搜档网
当前位置:搜档网 › 导数几何意义

导数几何意义

导数几何意义
导数几何意义

课时跟踪训练(三)

题组一导数几何意义

1.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x-y+1=0,则()

A.f′(x0)>0 B.f′(x0)<0

C.f′(x0)=0 D.f′(x0)不存在

2.如图所示,函数y=f(x)的图象在点P处的切线方程是y=-x +8,则f(5)=________,f′(5)=________.

3.已知二次函数y=f(x)的图象如图所示,则y=f(x)在A,B两点处的导数f′(a)与f′(b)的大小关系为:

f′(a)________f′(b)(填“<”或“>”).

第3题图

第4题y=f(x)的图象

4.已知函数y=f(x)的图象如图所示,则函数y=f′(x)的图象可能是________(填序号).

题组二 求曲线的切线方程

题型一 求曲线上某点处的切线方程(已知切点求切线方程)

5.曲线y =12x 2

-2在点x =1处的切线的倾斜角为( ) A .30° B .45° C .135°

D .165°

6.曲线f (x )=2

x 在点(-2,-1)处的切线方程为________.

7.已知点P (-1,1)为曲线上的一点,PQ 为曲线的割线,若k PQ

当Δx →0时的极限为-2,则在点P 处的切线方程为( )

A .y =-2x +1

B .y =-2x -1

C .y =-2x +3

D .y =-2x -2

8.曲线y =1

x 在点? ??

??12,2处的切线的斜率为( ) A .2 B .-4 C .3

D .1

4

9.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a

+b 的值等于( )

A .2

B .-1

C .1

D .-2

10.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.

题组三 求切点坐标的相关问题

11.已知曲线y =x 24的一条切线的斜率为1

2,则切点的横坐标 为( ) A .1 B .2 C .3

D .4

12.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )

A .4x -y -4=0

B .x +4y -5=0

C .4x -y +3=0

D .x +4y +3=0

13.已知曲线y =x 3在点P 处的切线的斜率k =3,则点P 的坐标是( )

A .(1,1)

B .(-1,1)

C .(1,1)或(-1,-1)

D .(2,8)或(-2,-8)

14.若曲线y =x 2+2x 在点P 处的切线垂直于直线x +2y =0,则点P 的坐标是________.

15.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________.

16.已知直线x -y -1=0与抛物线y =ax 2相切,则a 的值为________.

17.设点P 是曲线y =x 3-3x +2

3上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为( )

A .??????0,π2∪????

??23π,π B .??????0,π2∪????

??56π,π C .?

???

??23π,π

D .?

??

??π2,56π

导数概念及其几何意义

导数概念及其几何意义 1、在函数的平均变化率的定义中,自变量的的增量满足() A .>0 B .<0 C D. =0 2、设函数,当自变量由改变到时,函数值的改变量是() A B C D 3、已知函数的图像上一点(1,2)及邻近一点,则等于() A 2 B 2x C D 2+ 5.函数y=f(x)在x=x0处可导是它在x=x0处连续的() A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件 6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy),则等于() A.4Δx+2Δx2B.4+2Δx C.4Δx+Δx2D.4+Δx 7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则() A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 8.已知命题p:函数y=f(x)的导函数是常数函数;命题q:函数y=f(x)是一次函数,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 9.设函数f(x)在x0处可导,则等于() A.f′(x0) B.0 C.2f′(x0) D.-2f′(x0) 10.设f(x)=x(1+|x|),则f′(0)等于()A.0 B.1 C.-1 D.不存在 11.若曲线上每一点处的切线都平行于x轴,则此曲线的函数必是______ 函数.(填增、减、常函数) 13.设f(x)在点x处可导,a、b为常数,则=_____. 16.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程. 17.已知函数f(x)=,试确定a、b的值,使f(x)在x=0处可导. 导数的运算(二)

