搜档网
当前位置:搜档网 › SATA接口速度对硬盘性能的影响(对比测试)

SATA接口速度对硬盘性能的影响(对比测试)

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度 【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受

如何安装硬盘

目录 方法一: (2) 方法二: (2) 方法三: (4)

方法一: 硬盘的安装分为A TA和SATA两种 ATA也叫并口,使用IDE接口连接,用一条IDE数据线连接,多为白色或者其他颜色。SATA也叫串口,由SATA接口连接,用一条SATA数据线连接,多为红色 连接完毕以后开机按DEL或其他键(根据主板不同有差异) 进入BISO设置 硬盘安装好以后,我们就可以进入BIOS查看硬盘是否工作正常了:启动电脑,进入BIOS 中的“Standard CMOS Setup”(标准CMOS设定)。将硬盘的“Type(类型)”和“Mode(模式)”设为“Auto”,让BIOS自动检测硬盘。也可以通过主菜单中的“IDE HDD Auto Detection”选项来自动检测硬盘。如今的主板都具备自动检测功能,只要没有物理故障,一般都能检测出来,此时就可以看到BIOS中4个IDE端口上的设备了 方法二: 一、确定连接方案 IDE设备(例如硬盘、光驱等)上都会使用一组跳线来确定安装后的主盘(Master,MA)、从盘(Slave,SL)状态。如果在一根IDE数据线上接两个IDE设备的话,还必须分别将这两个IDE设备设置为一个为主盘,另一个为从盘状态。这样,安装后才能正常使用。 如果一根IDE数据线上只接惟一的IDE设备,不管这个IDE设备原先是设置为主盘还是从盘状态,都不需要对这个惟一的IDE设备重新设置跳线。 通常都是将性能较好的新硬盘接在第一条IDE数据线上,设为主盘,作为开机引导硬盘。至于旧硬盘,有几种接法: 1.两个硬盘接在同一根硬盘数据线上,则第二硬盘应设为从盘。 2.第二硬盘接在第二个IDE接口上,如果该接口的数据线上只有一个硬盘,也没接光驱,那么第二硬盘就不用跳线;如果这根数据线上还挂有光驱,一般将第二硬盘和光驱的其中一个设为主盘,另一个设为从盘,这由你决定。 二、设置硬盘跳线 确定好硬盘的连接方案后,就要设置硬盘跳线了。一般可以在硬盘的IDE接口与电源接口之间找到由3~5列跳线。不管是什么硬盘,在跳线设置上,大致可分成主盘、从盘与电

固态硬盘基础知识

固态硬盘基础知识 作者:长风傲天 写在前面:最近固态硬盘降价,看论坛的情况也有不少景友入手了,只是没见过几位同学真正理解固态硬盘的原理和使用方法。所以写一些东西出来,还请各位方家指正。 部分内容及配图来自PCEVA论坛超级版主neeyuese,在此表示最诚挚的敬意和感谢。 我已经尽量避免写过多不易理解的概念,所以难免会有一些说法有问题,还请谅解。 ------------------------------------------------------------------------------------------------------------------------------ 1楼:固态硬盘基本原理 2楼:固态硬盘正常使用指南 3楼:固态硬盘选购的品牌参考 不想看原理的童鞋请往下走。鸡蛋板砖随意。 ------------------------------------------------------------------------------------------------------------------------------ 机械硬盘的工作原理 要理解固态硬盘(Solid State Drive)的基本原理,首先得研究一下普通机械硬盘。借用网上的一 张图片: 上图是一款双碟的机械硬盘。任何机械硬盘的结构都是一样的:电路板上的主控制器芯片负责与芯片组之间的通信并且控制硬盘内部的运转;盘片是用磁性材料做成的,固定在硬盘中部的马达上旋转(这里就有了转速的区别:5400rpm指的是每分钟盘片旋转5400转,7200rpm则是每分钟7200转);磁头(图中那个近似于三角形的部件)则沿着盘片的径向移动。磁头的移动过程就是硬盘寻道的过程(这句话不太严谨,但是除了断电归位等情况之外绝大部分情况下都是)。至于“寻道”,则是和盘片的结构有关。

