用时一般也是采用这样的方法,严格来讲是有公式来计算的。但是这个值一般只是用于初始化,对结果影响不大,所以简单来讲就设置成和出口的一样。 这个值对流场的初始化有一定的影响,设置成0也不是不可以,但会增加迭代步数。 对于喷射而言,建议lz将operating condition下的operating pressure设置为0 ,即是绝对压力。 二 最近用Fluent做模拟的时候一直在使用压力出口边界,对其中出口温度、组分浓度等值的设置不是很明白,就仔细看了下Fluent User Guide,对压力出口边界描述如下: Pressure outlet boundary conditions require the specification of a static (gauge) pressure at the outlet boundary........All other flow quantities are extrapolated from the interior。因此,压力出口边界可以这样表述,即,给定出口压力,对流动中的其他物理量均有流场内部值差值得到。 那边界条件面板中设定的温度(等)值有什么用呢? 是出现回流时的回流值。 三 Fluent内部计算采用的都是相对压强。在Define——Operating Conditions…中,所示的Operating Pressure是操作压强。默认的操作压强为一个大气压101325Pa. 下面叙述一下笔者对采用Operating Pressure原因的理解。

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

边界条件

网格化分: 机体网格划分采用四面体网格。上部采用6mm网格,下部采用8mm网格,与缸套接触部分采用2mm网格,共有382111个单元,网格模型如图3和图4所示。缸套网格划分主要采用六面体2mm网格,4个缸套共有309472个单元,网格模型如图5所示。缸盖螺栓网格划分采用六面体4mm网格,18个螺栓共有13896个单元,网格模型如图6所示。缸垫网格划分采用六面体4mm网格,共有4075个单元,网格模型如图7所示。等效缸盖网格划分采用四面体7mm网格,共有186582个单元,网格模型如图8所示。总体计算网格模型如图9所示,共有896136个单元。 边界条件: 1 位移边界条件 机体底部约束为零 2 力边界条件 气缸套受力主要有装配应力、燃气压力、热应力和活塞侧向力。 2.1螺栓预紧力 螺栓预紧力通过拧紧力矩获得。根据YN33柴油机的螺栓拧紧力矩和螺栓结构尺寸计算得到螺栓预紧力为62490N。 2.2活塞对缸套的侧向力 活塞对缸套侧向力采用曲轴转角81°时的工况。假定力边界条件为:载荷沿缸套轴线方向按二次抛物线规律分布;沿缸套圆周120°角范围内按余弦规律分布。 选择侧击力影响最大位置进行研究,经过分析,选定1缸曲轴转角24°(活塞位于最大爆发压力处)、81°(活塞位于行程中间位置)时的工况进行研究,此时活塞对缸套的侧向力和侧向压力幅值如表1所示。加载边界条件时取L=43.5,x=0的位置为活塞销的位置。 表1 气缸套壁面加载的活塞侧向力 注:正值表示活塞侧向力作用在主推力侧,负值表示活塞侧向力作用在次推力侧。 2.3 缸套壁面的气体作用力

表2 一缸气缸套壁面加载的气体压力 热应力由温度边界条件计算得到温度场后施加到机械应力分析中进行热力耦合计算。 3 接触边界条件 主要接触对有:气缸盖与气缸垫、气缸盖与气缸套、气缸垫与机体、气缸垫与缸套、气缸套与机体、气缸盖与预紧螺栓下端面、预紧螺栓螺纹与机体螺栓孔螺纹。 4 温度边界条件 常见的导热特征边界条件有:第1类边界条件——恒定温度;第2类边界条件——热流密度;第3类边界条件——对流。本文研究机型选用采用第三类边界条件。 4.1气缸套温度边界条件 表3 AB段加载的热边界条件 表4 其他段加载的热边界条件 缸盖温度边界条件 缸盖暴露于大气环境中,其表面与周围环境换热极为微弱,因此换热系数不大,本次计算取23 W/m2·℃,环境温度取25℃。 4.2机体温度边界条件

ABAQUS常用技巧归纳

ABAQUS学习总结 1.ABAQUS中常用的单位制。-(有用到密度的时候要特别注意) 单位制错误会造成分析结果错误,甚至不收敛。 2.ABAQUS中的时间 对于静力分析,时间没有实际意义(静力分析是长期累积的结果)。对于动力分析,时间是有意义的,跟作用的时间相关。 3.更改工作路径 4.对于ABAQUS/Standard分析,增大内存磁盘空间会大大缩短计算 时间;对于ABAQUS/Explicit分析,生成的临时数据大部分是存 储在内存中的关键数据,不写入磁盘,加快分析速度的主要方法是提高CPU的速度。 临时文件一般存储在磁盘比较大的盘符下

