搜档网
当前位置:搜档网 › 化学名词解释(自己整理的)

化学名词解释(自己整理的)

化学名词解释(自己整理的)
化学名词解释(自己整理的)

1.盖斯俄国化学家1836年经过许多次实验,他总结出一条规律:在任何化学反应过程中的热量,不论该反应是一步完成的还是分步进行的,其总热量变化是相同的,1860年以热的加和性守恒定律形式发表。这就是举世闻名的盖斯定律。盖斯定律是断定能量守恒的先驱,也是化学热力学的基础。我们常称盖斯是热化学的奠基人。

2.勒·夏特列/勒·夏特利埃(Le Chatelier,Henri Louis),法国化学家。对热学的研究很自然将他引导到热力学的领域中去,使他得以在1888年宣布了一条他因而遐迩闻名的定律,那就是至今仍称为的勒夏特列原理。如果改变影响平衡的一个条件(如浓度,压强或温度等),平衡就向能够减弱这种改变的方向移动。

3.阿伏加德罗(Ameldeo Avogadro,1776~1856)意大利物理学家、化学家。第一个认识到物质由分子组成、分子由原子组成。

4.德米特里·门捷列夫,19世纪俄国化学家,他发现了元素周期律,并就此发表了世界上第一份元素周期表。

5.1962年,巴特利特在研究无机氟化物时,发现强氧化性的六氟化铂可将O2氧化为O2+。由于O2到O2+的电离能(1165 kJ mol)与Xe到Xe的电离能相差不大(1170 kJ mol),因此他尝试用PtF6氧化Xe。结果反应得到了橙黄色的固体。巴特利特认为它是六氟合铂酸氙(Xe[PtF6])。这是第一个制得的稀有气体化合物。后期的实验证明该化合物化学式并非如此简单,包括XeFPtF6和XeFPt2F11。

6.吉尔伯特·路易斯(GilbertNewtonLewis,1875—1946年)美国化学家。1916年,路易斯和柯塞尔同时研究原子价的电子理论。柯塞尔主要研究电价键理论。路易斯主要研究共价键理论,该理论认为,两个(或多个)原子可以相互“共有”一对或多对电子,以便达成惰性气体原子的电子层结构,而形成共价键。路易斯提出的共价键的电子理论,基本上解释了共价键的饱和性,明确了共价键的特点。共价键理论和电价键理论的建立,使得十九世纪中叶开始应用的两元素间的短线(即表示原子间的相互作用力或称“化学亲和力”)开始有明确的物理意义。但还没解决共价键的本性问题。

7.鲍林(1901.2.28—1994.8.19)是著名的量子化学家鲍林对化学键本质的研究,引申出了广泛使用的杂化轨道概念。杂化轨道理论认为,在形成化学键的过程中,原子轨道自身回重新组合,形成杂化轨道,以获得最佳的成键效果。根据杂化轨道理论,饱和碳原子的四个价层电子轨道,即一个2S轨道和三个2P轨道喙线性组合成四个完全对等的sp3杂化轨道,量子力学计算显示这四个杂化轨道在空间上形成正四面体,从而成功的解释了甲烷的正四面体结构。(现代价键理论,VB法)鲍林于1932年首先提出了用以描述原子核对电子吸引能力的电负性概念,并且提出了定量衡量原子电负性的计算公式。

8.弗里德里希·洪特(Friedrich Hund,1896年2月4日—1997年3月31日),德国理论物理学家,在能量相等的轨道上,自旋平行的电子数目最多时,原子的能量最低。所以在能量相等的轨道上,电子尽可能自旋平行地多占不同的轨道。例如碳原子核外有6个电子,按能量最低原理和泡利不相容原理,首先有2个电子排布到第一层的1s轨道中,另外2个电子填入第二层的2s轨道中,剩余2个电子排布在2个p轨道上,具有相同的自旋方向,而不是两个电子集中在一个p轨道,自旋方向相反。

9.分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。1932年,美国化学家慕利肯和德国化学家洪特提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。

10.约翰尼斯·迪德里克·范·德·瓦耳斯(范德华)确立真实气体状态方程和分子间范德华力

11.德国物理化学家、合成氨的发明者弗里茨·哈伯(Fritz Haber)。

12.瑞士化学家米勒(Paul Hermann Müller)首推DDT为实验样品

13.维勒(FriedrichWöhler1800—1882)德国化学家。主要从事有机合成和无机物研究。1828年他发表了“论尿素的人工制成”一文,引起了化学界的震动。这被认为是第一次人工合成有机物,对当时流行的生命力学说是巨大的冲击,并开创了有机合成的新时代。他还曾研究苦杏仁油,发现了氢醌、尿酸,可卡因等。在无机化学领域,他也有不少贡献。1827年和1828年发现了铝和铍两种元素。对硼、钛、硅的化合物进行了广泛研究并发现了硅的氢化物。