高中数学-导数的几何意义及应用

高中数学 导数及其应用复习学案 类型一:利用导数研究函数的图像 例2、若函数()y f x =的导函数... 在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象 可能是( ) (A) (B) (C) (D) 练习1.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( ) (A ) (B ) (C ) (D ) 2.设f '(x )是函数f (x )的导函数,y =f '(x )的图象如右图所示,则y =f (x )的图象最有可能的是 ( ) B . C . 类型二:导数几何意义的应用 例3、(1)求曲线21x y x = -在点()1,1处的切线方程。(2)求抛物线y=2x 过点5,62?? ??? 的切线方程 y x y y x y x y x O 1 2 O 1 2 O 1 2 1 2 x y O 1 2 例1、设a <b,函数y=(x-a)2(x-b)的图象可能是( ) a b a b a o x o x y o x y o x y

32151,09425217257.1..76444644y x y ax x a B C D ==+ ----练习:若存在过点()的直线和都相切,则等于()A.-1或-或或-或 7.曲线y =x 2-2x +a 与直线y =3x +1相切时,常数a 的值是________. 类型三:利用导数研究函数的单调性 例4、已知a ,b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f(e)=2(e=2.71828…是自然对数的底数). (I )求实数b 的值; (II )求函数f (x )的单调区间; 例5、已知函数f(x)= ax 1x 2 ++在(-2,+∞)内单调递减,求实数a 的取值范围. 练习:若函数y =3 1x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围 类型四:导数与极值 ()ln 6x f x x = 例、求函数的极值。 ()3227310,f x x ax bx a x a b =+++=-例、已知在有极值,求常数的值。 练习1、已知f(x)=x 3+ax 2 +(a+6)x+1有极大值和极小值,则a 的取值范围是( ) (A )-1<a <2 (B )-3<a <6 (C )a <-1或a >2 (D )a <-3或a >6 2、直线y =a 与函数f(x)=x 3-3x 的图象有相异的三个公共点,则求a 的取值范围。 类型五:导数与最值 例8、已知函数f(x)=(x-k)e x . (1)求f(x)的单调区间;

学新教材高中数学导数及其应用导数导数及其几何意义教案新人教B版选择性必修第三册

6.1.2导数及其几何意义 学 习目标核心素养 1.理解瞬时变化率、导数的概念.(重点、难点)2.理解导数的几何意义.(重点、难点) 3.会用导数的定义及几何意义求曲线在某点处的切线方程.(易混点)1.借助瞬时变化率的学习,培养数学抽象的素养. 2.通过导数的几何意义,提升直观想象的素养. 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h时,原油的温度(单位:℃)为y=f(x)=x2—7x+15(0≤x≤8).你能计算出第2h与第6 h时,原油温度的瞬时变化率,并说明它们的意义吗? 1.瞬时变化率与导数 (1)瞬时变化率: 一般地,设函数y=f(x)在x0附近有定义,自变量在x=x0处的改变量为Δx,当Δx无限接近于0时,若平均变化率错误!=错误!无限接近于一个常数k,那么称常数k为函数f(x)在x=x0处的瞬时变化率.简记为:当Δx→0时,错误!→k或错误!错误!=k. (2)导数 1f(x)在x0处的导数记作f′(x0); 2f′(x0)=错误!错误!. 拓展:导数定义的理解 (1)函数应在x0处的附近有定义,否则导数不存在. (2)在极限式中,Δx趋近于0且Δx是自变量x在x0处的改变量,所以Δx可正、可负,但不能为0.当Δx>0(或Δx<0)时,Δx→0表示x0+Δx从右边(或从左边)趋近于x0. (3)函数在一点处的导数就是在该点附近的函数值的改变量与自变量的改变量之比的极限,它是个常数,不是变量.