力学性能作业

第一章 1什么是材料力学性能?什么是材料力学性能指标?主要有哪些?影响因素是什么? 2 材料力学性能主要表征有哪些?举例说明应用。如何得到材料的力学性能? 3金属拉伸试验经历哪几个阶段?拉伸试验可以测定哪些力学性能?4拉伸曲线有何作用?拉伸曲线各段图形分别意味着什么? 5不同材料的拉伸曲线相同吗?为什么? 6材料的拉伸应力应变曲线发现了哪几个关键点?这几个关键点分别有何意义? 7塑性材料和脆性材料的应力应变曲线有何不同? 8 弹性变形的实质是什么? 9弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?10比例极限、弹性极限、屈服极限有何异同? 11你学习了哪几个弹性指标? 12弹性不完整性包括哪些方面? 13 什么是滞弹性?举例说明滞弹性的应用? 14内耗、循环韧性、包申格效应? 15什么是屈服强度?如何度量屈服强度? 16如何强化屈服强度? 17屈服强度的影响因素有哪些? 18 屈服强度的实际意义?

19真实应力应变曲线与工程应力应变曲线有何不同?有何意义?真实应力应变曲线的关键点是哪个点? 20什么是应变硬化指数n?有何特殊的物理意义?有何实际意义? 21 什么是颈缩?颈缩条件、颈缩点意义? 22 抗拉强度σb和实际意义。 23塑性及其表示和实际意义; 24静力韧度的物理意义。 25静拉伸的断口形式; 26静拉伸断口三要素及其意义; 27解理断裂及其微观断口特征; (27解理面、解理刻面、解理台阶、河流花样; 28解理舌、二次解理、撕裂棱;) 29穿晶断裂、沿晶断裂;脆性断裂、韧性断裂; 30微孔聚集断裂及其微观断口特征。 第二章 1应力状态软性系数α及其意义; 2压缩、弯曲、扭转各有什么主要特点? 3 缺口试样在弹性状态和塑性状态下的应力分布特点; 4缺口效应及其产生原因; 5缺口强化; 6应力集中系数和缺口敏感度; 7什么是金属硬度?意义何在?

材料力学行为及性能

绪论§0.1 工程材料 工程材料分类(按其应用分) ?结构材料 依靠其力学性能得以发展和应用的材料。 ?功能材料 利用物质的声、光、电、磁、化学乃至生物性能得以发展和应用的材料。 (本课程所研究和讲述的重点在第一种,尤其是结构材料中的金属材料) §0.2 力学性能 材料抵抗外加载荷(不仅指外力和能量的作用,而且还包括环境因素例如温度、介质、加载速率等的影响)所引起的变形和断裂的能力。 §0.3 研究内容 研究材料在外力作用下的变形、断裂和寿命。 ?弹性 材料在外力作用下保持固有形状和尺寸的能力;以及在外力去除后恢复固有形状和尺寸的能力。 ?塑性 材料在外力作用下发生永久不可逆变形的能力。 ?强度 材料对塑性变形和断裂的抗力。 ?寿命 材料在外力的长期和重复作用下,或在外力和环境因素的复合作用下,抵抗失效的能力(时间长短)。 (以上只是定性地说明这些力学性能,如果要定量地说明它就必须用一些力学参量(应力、应变、应力场强度因子等)来表示这些力学性能。 如果我们说某材料的力学性能好,就是指这些力学参量的值高或低,所以人们通常将力学参量的临界值或规定值称为材料的力学性能指标。声学材料:隔音层光学材料:玻璃,镜片 电学材料:金属导线,电子元器件 磁学材料:磁头、磁卡 化学材料:高分子材料催化剂 生物材料:人工关节、人工骨骼 生活中常指后者