14.琼斯·雅可比·贝采里乌斯(Jons Jakob Berzelius)瑞典化学家、伯爵,现代化学命名体系的建立者、硅、硒、钍和铈元素的发现者,被称为有机化学之父。

15.尤斯图斯·冯·李比希德国化学家他最重要的贡献在于农业和生物化学,他创立了有机化学。因此被称为“化学之父”。发现了同分异构现象1829年发现并分析马尿酸;1831年发现并制得氯仿和氯醛;1832年与F.维勒共同发现安息香基并提出基团理论,为有机结构理论的发展作出贡献;1839年提出多元酸理论。

16.荷兰化学家范特霍夫开创了以有机化合物为研究对象的立体化学(碳原子成键),在化学反应速度、化学平衡和渗透压方面取得了骄人的研究成果。

17.勒贝尔(Le Bel,Joseph Achille)法国化学家。1874年,他比范特霍夫早两个月,完全独立地宣布了旋光性与分子结构之间的关系方面的理论。虽然他的分析不象范特霍夫那样非常精细,但是照例是要让他分享同等的荣誉的。1891年他曾试图证实氮原子键的空间配置也能产生旋光性。虽则勒贝尔的这一想法是正确的,但他的论证是错误的。这一任务只好留待波普来完成了。18.马尔科夫尼科夫(Markovnidov , Vladimir Vasilevich)俄国化学家。指出了氯原子和溴原子与含双键碳链的连接特点。这一特点的成因是半个世纪后泡令由共振说解释清楚的,不过,人们现在仍称这种加成过程遵从马尔科夫尼科夫规则。(马氏规则)他对于凯库勒的有机分子机构学说很有兴趣,并使之有了一个重大发展。当时,人们普遍认为,碳原子只能形成六碳环。诚然,六碳环最稳定,也最容易生成,但马尔科夫尼科夫证明这并不是唯一的可能。1879年,他制成了四碳环化合物;1889年,他又实现了七碳环化合物。

19.凯库勒(1829 — 1896 年), 德国化学家。首次把原子价的概念从平面推向三维空间。主要研究有机化合物的结构理论。在梦中发现了苯的结构简式,被称为一大美谈。凯库勒式:苯环单双键交替。

20.格利雅(1871~1935)法国化学家。于1901年研究用镁进行缩合反应,发现烷基卤化物易溶于醚类溶剂,与镁反应生成烷基氯化镁(即格氏试剂)。还对铝、汞有机化合物及萜类化合物均进行过广泛的研究。他还研究过羰基缩合反应和烃类的裂化、加氢、脱氢等反应;在第一次世界大战期间研究过光气和芥子气等毒气。

21.詹姆斯·沃森(1928~) Watson,James Dewey 与弗朗西斯·哈里·康普顿·克里克Francis Harry Compton Crick 合作,提出了DNA的双螺旋结构学说。这个学说不但阐明了DNA 的基本结构,并且为一个DNA分子如何复制成两个结构相同DNA分子以及DNA怎样传递生物体的遗传信息提供了合理的说明。它被认为是生物科学中具有革命性的发现,是20世纪最重要的科学成就之一。

22.阿尔弗雷德·伯纳德·诺贝尔(Alfred Bernhard Nobel, 1833.10.21-1896.12.10)是瑞典化学家、工程师、发明家、军工装备制造商和炸药的发明者。研究最多的是硝化甘油。

23.卡尔·威尔海姆·舍勒(Carl Wilhelm Scheele) 是瑞典著名化学家,氧气的发现人之一,同时对氯化氢、一氧化碳、二氧化碳、二氧化氮等多种气体,都有深入的研究。首先通过二氧化锰与浓盐酸制取了黄绿色气体。

24.戴维确认氯气由一种元素组成。

25.Svante August Arrhenius(1859一1927)斯范特·奥古斯特·阿累尼乌斯(也译作阿伦尼乌斯)是近代化学史上的一位著名的化学家,又是一位物理学家和天文学家。阿累尼乌斯刻苦钻研,具有很强的实验能力。1883年5月,他提出了电离理论的基本观点:“由于水的作用,电解质在溶液中具有两种不同的形态,非活性的分子形态,活性的离子形态。溶液稀释时,活性形态的数量增加,所以溶液导电性增大”。阿累尼乌斯同时提出了酸、碱的定义;解释了反应速率与温度的关系,提出活化能的概念及与反应热的关系等。

1.中文名称:分光光度计

英文名称:spectrophotometer

定义1:

利用单色仪或特殊光源提供的特定波长的单色光通过标样和被分析样品,比较两者的光强度来分析物质成分的光谱仪器。

定义2:

带有可调节选择入射光波长单色光器的光度计。可以分析溶液的吸收光谱(对不同波长入射光的吸收情况)而进行定性分析,也可以固定入射光波长去测量吸光度对物质进行定量分析。依使用的波长不同,有可见、紫外、红外分光光度计等。

定义3:

带有可调节选择入射光波长单色光器的光度计。可以分析溶液的吸收光谱(对不同波长入射光的吸收情况)而进行定性分析,也可以固定入射光波长去测量吸光度对物质进行定量分析。

依使用的波长不同,有可见、紫外、红外分光光度计等。

2.红外光谱仪的广泛应用

进行化合物的鉴定进行未知化合物的结构分析

进行化合物的定量分析进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究工业流程与大气污染的连续检测

在煤炭行业对游离二氧化硅的监测

卫生检疫,制药,食品,环保,公安,石油,化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测

水晶石英羟基的测量聚合物的成分分析药物分析

3.电子显微镜:透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。

4.原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到10-9g/mL数量级,石墨炉原子吸收法可测到10-13g/mL数量级。其氢化物发生器可对8种挥发性元素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。

5.X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.

6.原子发射光谱仪是根据试样中被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射波长及其强度的大小,对各元素进行定性分析和定量分析的仪器。

7.核磁共振仪利用核磁共振原理测量试样的某种核磁共振信息或精密测量磁场的装置。

8.气相色谱仪在石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于对物质定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。一种对混合气体中各组成分进行分析检测的仪器。

9.质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。

10.色谱法是一种利用混合物中诸组分在两相间的分配原理以获得分离的方法。

11.同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie于1934年发现了人工放射性,以及其后生产方法的建立(加速器、反应堆等),为放射性同位素示踪法的更快的发展和广泛应用提供了基本的条件和有力的保障。

12.钠融法:用钠融法可定性确定有机物中是否存在氮、氯、溴、硫等元素。

13.铜丝燃烧法铜丝燃烧法可定性确定有机物中是否存在卤素。将一根纯铜丝加热至红热,蘸上试样,放在火焰上灼烧,如存在卤素,火焰为绿色。

食品化学名词解释及简答题整理

1.水分活度:食品中水分逸出的程度,可以用食品中水的蒸汽压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。 2.吸温等温线:在恒定温度下,食品的水分含量(用每单位干物质质量中水的质量表示)与它的Aw之间的关系图称为吸湿等温线(Moisture sorption isotherms缩写为MSI)。 分子流动性(Mm):是分子的旋转移动和平转移动性的总度量。决定食品Mm值的主要因素是水和食品中占支配地位的非水成分。 3.氨基酸等电点:偶极离子以电中性状态存在时的pH被称为等电点 4. 蛋白质一级结构:指氨基酸通过共价键连接而成的线性序列; 二级结构:氨基酸残基周期性的(有规则的)空间排列; 三级结构:在二级结构进一步折叠成紧密的三维结构。(多肽链的空间排列。) 四级结构:是指含有多于一条多肽链的蛋白质分子的空间排列。 5.蛋白质变性:天然蛋白质分子因环境因素的改变而使其构象发生改变,这一过程称为变性。 6.蛋白质的功能性质:在食品加工、保藏、制备和消费期间影响蛋白质在食品体系中性能的那些蛋白质的物理和化学性质。 7.水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽达到平衡时,每克蛋白质所结合的水的克数。 8单糖:指凡不能被水解为更小单位的糖类物质,如葡萄糖、果糖等。 9.低聚糖(寡糖):凡能被水解成为少数,2-6个单糖分子的糖类物质,如蔗糖、乳糖、麦芽糖等。 10.多糖:凡能水解为多个单糖分子的糖类物质,如淀粉、纤维素、半纤维素、果胶等。 11.美拉德反应:凡是羰基与氨基经缩合,聚合生成类黑色素的反应称为羰氨反应。 12.淀粉的糊化:在一定温度下,淀粉粒在水中发生膨胀,形成粘稠的糊状胶体溶液,这一现象称为"淀粉的糊化"。 13.糊化淀粉的老化:已糊化的淀粉溶液,经缓慢冷却或室温下放置,会变成不透明,甚至凝结沉淀。 14改性淀粉:为适应食品加工的需要,将天然淀粉经物理、化学、酶等处理,使淀粉原有的物理性质,如水溶性、粘度、色泽、味道、流动性等发生变化,这样经过处理的淀粉称为变(改)性淀粉。 15同质多晶现象:化学组成相同的物质可以形成不同形态晶体,但融化后生成相同液相的现象叫同质多晶现象,例如由单质碳形成石墨和金刚石两种晶体。 16脂的介晶相(液晶):油脂的液晶态可简单看作油脂处于结晶和熔融之间,也就是液体和固体之间时的状态。此时,分子排列处于有序和无序之间的一种状态,即相互作用力弱的烃链区熔化,而相互作用力大的极性基团区未熔化时的状态。脂类在水中也能形成类似于表面活性物质存在方式的液晶结构。 17油脂的塑性是与油脂的加工和使用特性紧密相关的物理属性。其定义为在一定外力的作用下,表观固体脂肪所具有的抗变性的能力。 18乳化剂:能改善乳浊液各构成相之间的表面张力(界面张力),使之形成均匀、稳定的分散体系的物质。19油脂自动氧化(autoxidation):是活化的含烯底物(如不饱和油脂)与基态氧发生的游离基反应。生成氢过氧化物,氢过氧化物继而分解产生低级醛酮、羧酸。这些物质具有令人不快的气味,从而使油脂发生酸败(蛤败)。 20抗氧化剂:能推迟会自动氧化的物质发生氧化,并能减慢氧化速率的物质。