提高虚拟内存

5.壳单元被赋予厚度后,如何查看是否正确。 梁单元被赋予截面属性后,如休查看是否正确。 可以在VIEW的DISPLAY OPTION里面查看。 6.参考点 对于离散刚体和解析刚体部件,参考点必须在PART模块里面定义。 而对于刚体约束,显示休约束,耦合约束可以在 PART ,ASSEMBLY,INTERRACTION,LOAD等定义参考点. PART模块里面只能定义一个参考点,而其它的模块里面可以定义很多个参考点。

7.刚体部件(离散刚体和解析刚体),刚体约束,显示体约束 离散刚体:可以是任意的形状,无需定义材料属性,要定义参考点,要划分网格。 解析刚体:只能是简单形状,无需定义材料属性,要定义参考点,不需要划分网格。 刚体约束的部件:要定义材料属性,要定义参考点,要划分网格。 显示体约束的部件:要定义材料属性,要定义参考点,不需要要划分网格(ABAQUS/CAE会自动为其要划分网格)。 刚体与变形体比较:刚体最大的优点是计算效率高,因为它在分析作 业过程中不参与所在基于单元的计算,此外,在接触分析,如果主面是刚体的话,分析更容易收敛。 刚体约束和显示体约束与刚体部件的比较:刚体约束和显示体约束的优点是去除约束后,就可以立即变为变形体。 刚体约束与显示体约束的比较:刚体约束的部件会参与计算,而显示约束的部件不会参与计算,只是用于显示作用。 8.一般分析步与线性摄动分析步 一般分析步:每个分析步的开始状态都是前一个分析步结束时刻的模型状态;如果不做修改的话,前一个分析步所施加的载荷,边界 条件,约束都会延续到当前的分析步中;所定义的载荷,边界条件以及得到的分析结果都是总量。

fluent边界条件(一)

边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域

2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变(如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件 在图像显示方面选择边界区域 在边界条件中不论你合适需要选择区域,你都能用鼠标在图形窗口选择适当的区域。如果你是第一次设定问题这一功能尤其有用,如果你有两个或者更多的具有相同类型的区域而且你想要确定区域的标号(也就是画出哪一区域是哪个)这一功能也很有用。要使用该功能请按下述步骤做: 1.用网格显示面板显示网格。 2.用鼠标指针(默认是鼠标右键——参阅控制鼠标键函数以改变鼠标键的功能)在图形窗口中点击边界区域。在图形显示中选择的区域将会自动被选入在边界条件面板中的区域列表中,它的名字和编号也会自动在控制窗口中显示改变边界条件名字 每一边界的名字是它的类型加标号数(比如pressure-inlet-7)。在某些情况下你可能想要对边界区域分配更多的描述名。如果你有两个压力入口区域,比方说,你可能想重名名它们

fluent边界条件设置

边界条件设置问题 1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。该边界条件适用于不可压缩流动问题。 Momentum 动量 thermal 温度 radiation 辐射 species 种类 DPM DPM模型(可用于模拟颗粒轨迹) multipahse 多项流 UDS(User define scalar 是使用fluent求解额外变量的方法) Velocity specification method 速度规范方法: magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区 Velocity magnitude 速度的大小 Turbulence 湍流 Specification method 规范方法

k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率 Intensity and length scale 强度和尺寸: 1湍流强度 2 湍流尺度=(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率 intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径 2、压力入口边界条件(pressure-inlet):压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。压力进口条件还可以用于处理外部或者非受限流动的自由边界。 Gauge total pressure 总压supersonic/initial gauge pressure 超音速/初始表压constant常数 direction specification method 方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界

abaqus实例详细过程(铰链)

算例二铰链 一、创建部件 1、进入部件模块。。点击创建部件。 命名为Hinge-part,其他的选项选择如右下图所示。点击 “继续”,进入绘图区。 2、点击,在绘图区绘一个矩形。再点击,将尺寸改为 0.04*0.04。单击鼠标中键。 3、在弹出的对话框中输入0.04作为拉伸深度。点击”确定”。 4、点击创建拉伸实体,点击六面体的一个面,以及右侧的边。进入到绘图区域。 5、如下图那样利用创建三条线段。利用将两条横线都改为0.02mm长。 6、选择,做出半圆。 7、点击,以半圆的圆心为圆心,做圆。 8、点击为圆标注尺寸。输入新尺寸0.01。 9、在弹出的对话框里输入拉伸深度为0.02,拉伸方向:翻转。点击“确定”。 10、在模型树的部件里,选择圆孔部件。右击,编辑。将内孔直径改为0.012.。确定。