如:强度指标、塑性指标、韧性指标) 具体研究涉及的内容: ?材料(包括金属材料和非金属材料)在不同形式外力作用下,或者外力、温度、环境等因素的共同作用下,发生变 形、损伤和断裂的过程、机理和力学模型; ?评定力学性能的各项指标的意义(物理意义和工程实用意义)、各指标间的相互关系以及具体的测试技术; ?研究力学性能指标机理、影响因素以及改善或提高这些力学性能指标的方法和途径。 (注:材料力学性能的影响因素 内因:化学成分、组织结构、冶金质量、残余应力、表面和内部缺陷。 外因:载荷性质、载荷谱、应力状态、温度、环境介质等。) §0.4学习和研究材料力学性能的目的和意义 机械和工程结构的设计,应当达到所要求的性能,并且在规定的服役期内安全可靠地运行,同时也要具有经济性,即低的设计、制造和维修费用。 ①达到使用要求;②安全性;③经济性 然而,各种机械和结构零部件的使用条件各不相同,因而要选用不同的的材料制成零件,也需要采用不同的工艺手段来完成零件的实际制作。而材料的力学性能及其评定指标,是结构设计时选用材料、制订加工工艺的主要依据,也是评价结构质量的主要依据。 ?在零部件使用中,要求材料具有高的变形和断裂抗力,使零部件在受外力作用时能保持设计所要求的外形和尺寸, 并保证在服役期内安全地运行; ?在零部件的生产过程中,则要求材料具有优良的可加工性。 (例如,在金属的塑性成形中,要求材料具有优良的塑性和低的塑性变形抗力) 对于学生,必须具有材料力学性能方面的知识,以便在研究新材料和改善材料的过程中,能根据材料的使用要求,选用合适的现有材料或研制新材料,制订合适的加工工艺。 §0.5研究方法 ?理论分析 ?试验测定

如何安装和使用SATA硬盘

如何安装和使用SATA硬盘(BIOS设置) 随着各主板芯片组厂商陆续发布直接支持SATA硬盘甚至SATA RAID的芯片组,具备SATA RAID功能的主板成为了市场热点;而且STAT硬盘的高性价比,也使很多网友舍弃IDE硬盘,直接购买和使用拥有SATA接口的主板;不过,新事物的出现,必竟会产生新的问题,目前对于使用SATA主板和硬盘的用户来说,如何设置和使用好SATA设备,成了关键问题。 首先安装硬盘数据线和电源线;SATA硬盘与传统硬盘在接口上有很大差异,SATA硬盘采用7针细线缆而不是大家常见的40/80针扁平硬盘线作为传输数据的通道。细线缆的优点在于它很细,因此弯曲起来非常容易(但是对于SATA数据线,最好不要弯春成90度,否则会影响数据传输)。接下来用细线缆将SATA硬盘连接到接口卡或主板上的SATA接口上。由于SATA采用了点对点的连接方式,每个SATA接口只能连接一块硬盘,因此不必像并行硬盘那样设置跳线了,系统自动会将SATA硬盘设定为主盘。 为硬盘连接上电源线。与数据线一样,SATA硬盘也没有使用传统的4针的“D型”电源接口,而采用了更易于插拔的15针扁平接口,使用的电压为+12V、+5V和+3.3V,如果你的电源没有提供这种接口,则需要购买专门的支持SATA硬盘的电源或者转换器接头。有些SATA硬盘提供了4针的“D型”和15针扁平两种接口,这样就可以直接使用原有的电源了。所有这些完成之后需要再仔细检查一遍,确信准确无误之后就可以盖上机箱了。 SATA硬盘在使用上完全兼容传统的并行硬盘,因此在驱动程序的安装使用上一般不会有什么问题。如果你使用的操作系统是Windows 9x/ME,那么只需进入BIOS,在里面的SATA选项下简单地设置一下就可以了。不过SATA硬盘在安装Windows XP时可能会出现一些问题。由于Windows XP无法辨认出连接在接口卡上的SATA硬盘,所以用户必须手工安装SATA硬盘的驱动程序。在安装过程中,当Windows XP寻找SCSI设备时按下F6键,然后插入随SATA接口卡附送的驱动软盘,这样就可以正常安装Windows XP了