大学有机化学名词解释

亲核反应 有机反应的一类,电负性高的亲核基团向反应底物中的带正电的部分进攻而 芳环上亲核取代反应历程 使反应发生,这种反应为亲核反应。与之相对的为。 即在相互作用的两个体系之间,由于一个体系对另一个体系的原子核的吸引所引起的。这些反应属于离子反应。反应试剂在反应过程中,对与之相互作用的原子或体系给予或共享其电子对者,称为。 由亲核试剂如HO、:NR3、CN、H2N、…等与有机分子相互作用而发生的,称为亲核取代反应(SN)。在亲核取代反应中,亲核试剂Nu进攻被作用物中的饱和碳原子,取代此饱和碳原子上的一个原子团L 芳环上亲核取代反应历程能量变化 。Nu供给碳原子一对电子,生成新的,碳原子与L之间的共价键破裂,L带着一对电子离去: Nu:+RL─→NuR+:L 式中R为烷基。Nu:和L:都带有孤电子对,它们可以是负离子或中性分子。 由亲核试剂HCN、H2O、丙二酸二乙酯等与世轭不饱和醛或酮进行的称亲核加成反应。例如共轭不饱和酮与HCN加成,形成氰酮: 亲电反应electrophilic reaction 亲电反应指缺电子(对电子有亲和力)的试剂进攻另一化合物电子云密度较高(富电子)区域引起的反应。亲电反应属于(ionic reaction)的一种,是的基本反应之一。[1]在相互作用的两个体系之间,由于一个体系对另一个体系的电子的吸引所引起的化学反应。这些反应属于离子反应。反应试剂在反应过程中,从与之相互作用的原子或体系得到或共享电子对者,称为亲电试剂(E+)。 凡由亲电试剂如HNO3、H2SO4、Cl2、Br2等与有机分子相互作用而发生的取代反应,称为亲电取代反应(SE): E++RX─→RE+X+ 式中R为烷基。上述类型的正离子取代反应属于SE类型反应。例如,CH3:MgBr与溴反应时,溴分子的正电荷部分(相当于上式中的E+)与带着一对电子的甲基反应:CH3:|MgBr+Br+|:Br-─→CH3Br+MgBr2 亲电反应 在芳香族化合物亲电取代反应中,亲电试剂进攻芳香环,生成σ络合物,然后离去基团变成正离子离开,离去基团在多数情况下为质子: 一般,第二步的速率比第一步高(k2》k1,k)。 由亲电试剂进攻所引起的加成反应称为亲电加成反应。在没有光照和自由基引发的条件下,烯烃与卤素的加成反应是亲电加成反应,例如: CH3CH匉CH2+Br2─→CH3CHBrCH2Br