创建润滑孔 1、进入草图模块。创建名为hole的草图。如右图所示。单击“继续”。 2、单击做一个直径为0.012的圆。单击鼠标中键。进入部件模块。 3、选择主菜单栏的工具→基准。对话框选择格式如下图所示。 选择半圆形边。参数设为0.25。。单击中键,点就建好了。软件提示选择一个轴。那么,我们就创建一个基准轴。如上图右侧所示。选择刚刚建好的那一点以及圆孔的中心,过这两点创建一个轴。再在基准处点击如下图所示,选择刚刚建好的点和轴,那么面也就建好了。

4、点击,视图左下角的显示区显示,选择上一步中创建的基准面,再选一个边。如图所示。进入绘图区。 6、导入之前绘制的小润滑孔hole。利用将孔移植所需位置。单击中键。选择正确的翻 转方向。对话框按右下图设置。确定。 7、将部件的名称改成hinge-hole,并复制一个命名为hinge-solid。 将hinge-solid的模型树张开,删除其下的特征,即该部件不带孔。 8、创建第三个部件:刚体销。 点击创建部件按钮,命名为pin,解析刚体,旋转壳。具体见下图所示。单击“继 续”,在出现的旋转轴右侧画一条垂直向下的直线。用将该直线的长度改为0.06,与旋转轴的距离为0.012,点击确定,界面出现旋转之后的销。

边界条件中湍流设置

在入口、出口或远场边界流入流域的流动,FLUENT 需要指定输运标量的值。本节描述了对于特定模型需要哪些量,并且该如何指定它们。也为确定流入边界值最为合适的方法提供了指导方针。 使用轮廓指定湍流参量 在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。一旦你创建了轮廓函数,你就可以使用如下的方法: ● Spalart-Allmaras 模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性 比之后的下拉菜单中选择适当的轮廓名。通过将m_t/m 和密度与分子粘性的适当结合, FLUENT 为修改后的湍流粘性计算边界值。 ● k-e 模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. Kinetic Energy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。 ● 雷诺应力模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. Kinetic Energy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。 湍流量的统一说明 在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。 在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。然而必须注意的是要保证边界值不是非物理边界。非物理边界会导致你的解不准确或者不收敛。对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。 你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。 湍流强度I 定义为相对于平均速度u_avg 的脉动速度u^'的均方根。 小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。. 对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算: ()81Re 16.0-?'≡H D avg u u I

abaqus中边界条件的设置

精品文档 ABAQU 模型中的6个自由度,其中的坐标中编号是 1.2.3而不是常用的X.Y.Z 。因为模 型的坐标 系也可以是主坐标系或球坐标系等。 边界条件的定义方法主要有两种, 这两种方法 可以混合使用: 自由度1 ( U1):沿坐标轴1方向上的平移自由度。 自由度2( U2):沿坐标轴2方向上的平移自由度。 自由度3( U3):沿坐标轴3方向上的平移自由度。 自由度4( UR1):沿坐标轴1上的旋转自由度。 自由度5( UR1):沿坐标轴2上的旋转自由度。 自由度 6(UR1) 沿坐标轴 3上的旋转自由度。 2、约定的边界条件类型 反对称边界条件,对称面为与坐标轴 2垂直的平面,即 U1= U3= UR2=0; ZASYMM 反对 称边界条件,对称面为与坐标轴 3 垂直的平面,即 U1= U2= UR3=0; PINNED 约束所有 平移自由 度,即 U1=U2=U3=0; ENCASTRE 约束所有自由度(固支边界条件) ,即 5= U2=U3=UR 仁UR2=UR3=0. 精品文档 XSYMM 对称边界条件,对称面为与坐标轴 YSYMM 对称边界条件,对称面为与坐标轴 ZSYMM 对称边界条件,对称面为与坐标轴 1 垂直的平面,即 2 垂直的平面,即 3 垂直的平面,即 U1= UR2= UR3=0; U2= UR1= UR3=0; XASYMM 反对称边界条件,对称面为与坐标轴 1垂直的平面,即U2= U3= UR 仁0; YASYMM

欢迎您的下载, 资料仅供参考! 致力为企业和个人提供合同协议,策划案计划书,学习资料等等 打造全网一站式需求

相关主题