双硬盘安装跳线设置方法图解

双硬盘安装跳线设置方法图解 大家都知道,IDE设备(例如硬盘、光驱等)上都会使用一组跳线来确定安装后的主盘(Master,MA)、从盘(Slave,SL)状态。如果在一根IDE数据线上接两个IDE设备的话,还必须分别将这两个IDE设备设置为一个为主盘,另一个为从盘状态。这样,安装后才能正常使用。 小提示:如果一根IDE数据线上只接惟一的IDE设备,不管这个IDE设备原先是设置为主盘还是从盘状态,都不需要对这个惟一的IDE设备重新设置跳线。通常都是将性能较好的新硬盘接在第一条IDE数据线上,设为主盘,作为开机引导硬盘。至于旧硬盘,有几种接法: 1.两个硬盘接在同一根硬盘数据线上,则第二硬盘应设为从盘。笔者就以此方案为例。 2.第二硬盘接在第二个IDE接口上,如果该接口的数据线上只有一个硬盘,也没接光驱,那么第二硬盘就不用跳线;如果这根数据线上还挂有光驱,一般将第二硬盘和光驱的其中一个设为主盘,另一个设为从盘,这由你自己决定。 二、设置硬盘跳线 确定好硬盘的连接方案后,就要设置硬盘跳线了。一般我们可以在硬盘的IDE接口与电源接口之间找到由3~5列跳线。不管是什么硬盘,在跳线设置上,大致可分成主盘、从盘与电缆选择(Cable Select)三种。硬盘的出厂预设值都是设为主盘,所以如果你将硬盘设为主盘,一般就不用设置跳线了。

硬盘跳线大多设置在硬盘的电源插座和数据线接口之间 笔者曾经看到一块三星硬盘的跳线是设置在硬盘背面的电路板上。然后根据硬盘正面或数据线接口上方标示的跳线设置方法,如本例的希捷4.3GB硬盘正面就有跳线设置图 三、安装硬盘与数据线

打开机箱,将硬盘装入机箱的3.5英寸安装架,并用螺钉固定。将第一根IDE数据线未端插入老硬盘的IDE接口,IDE数据线中端插入新硬盘的IDE接口,如图4所示。而且,IDE数据线的Pin1(也就是红边)必须与硬盘和IDE接口的Pin1相连接。最后再将梯形的四针电源插头接到硬盘的电源插座上。 将IDE数据线接到主板的IDE插槽中,同样也要将IDE数据线的红边对准IDE 插槽的Pin1,如图所示。一般来说,主板上会有两个IDE插槽,将80针或40 针的IDE数据线的另一端插入这个主板上第一个IDE插槽中。

影响材料力学性能测试的因素

影响材料力学性能测试的因素 1 拉伸实验强度和延性丈量的准确度和偏向取决于能否严厉恪守指定实验办法并受设备和材料要素、试样制备和实验、丈量误差的影响。 2 关于相同材料的复验协商分歧取决于材料的平均性、试样制备的反复性、实验条件和拉伸实验参数的测定。 3 可影响实验结果的设备要素包括:拉伸实验机的刚性、减震才能、固有的频率和运动部件重量;力的指针准确度和实验机不同范围内力的运用;恰当的加力速度、用适宜的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(经过夹具、引伸计或辅助安装)等等。 4 能影响实验结果的材料要素包括:实验材料的代表性和平均性、试样型式、试样制备(外表光亮度,尺寸准确度,标距端部过渡圆弧,标距内锥度,弯曲试样,螺纹质量等等)。 a、有些材料对试样外表光亮度十分敏感(见注8) 必需研磨至理想光亮度,或者抛光至得到正确结果。 b、关于铸造的、轧制的、锻造的或其他非加工外表状态的试样,实验结果可能受外表特性影响(见注14)。 c、取自部件或构件隶属部位的试样,像外延局部或冒口,或者独立消费的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的实验结果。 d、试样尺寸可能影响实验结果。关于圆柱形的或矩形的试样,改动试样尺寸普通对屈从强度和抗拉强度影响很小,但假如呈现改动,则可影响上屈从强度、伸长率和断面收缩率。用下式比拟不同试样测定的伸长率值: L0/(A0)1 / 2 ( 1) 其中: L0 = 试样的原始标距 A0 = 试样的原始横截面积 1 具有较小的L0/(A0)1 / 2 比值的试样普通会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,状况即如此。 2 坚持L0/(A0)1 / 2r比值固定最小值,但影响不大。由于增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和实验条件。 e、标距内有一个允许的1 %的锥度可招致伸长率值降低。1 %的锥度会使伸长率降低15 % 。