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

食品化学名词解释

一、名词解释 1、水分活度:是指食品中睡得蒸汽压与纯水饱和蒸汽压的比值即Aw=P/P0。水分活度能反映水与各种非水分缔合的强度,比水分含量能更可靠的预示食品的稳定性、安全和其他性质。 2、焦糖化作用:将糖和糖浆直接加热,可产生焦糖化的复杂反应。大多数的热解反应能引起糖分子脱水,因而把双键引入糖环,产生不饱和中间产物,而这些不饱和环会发生聚合,生成具有颜色的聚合物。 3、淀粉老化:热的淀粉糊冷却时,一般形成具有粘弹性的凝胶,凝胶连结区的形成意味着淀粉分子形成结晶的第一步。稀淀粉溶液冷却时,线性分子重新排列并通过氢键形成不溶性沉淀。浓的淀粉糊冷却时,在有限的区域内,淀粉分子重新排列很快,线性分子缔合,溶解度减小,淀粉溶解度减小的过程即为淀粉的老化。 4、膳食纤维:是由两部分组成,一部分是不溶性的植物细胞壁材料,主要是纤维素和木质素,另一部分是非淀粉的水溶性多糖。这些物质的共同特点是不被消化的聚合物。 5、维生素A:是一类有营养活性的不饱和烃,如视黄醇及相关化合物和某些类胡萝卜素。6、脂肪的同质多晶:所谓同质多晶型物是指化学组成相同,但具不同晶型的物质,在熔化时可得到相同的物质。 7、胃合蛋白反应:是指一组反应,它包括蛋白质的最初水解,接着肽键的重新合成,参与作用的酶通常是木瓜蛋白酶或胰凝乳蛋白酶。 8、食品营养强化剂:为增强营养成分而加入食品中的天然的或者人工合成的属于天然营养素范围的食品添加剂。 9、异酸:油脂在氢化过程中,一些双键被饱和,一些双键可能重新定位,一些双键可能由顺式转变为反式构型,所产生的异构物被称为异酸。 11、预糊化淀粉:淀粉浆料糊化后及尚未老化前,立即干燥脱水,该淀粉分子仍保持其糊化状态,这样的淀粉称为预糊化淀粉。 12、海藻酸:海藻酸是从褐藻中提取出来的,是由β-1,4-D-甘露糖醛酸和α-1,4-L-古洛糖醛酸组成的线性高聚物。 12、酶制剂:采用适当的理化方法从生物组织(细胞、微生物)提取的或通过生物工程技术制备的,具有一定的纯度及酶促活性的生化制品,常作为食品添加剂。 13、食品添加剂:为了改善食品的品质及满足防腐与加工的需要的天然或化学合成的添加到食品中的一类物质。 14、β-淀粉酶:是水解酶的一种,它从淀粉分子的非还原性末端水解α-1,4-糖苷键,产生β-麦芽糖。 15、氨基酸的疏水性:氨基酸从乙醇转移至水的自由能变化被用来表示氨基酸的疏水性。 16、糖苷:糖苷是指环状单糖上的半缩醛与R-OH、R2-NH 及R3-SH 等失去水后形成的产品称为糖苷,糖苷一般含有呋喃或吡喃糖环。 17、脂肪的固脂指数:塑性脂肪的固液比称为固体脂肪指数(SFI) 18、食品风味:是指所尝到的和嗅知及触知的口中食物的总的感受。 19、美拉德反应:食品在油炸、焙烤等加工或储藏过程中,还原糖同游离氨基酸或蛋白质分子中氨基酸残基的游离氨基发生羰氨反应,这种反应被称为美拉德反应。 20、维生素原:原来没有维生素活性,在体内能转变为维生素的物质称为维生素原,如胡萝卜素就是维生素A原。 21、脂肪的塑性:固体脂肪在外力作用下,当外力超过分子间作用力时,开始流动,但是当外力停止后,脂肪恢复原有稠度。 22、中性脂肪:一般是指脂肪酸和醇类组成的酯,但有时也包含烃类,是三酰甘油,二酰甘

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

食品化学名词解释、简答题

第一章水分 一、名词解释 1.结合水:又称束缚水或固定水,通常是指存在于溶质或其它非水组分附近的、与溶质分子之间通过化学键的力结合的那部分水。 2.自由水:又称束缚水或固定水,通常是指存在于溶质或其它非水组分附近的、与溶质分子之间通过化学键的力结合的那部分水。 4.水分活度:又称束缚水或固定水,通常是指存在于溶质或其它非水组分附近的、与溶质分子之间通过化学键的力结合的那部分水。 5.滞后现象:向干燥食品中添加水(回吸作用)的方法绘制的水分吸附等温线和按解吸过程绘制的等温线并不相互重叠,这种不重叠现象称为“滞后现象”。 6.吸湿等温线:在恒定温度下,以食品的水分含量(用单位干物质质量中水的质量表示,g 水/g干物质)对它的水分活度绘图形成的曲线。 第二章碳水化合物 一、名词解释 1、手性碳原子:手性碳原子连接四个不同的基团,四个基团在空间的两种不同排列(构型)呈镜面对称。 7、转化糖:用稀酸或酶对蔗糖作用后所得含等量的葡萄糖和果糖的混合物。 8、焦糖化反应:糖类物质在没有氨基化合物存在的情况下,加热到熔点以上(蔗糖200℃)时,糖发生脱水与降解并生成黑褐色物质的反应。 9、美拉德反应:食品中的还原糖与氨基化合物发生缩合、聚合生成类黑色素物质的反应,又称羰氨反应。 10、淀粉糊化:淀粉粒在适当温度下,破坏结晶区弱的氢键,在水中溶胀,分裂,胶束则全部崩溃,形成均匀的糊状溶液的过程被称为糊化。 11、α-淀粉:胶束彻底崩溃,形成被水包围的淀粉分子,成胶体溶液状态。 12、β-淀粉:淀粉的天然状态,分子间靠氢键紧密排列,间隙很小,具有胶束结构。 13、糊化温度:指双折射消失的温度。 14、淀粉老化:α-淀粉溶液经缓慢冷却或淀粉凝胶经长期放置,会变为不透明甚至产生沉淀的现象。 六、简答题 17、什么是糊化?影响淀粉糊化的因素有那些? 淀粉的糊化:淀粉悬浮液加热到一定温度,颗粒开始吸水膨胀,溶液粘度增加,成为粘稠的胶体溶液的过程。 影响因素:淀粉结构,温度,水分,糖,脂类,PH值 20、何谓高甲氧基果胶?阐明高甲氧基果胶形成凝胶的机理? 天然果胶的一类的分子中,超过一半的羧基是甲酯化的,成为高甲氧基果胶。