2.导数的几何意义 (1)割线的斜率 已知y=f(x)图像上两点A(x0,f(x0)),B(x0+Δx,f(x0+Δx)),过A,B两点割线的斜率是错误!=错误!,即曲线割线的斜率就是函数的平均变化率. (2)导数的几何意义 曲线y=f(x)在点(x0,f(x0))处的导数f′(x0)的几何意义为曲线y=f(x)在点(x0,f(x0))处的切线的斜率. (3)曲线的切线方程 曲线y=f(x)在点(x0,f(x0))处的切线方程是y—f(x0)=f′(x0)(x—x0). 1.思考辨析(正确的画“√”,错误的画“×”) (1)函数y=f(x)在某点处的导数是一个变量.() (2)瞬时变化率是刻画某函数在区间[x1,x2]上函数值变化快慢的物理量. ()(3)直线与曲线相切,则直线与已知曲线有且只有一个公共点.() (4)若函数y=f(x)在某点处可导,则在该点处一定有切线,反之也成立. ()[答案] (1)×(2)×(3)×(4)× 2.如果一个函数的瞬时变化率处处为0,那么这个函数的图像是() A.圆B.抛物线 C.椭圆D.直线 D[结合导数的几何意义可知,该函数的图像是平行或重合于x轴的直线,故选D.] 3.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x—y+2=0,则f′(1)=________. 2[由导数的几何意义可知f′(1)=2.] 4.质点M的运动规律为S=4t2,则质点M在t=1时的瞬时速度为________. 8 [ΔS=S(1+Δt)—S(1)=4(1+Δt)2—4=4(Δt)2+8(Δt),

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

3.1.3 导数的几何意义(优秀经典公开课比赛教案及联系解答)

3.1.3导数的几何意义 教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数. 教学重难点:函数切线的概念,切线的斜率,导数的几何意义 教学过程: 情景导入:如图,曲线C 是函数y=f(x)的图象,P(x0,y0)是曲线C 上的任意一点,Q(x0+Δx,y0+Δy)为P 邻近一点,PQ 为C 的割线,PM//x 轴,QM//y 轴,β为PQ 的倾斜角. .tan , ,:β=???=?=x y y MQ x MP 则 展示目标:见学案 检查预习:见学案 合作探究:探究任务:导数的几何意义 问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化 趋是什么? y x ??请问:是割线PQ 的什么?

新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数 就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ?→+?-'==? 新知: 函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ?→+?-'=? 精讲精练: 例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况. 解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况. (1) 当 t = t0 时, 曲线 h(t) 在 t0 处的切线 l0 平行于 x 轴.故在 t = t0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t1 时, 曲线 h(t) 在 t1 处的切线 l1 的斜率 h’(t1) <0 .故在t = t1 附近曲线下降,即函数 h(t) 在 t = t1 附近单调递减.(3)当 t = t2 时, 曲线 h(t) 在 t2处的切线 l2 的斜率 h’(t2) <0 .故在 t = t2 附近曲线下降,即函数 h(t) 在t = t2 附近也单调递减.从图可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这说明 h(t) 曲线在 l1 附近比在 l2 附近下降得缓慢。 例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)

导数几何意义的应用

导数几何意义的应用 1.若函数f (x )=-3x -1,则f ′(x )等于( )A.0B.-3x C.3D.-3 2.已知曲线y =-12 x 2-2上一点 P 处的切线的倾斜角为( )A.30° B.45°C.135°D.165°3.在曲线y =x 2上切线倾斜角为π4的点是() A.(0,0) B.(2,4) 4.已知y =f (x )的图象如下图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(x B ) B .f ′(x A )

8.若曲线2y x ax b =++在点()0,b 处的切线方程是10x y -+=,则() A.1a =,1 b =B.1a =-,1b =C.1a =,1b =-D.1a =-,1 b =-9.曲线sin y x x =在点(,0)P π处的切线方程是() A.2y x ππ=-+B.2y x ππ=+C.2 y x ππ=--D.2y x ππ=-10.若曲线上点P 处的切线平行于直线2x-y+1=0,则点P 的坐标是. 11.(广东高考理科)曲线y=e -5x +2在点(0,3)处的切线方程为. 12.(全国Ⅰ卷)已知1)(3++=x ax x f 的图像在点) ,()1(1f 处的切线过点(2,7),则a=. 13.(江西高考理科·T13)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是. 14.曲线12+=-x e y 在点(0,2)处的切线与直线0=y 和x y =围成的三角形面积为 15.(广东高考理科·T10)若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k=. 16.(江西高考文科)若曲线y x 1α=+(α∈R )在点(1,2)处的切 线经过坐标原点,则α= 17.曲线)1ln 3(+=x x y 在点(1,1)处的切线方程为 .18.曲线x e y =在点(0,1)处的切线与曲线x y 1= (0>x )上点P 处的切线垂直,则P 的坐标为x x y ln ?=