名词解释 有机化学

构造异构:指分子式相同而分子中的原子或原子团相互连接的顺序和方式不同引起的异构顺反异构:指原子或原子团在空间的排布方式不同而产生的异构体 对映异构:指两种立体结构之间存在实物与镜像的关系,相互对应而不能重叠的立体异构体手性分子:不能与其镜像重叠的分子 手性碳原子:连有四个不同的原子或原子团的碳原子称为手性碳原子 加成反应:两个或多个分子互相作用,生成一个加成产物的反应称为加成反应 马氏规则:不对称烯烃与卤化氢发生亲电加成反应,HX中的氢原子主要加成到含氢较多的双键碳原子上,而亲电试剂的其余部分则加成到另一个双键碳原子上。 取代反应:是指有机化合物受到某类试剂的进攻,致使分子中一个基(或原子)被这个试剂所取代的反应。 消除反应从分子内消去一个简单分子,形成不饱和烃的反应称为消除反应 扎依采夫规则当有不同的消除取向时,形成的烯烃是氢从含氢较少的碳上消除 碘仿反应:用I2的NaOH溶液作为反应试剂的卤仿反应称为碘仿反应。 酯化反应:是醇跟羧酸或含氧无机酸生成酯和水的反应 酰化反应在有机物分子中的氧、氮、碳、硫等原子上引入酰基的反应称为酰化反应脱羧反应羧酸分子中失去羧基放出二氧化碳的反应叫做脱羧反应 康尼查罗反应在浓碱的作用下不含α-H的醛可以发生两分子间的氧化-还原反应,其中一份子醛被氧化为羧酸盐,另一分子醛被还原为醇,称为歧化反应或康你查罗反应醇脂肪烃、脂环烃或芳香烃侧链中碳原子上的氢被羟基取代的化合物 酚芳烃环上的氢被羟基取代的化合物 醛羰基与一个氢原子和一个烃基相连的化合物 酮羰基与两个烃基相连的化合物 羧酸分子中含有羧基的有机化合物称为羧酸 取代羧酸羟分子中的氢原子被羧基取代的衍生物叫取代羧酸 羧酸衍生物指羧酸的羟基被其他基团取代的有机化合物 胺氨分子中氢原子被烃基取代而形成的一类化合物。 重氮化合物由烷基与重氮基相连接而生成的有机化合物 偶氮化合物偶氮基─N=N─与两个烃基相连接而生成的化合物 变旋光现象糖的结晶在水中比旋光度自行转变为定值的现象。 还原糖具有还原性的糖 非还原糖不具有还原性的糖 差向异构体含有多个手性碳原子的立体异构体中,只有一个手性碳原子的构型不同,其余的构型都相同的非对映体叫差向异构体 杂环化合物分子中含有杂环结构的有机化合物。构成环的原子除碳原子外,还至少含有一个杂原子。杂原子包括氧、硫、氮等 肽:指胺分子中氢原子被烃基取代而形成的一类化合物 异戊二烯规律:萜类化合物的结构特征可看作是由两个或两个以上异戊二烯首尾相连或互相聚合而成,这种结构特点称为异戊二烯规律。

生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O) 5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生物化学名词解释完全版