导数的几何意义教学导案后附教学反思

导数的几何意义教案(后附教学反思)

————————————————————————————————作者:————————————————————————————————日期:

导数的几何意义教案(后附教学反思) 永嘉中学 数学组 周瑛 08.4.13 【教学目标】 知识与技能目标: (1)使学生掌握函数)(x f 在0x x =处的导数()0/ x f 的几何意义就是函数)(x f 的 图像在 0x x =处的切线的斜率。(数形结合),即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。 【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 【教学过程】 (一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他学生在“学案”中写: 导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/ (注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

导数的几何意义教学设计(教案)-函数的导数的几何意义教学设计

导数的几何意义教学设计(教案) 一、【教学目标】 1.知识与技能目标: (1)使学生掌握函数)(x f 在0x x =处的导数()0/ x f 的几何意义就是函数)(x f 的 图像在 0x x =处的切线的斜率。(数形结合),即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 2.过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 3.情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。 【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 二、【教学过程】 (一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他学生在“学案”中写: 导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/ (注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意 义奠定基础) 师:导数的本质仅是从代数(数)的角度来诠释导数,若从图形(形)的角

导数的概念及导数的几何意义

§57 导数的概念及导数的几何意义⑴ 【考点及要求】了解导数的概念,理解导数的几何意义,通过函数图象能直观地理解导数的几何意义。 【基础知识】 1.一般地,函数)(x f 在区间],[21x x 上的平均变化率为,平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上曲线陡峭的程度; 2.不妨设))(,()),(,(0011x f x Q x f x P ,则割线PQ 的斜率为, 设x 1-x 0=△x ,则x 1 =△x +x 0,∴=PQ k ,当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=) ()(00无 限趋近点Q 处切线。 3.曲线上任一点(x 0,f(x 0))切线斜率的求法:x x f x x f k ?-?+= ) ()(00,当 △x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的,记为. 4.瞬时速度与瞬时加速度:位移的平均变化率: t t s t t s ?-?+) ()(00,称为;当无限趋近于0 时, t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常数称为t=t 0时的;速度的平均变化率: t t v t t v ?-?+)()(00,当无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这个常数 称为t=t 0时的. 【基础练习】 1.已知函数2()f x ax =在区间[1,2]上的平均变化率为,则()f x 在区间[-2,-1]上的平均变化率为 . 2.A 、B 两船从同一码头同时出发,A 船向北,B 船向东,若A 船的速度为30km/h,B 船的速度为40km/h,设时间为t,则在区间[t 1,t 2]上,A,B 两船间距离变化的平均速度为____ __ _ 【典型例题讲练】 例1.已知函数f(x)=2x+1, ⑴分别计算在区间[-3,-1],[0,5]上函数f(x)的平均变化率; ⑵.探求一次函数y=kx+b 在区间[m ,n]上的平均变化率的特点; 练习:已知函数f(x)=x 2+2x ,分别计算f(x)在下列区间上的平均变化率; ⑴[1,2]; ⑵[3,4]; ⑶[-1,1]; ⑷[2,3] 【课堂检测】 1.求函数()y f x == 在区间[1,1+△x]内的平均变化率