第一章 1,氨基酸(amino acid):就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相与固定相 (可以就是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其她分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只就是按照分子的大小,而不就是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳与SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图就是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列与功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂与重新形成就是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),就是肽键主链上的重复结构。就是由参于肽链形成的氮原子,碳原子与它们的4个取代成分:羰基氧原子,酰氨氢原子与两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋与β-折叠。二级结构就是通过骨架上的羰基与酰胺基团之间形成的氢键维持的。5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构就是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要就是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力与盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上就是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都就是右手螺旋结构,螺旋就是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0、54nm,每一圈含有3、6个氨基酸残基,每个残基沿着螺旋的长轴上升0、15nm、 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,就是由伸展的多肽链组成的。折叠片的构象就是通过一个肽键的羰基氧与位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以就是平行排列(由N到C方向)或者就是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也就是多肽链中常见的二级结构,就是连接蛋白质分子中的二级结构(α-螺旋与β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点就是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往就是甘氨酸。这两种转角中的第二个残侉大都就是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif)、在蛋白质中,特别就是球蛋白中,经常可以瞧到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构

食品化学名词解释

食品化学名词解释 1、食品化学:一门将基础学科和工程学的理论用于研究食品基本的物理、化学和生物化学性质以及食品加工原理的学问,是一门主要涉及细菌学、化学、生物学和工程学的综合性学科。它是一门涉及到食品的特性及其变化、保藏和改性原理的科学。 2、结合水:是一个样品在某一个温度和较低的相对湿度下的平衡水分含量 3、疏水水合:热力学上,水与非极性物质,如烃类、稀有气体以及脂肪酸、氨基酸和蛋白质的非极性基团相混合无疑是一个不利的过程(ΔG >0)。ΔG= ΔH- T ΔS ΔG为正是因为ΔS是负的。熵的减少是由于在这些不相容的非极性物质的邻近处形成了特殊的结构。此过程被称为疏水水合。 4、疏水缔合(疏水相互作用):当两个分离的非极性基团存在时,不相容的水环境会促使它们缔合,从而减小了水-非极性界面,这是一个热力学上有利的过程(ΔG<0)。此过程是疏水水合的部分逆转,被称为“疏水相互作用”。R(水合的)+R(水合的)→R2(合的)+H 2O 5、水分活度:AW=f/f0 f:溶剂(水)的逸度。逸度:溶剂从溶液逃脱的趋势f0 :纯溶剂的逸度。 6、相对蒸汽压”(RVP)p/p0 是测定项目,有时不等于A w,因此,使用p/p0 项比A w 更为准确。在少数情况下,由于溶质特殊效应使RVP成为食品稳定和安全的不良指标。 7、吸着等温线:在恒定温度下,食品水分含量(每单位质量干物质中水的质量)对P/P0作图得到水分吸着等温线(moisture sorption isotherms,缩写为MSI)。 8、滞后现象:滞后现象就是样品的吸湿等温线和解吸等温线不完全重叠的现象 9、玻璃化温度(Tg):非晶态食品从玻璃态到橡胶态的转变称玻璃化转变,此时的温度称玻璃化温度 10、美拉德反应(羰氨反应):食品在油炸、焙烤、烘焙等加工或贮藏过程中,还原糖(主要是葡萄糖)同游离氨基酸或蛋白质分子中氨基酸残基的游离氨基发生羰氨反应,这种反应被称为美拉德反应。 11、糊化:当β-淀粉在水中加热到一定温度时,淀粉发生膨胀,体积变大,结晶区消失,双折射消失,原来的悬浮液变成粘稠胶体溶液的过程。

大一《有机化学》题库

高职高专检验、药学专业 有 机 化 学 试 题 库 化学教研室 漯河医学高等专科学校 2006.5.28 编写说明 本题库主要根据人民卫生出版社出版发行的“全国高等职业技术教育卫生部规划教材”《有机化学》(主编:刘斌)

编写,主要适用于三年制大专检验、药学专业。掌握内容题号前加※,熟悉内容题号前加△,了解内容四题号前不作标记。 目录 第一章绪论(1学时)???????????????????????????????? 第二章烷烃(6学时)?????????????????????

???????????4 第三章不饱和烃(6学时)??????????????????????????? 5 第四章脂环烃(2学时)???????????????????????????? 7 第五章芳香烃(2学时)??????????????????????????????? 8 第六章卤代烃的性质(2学时)???????????????????????? 10 第七章醇、酚、醚(6学时)???????????????????????? 12 第八章醛、酮、醌(6学时)???????????????????????? 16 第九章羧酸及取代羧酸(6学时)???????????????????? 18 第十章对映异构(2学时)?????????????????????????? 22 第十一章羧酸衍生物(6学时)?????????????????????? 24 第十二章含氮化合物(6学时)?????????????????????? 28 第十三章杂环化合物和生物碱(2学时)???????????? 31 第十四章糖类(4学时)??????????????????????????? 32 第十六章高分子化合物(4学时)????????????????????? 33 答案?????????????????????????????????????????? 36