导数的几何意义教案

导数的几何意义教案

导数的几何意义教案 曾垂乐 【教学目标】 知识与技能目标: (1)使学生掌握函数f (x )在x X 0处的导数f /X o 的 几何意义就是函数 住)的图像在 x X 0 处的切线的斜率。(数形结合),即: (2)会利用导数的几何意义解释实际生活问题, 体会“以直代曲”的数学思想方法。 过程与方法目标:通过让学生在动手实践中探 索、观察、反思、讨论、总结,发现问题,解决 问题,从而达到培养学生的学习能力,思维能力, 应用能力和创新能力的目的。 【教学手段】采用计算机(Flash,Powerpoint ), 实物投影等多媒体手段,增大教学容量与直观 性,有效提高教学效率和教学质量。 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲” 的思想方法。 难点:发现、理解及应用导数的几何意义 f / X o l X m o X0 X f (X0)=切线的斜率 X

【教学过程】 (一)作业点评,承上启下: 问题:在高台跳水运动中,t 秒(s )时运动员相 对于水面的高度是h (t ) 4.9t 2 6.5t 10 (单位:m ),求 运动员在t 1s 时的瞬时速度,并解释此时的运动 状态;在t 0.5s 时呢? 教师点评作业的优点及不足;由学生甲解释 t 1s , t 0.5s 时运动员的运动状态。 (说明:实例引入,承上启下,有效铺垫,直接 过渡) (二)课题引入,类比探讨: 由导数的物理意义是瞬时速度,我们知道了导数 的本质。 ?问(一):导数的本质是什么?写出它的表达 式。 学生活动:在“学生动手实践”中,学生写出: 导数f ,(X 0)的本质是函数f (x )在x x o 处的瞬时变化 率 ,即: (说明:教师不能代替学生的思维活动, 学生将f / X o f X o X f(X o )

高中数学导数及其应用.doc

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 ( 1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x 在处有增量△x (△ x 可正可负),则函数y 相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 ( 2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记, 则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

导数的概念及几何意义运算

一、选择题 1.若f ′(x 0)=2,则 f (x 0-k )-f (x 0)2k 等于( ) A .-1 B .-2 C .1 D.12 答案:A 3. 曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1, 则P 0点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)或(-1,-4) D .(2,8)或(-1,-4) 解析:设P 0点的坐标为(x 0,y 0),由f (x )=x 3+x -2得:f ′(x )=3x 2+1, 令f ′(x 0)=4,即3x 2 o +1=4得x 0=1或x 0=-1,∴P 0点的坐标为(1,0)或(-1,-4). 答案:C 4.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线 的斜率为( ) A .-15 B .0 C.15 D .5 解析:由已知f ′(x )是R 上以5为周期的奇函数,则f ′(5)=f ′(0)=0. 答案:B 5. 设f (x )在x 0处可导,则 f (x 0+t )-f (x 0-t )t 的值等于________. 答案:2f ′(x 0) 6. 过原点作曲线y =e x 的切线,则切点的坐标为________,切线的斜率为________. 解析:设切点坐标为(x 0,y 0),由y =e x 知y ′=e x ,则y ′|x =x 0=e x 0, ∴y 0x 0=e x 0,即e x 0x 0 =e x 0,则x 0=1,因此切点坐标为(1,e).斜率为e. 答案:(1,e) e 7. 曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 所围成的三角形面积为16 , 则a =________. 解析:由y =x 3知y ′=3x 2,则y ′|x =a =3a 2.因此切线方程为y -a 3=3a 2(x -a ) 即y =3a 2x -2a 3,令y =0得:x =2a 3,令x =a 得y =a 3根据已知条件12|a -2a 3|·|a 3|=16 , 解得:a =±1. 答案:±1 1. 函数f (x )=(x +2a )(x -a )2的导数为( )

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。从横向看,导数在现行 高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具,它以更高的观点和更简捷的方 法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展,同时为后继研究导数的几何意义及应用打下必备的基础,具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 y二f(x)的图像,平均变化:y表示什么?这个思考为研究导数的几何意义埋下 △x 了伏笔。因此,在将瞬时变化率定义为导数之后,立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标 会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数,掌握求导数的基本步骤,初步学会求解简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观 经历数学发现过程,感受数学研究方法,提升数学学习兴趣和信念,应用图形计算

导数的几何意义和物理应用.doc

第二节导数的几何意义和物理应用 与导数概念密切相关的两个问题是几何上求曲线的切线问题和物理学上已知运动规律求 速度问题。下面我们以这两个问题对导数概念进一步说明。 一、 几何意义 设),= f(x)是一区间上的函数,))是曲线> =f ⑴上的两点 的连线称为曲线的割线,当B^A 时,割线应T 也发生变化,如4。趋向于某一条直线/,则 称/为曲线在点A 的切线,当曲线是圆时,这个直线与圆只相交于一点.这与平面几何中的切 线的概念是一致的. 有直线的斜率可以知道,割线/切的斜率为tana =、顷二心)=也,这里及是/以割 t-x 心 线与X 轴正方向的夹角。如果=f(x)可导,并记。为切线与工轴正方向的夹角,那么切 线的斜率为tan 。. tan 0 = lim tan a = lim ~~-L —l = f\x). Av —>0 lx l — x 所以/(%)是曲线y = /(x)在尤=x 0的切线的斜率. 同样可以定义曲线j = /(x)在x = x°的法线为过点(x 0,/(x 0))与曲线=/(%)在 X = x 0的切线垂直的直线. 例5.8求曲线y = 在x = 2的切线与法线. 解:y 在工=2的切线斜率为 y\x=2 - 2、I X =2= 4, 所以切线方程为y — 22 =4(乂一2),即4'一),一4 = 0. 法线斜率为一1,所以法线方程为j-22 =--(x-2)f 即x + 4y-18 = 0. 4 4 二、 物理应用 在物理上,导数的应用也是很多的,先看一个简单的例子: 设Z=0时刻一车从某一点出发,在/时刻车走了一定的距离s = sQ),即距离是时间的 函数.在r 0时刻到Z,时刻,车走了 5(r,)-sQ°),这一段时间里车的平均速度为阻)二吨), 当4与,。很接近时,这个平均速度近似于4时刻的瞬时速度.若令则可以认为 Hm __四,,即s'Q())就是,()时刻的瞬时速度.

高中数学人教新课标A版选修2-2(理科) 第一章导数及其应用 1.1.3导数的几何意义 同步练习D卷

高中数学人教新课标A版选修2-2(理科)第一章导数及其应用 1.1.3导数的几何意 义同步练习D卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共8题;共16分) 1. (2分)若幂函数的图像经过点,则它在A点处的切线方程是() A . B . C . D . 2. (2分)(2013·浙江理) 给出下列命题: (1)若函数f(x)=|x|,则f’(0)=0; (2)若函数f(x)=2x2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy),则=4+2Δx (3)加速度是动点位移函数S(t)对时间t的导数; (4)y=2cosx+lgx,则y’=-2cosx·sinx+ 其中正确的命题有() A . 0个 B . 1个 C . 2个 D . 3个 3. (2分) (2017高二下·黑龙江期末) 定义在上的奇函数满足,且当时,不

等式恒成立,则函数的零点的个数为() A . B . C . D . 4. (2分) (2017高二下·莆田期末) 曲线y=x?ex在x=1处切线的斜率等于() A . 2e B . e C . 2 D . 1 5. (2分)若函数f(x)=2x2﹣1的图象上一点(1,1)及邻近一点(1+△x ,1+△y),则等于() A . 4 B . 4x C . 4+2△x D . 4+2△x2 6. (2分)(2017·宁化模拟) 已知直线y=x+1与曲线y=alnx相切,若a∈(n,n+1)(n∈N*),则n=()(参考数据:ln2≈0.7,ln3≈1.1) A . 2 B . 3 C . 4 D . 5