生物化学名词解释完整版

生物化学名词解释完全版 第一章 1,氨基酸(amino acid ):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在 a -碳上。 2, 必需氨基酸(esse ntial ami no acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需 要从食物中获得的氨基酸。 3,非必需氨基酸(non esse ntial ami no acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point ):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH 值。 5,茚三酮反应(ninhydrin reaction ):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。8,蛋白质一级结构(primary structure )指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分 开的技术。 10,离子交换层析(ion-exchange column )使用带有固定的带电基团的聚合树脂或凝胶层析柱 11, 透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography ):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis ):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE 只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pl)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶 电泳(按照pI)分离,然后再进行SDS-PAGE (按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman 降解(Edman degradation ):从多肽链游离的N 末端测定氨基酸残基的序列的过程。N 末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein ):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。

食品化学名词解释

单分子层水(monolayer water):与食物的非水组分中离子或强极性基团如氨基、羧基等直接以离子键或氢键结合的第一个水分子层中的水称之。约为总水量的0.5%。 多分子层水(multilayer water):处于单分子层水外的几层水分子或与非水组分所含的弱极性基团如羟基、酰胺基等形成的氢键的水分子。 毛细管水:毛细管径>0.1um,约为几~几十um时,其内的水属于自由水。 水分活度: 食品中水的蒸汽分压与同温度下纯水饱和蒸汽压之比表示Aw=P/Po 吸湿等温线的滞后现象:吸湿(吸附)等温线与解吸等温线不完全重合的现象 蒸发浓缩: 是将液态食品的温度提高到沸点,使食品的自由水蒸发。常用真空浓缩. 玻璃态(glass state):是聚合物的一种状态,它像固体一样有一定的形状和体积,又像液体一样分子间只是近似有序,属于非晶态或无定形态。 玻璃化温度(glass transition temperature ,Tg):食品从非晶态到橡胶态发生转变时的温度。此种变化称为玻璃化转变。 吸湿性:指糖在空气湿度较高的情况下吸收水分的性质。 保湿性:指糖在空气湿度较低条件下保持水分的性质。 低聚糖:由10个以下的单糖分子通过糖苷键形成的化合物。即醛糖C—1上半缩醛羟基(酮糖则在C—2上)和其它单糖的羟基经脱水缩合而成。 非还原型低聚糖:两分子单糖通过各自的半缩醛羟基结合而成的化合物。如海藻糖、蔗糖羰氨反应褐变(Maillard reaction)凡是羰基与氨基经缩合,聚合生成类黑色素的反应称为羰氨反应,又称美拉德反应. 焦糖化褐变:糖类物质在没有氨基化合物存在下,加热到熔点以上(蔗糖200℃)时,会变成黑褐色的色素物质,这种作用称为焦糖化褐变。 淀粉的糊化:在一定温度下,淀粉粒在水中发生膨胀,形成粘稠的糊状胶体溶液,这一现象称为"淀粉的糊化"。 糊化淀粉的老化:已糊化的淀粉溶液,经缓慢冷却或室温下放置,会变成不透明,甚至凝结沉淀 改性淀粉:通过物理、化学、酶等处理,使淀粉分子链被切断,重排或引入其他化学基团,使其原有的物理性质,如水溶性、粘度、色泽、味道、流动性等发生变化,这样经过处理的淀粉称为变(改)性淀粉 交联淀粉:用具有多元官能团的试剂处理,使淀粉分子内部或之间的化学键(氢键)增强,分子互相交联,产生的淀粉叫交联淀粉。 酯化淀粉:在淀粉颗粒内部分子链上引入部分取代基(如乙酰基)而得的产品。 酸败:油脂在贮藏期间,因空气中的氧气、光照、微生物、酶等作用,导致油脂边哈喇,产生令人不愉快的气味,苦涩味,同时产生一些有毒的物质,这些统称为酸败。 酶促氧化:在脂肪氧合酶(LOX)作用下,油脂与氧发生反应生成氢过氧化物,这作用称为酶促氧化。 酸价(A V): 中和1g油脂中游离脂肪酸所需的氢氧化钾毫克数。 皂化值(SV): 1g油脂完全皂化时所需的氢氧化钾毫克数 碘值(IV):100g油脂吸收碘的克数叫碘值,衡量油脂中脂肪酸的不饱和程度. 二烯值(DV): 100g油脂中所需顺—丁烯二酸酐换成碘的克数是鉴定油脂不饱和脂肪酸中共轭体系的特征指标. 蛋白质的变性:因环境因素的影响,蛋白质分子的天然构象遭到破坏,而使其理化性质发生改变,乃至生物功能丧失的过程,变性只涉及二、三、四级结构的变化 羰氨反应:不饱和脂肪酸自动氧化产生的醛类可与蛋白质反应发生共价交联。 维生素:“人和动物为维持正常生理功能而必需从食物中获得的一类微量有机物质”

相关主题