导数及其应用.知识框架

要求层次重难点 导数及其应用导数概念及其 几何意义 导数的概念 A 了解导数概念的实际背景; 理解导数的几何意义. 导数的几何意义 C 导数的运算 根据导数定义求函数y c =, y x =,2 y x =,3 y x =, 1 y x =, y x =的导数 C 能根据导数定义,求函数 23 y c y x y x y x ==== ,,,, 1 y y x x == ,(c为常数)的导数. 能利用给出的基本初等函数的导数公式 和导数的四则运算法则求简单函数的导 数,能求简单的复合函数(仅限于形如 () f ax b +的复合函数)的导数.导数的四则运算 C 简单的复合函数(仅限于形如 () f ax b +)的导数) B 导数公式表 C 导数在研究函 数中的应用 利用导数研究函数的单调性(其 中多项式函数不超过三次) C 了解函数单调性和导数的关系;能利用导 数研究函数的单调性,会求函数的单调区 间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和 充分条件;会用导数求函数的极大值、极 小值(其中多项式函数一般不超过三次); 会求闭区间上函数的最大值、最小值(其 中多项式函数一般不超过三次). 会利用导数解决某些实际问题.函数的极值、最值(其中多项式 函数不超过三次) C 利用导数解决某些实际问题 B 定积分与微积 分基本定理 定积分的概念 A 了解定积分的实际背景,了解定积分的基 本思想,了解定积分的概念. 微积分基本定理 A 高考要求 模块框架 导数及其应用

了解微积分基本定理的含义. 一、导数的概念与几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率00()() f x x f x y x x +?-?= ??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作 “趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 3.可导与导函数: 如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这 个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y '). 导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数. 4.导数的几何意义: 设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与 00(,())B x x f x x +?+?的一条割线.由此割线的斜率是00()() f x x f x y x x +?-?= ??,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即 000()()lim x f x x f x x ?→+?-=?切线AD 的斜率. 由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '. 知识内容 x 0x y x O D C B A

导数的几何意义的理解与应用

导数的几何意义的理解与应用 1、几何意义:)(x f 在0x x =处导数)(0'x f 即为)(x f 所表示曲线在0x x =处切线的斜率,即)(0'x f k =,也就是x x f x x f ?-?+)()(00当x ?无限趋近于0时,比值接近某个常数. 切线方程为:))(()(00'0x x x f x f y -=-. 2、作用:确定0x x =处切线的斜率(在已知)(x f 表达式的情况下),从而确定切线方程. 3、理解导数的几何意义应注意 (1)利用导数求曲线的切线方程:①求出y f (x)=在0x 处的导数0f '(x );②利用直线方程的点斜式得切线方程000y y f '(x )(x x )-=- (2)若曲线y f (x)=在点00P(x ,f (x ))处的导数不存在,但有切线,则切线与x 轴垂直。 (3)显然0f '(x )0>时,切线的倾斜角为锐角;0f '(x )0<时,切线的倾斜角为钝角;0f '(x )0=,切线与x 轴平行。 (4)求曲线的切线方程时要注意“过点P 的切线”与“点P 处的切线”的差异:在求过点P 的切线时,点P 不一定是切点,点P 也不一定在曲线上,这时需要设切点。 4、应用举例 例1、求曲线2 y x =在点(1,1)处的切线方程。 分析:要求在点(1,1)处的切线方程,只需求出切线的斜率。由导数的几何意义知,其斜率为f '(1),为此只需求出曲线在点(1,1)处的导数。 解:因为2y f (1x)f (1)(1x)12x x x x ?+?-+?-===+????,当x ?无限趋近于0时,2x +?无限趋近于2,即f '(1)2=,所以所求切线的斜率为2,故所求切线方程为y 12(x 1)-=-,即y 2x 1=-。 点评:利用导数的几何意义求曲线的切线方程的步骤;(1)求出函数y f (x)=在点0x 处的导数0f '(x );(2)根据直线的点斜式方程,得切线方程为000y y f '(x )(x x )-=-。 变式引申:求曲线2y x =过点5 (,6)2 的切线方程。

相关主题