电脑硬盘的基础知识

电脑硬盘的基础知识 电脑硬盘的基础知识 市场上的硬盘主要分为IDE和SCSI两大类。SCSI硬盘有速度快、容量大、使用稳定的特点,是硬盘技术的排头兵,但其价格太贵, 主要用于较专业的场合。而IDE硬盘虽然说在技术水准上尚同SCSI 硬盘有一些的差距,但无庸置疑其差距已越来越小,现如今的IDE 硬盘同样具有转速快、容量大的特点,而且其价格便宜,已成为家 用场合的首选。 而IDE硬盘按其内部盘片直径的大小,又可分为5.25、3.5、 2.5和1.8英寸的硬盘等。2.3和1.8英寸盘片直径大小的硬盘主要 用于笔记本电脑等设备;5.25和3.5盘片直径的硬盘主要用在台式 机上,现在台式机上最常用的就是3.5寸盘片直径大小的硬盘。 1.硬盘的容量 我们在购买硬盘时首先会问,这硬盘是多大的呀?回答:40GB、80GB,就是指的硬盘的容量。它一般指的是硬盘格式化后的容量。 硬盘的容量越大越好。 其次,在选择容量时你还可优先选择单碟容量大的产品。单碟容量越大技术越先进而且更容易控制成本。举例来讲,同样是40GB的 硬盘,若单碟容量为10GB,那么需要4张盘片和8个磁头,要是单 碟容量上升为20GB,那么需要2张盘片和4个磁头,对于单碟容量 达40GB的硬盘来说,只要1张盘片和2个磁头就够了,能够节约很 多成本及提高硬盘工作稳定性。 2.硬盘的转速 这也是大家比较留心的问题。它是指硬盘内主轴的转动速度。如今市场上的IDE硬盘主要分为5400RPM(转),7200RPM(转)两种转速。在容量价格都差不多的情况下,可首选转速快的7200转的硬盘产品。

3.硬盘的传输率 硬盘的传输率也是硬盘重要参数之一。它主要指硬盘的外部和内部数据的传输率,它们的单位为Mb/s(兆位/秒)或MB/s(1MB=8Mb)。硬盘的外部传输率(burstdatatransferrate)即硬盘的.突发数据传输率,它一般指硬盘的数据接口的速率。现在的ATA/66/100/133接口的硬盘的传输率可达66-133MB/S。 而硬盘的内部数据传输率(internaldatatransferrate)是指磁头至硬盘缓存间的最大数据传输率,在这方面市场上主流硬盘的最大内部数据传输率一般都可达350Mb/S以上,优秀的硬盘其最大内部数据传输率可达500Mb/S。 4.硬盘的缓存 硬盘的缓存的大小也是硬盘的重要指标之一。硬盘的缓存是指在硬盘内部的高速存储器。如今硬盘采用的缓存类型多为SDRAM,但也有例外的如采用EDODRAM的。缓存的容量越大越好,它直接关系到硬盘的读取速度,如今的硬盘缓存容量大都是2M,并向8M的更大容量过度。但也有少数只有512K缓存的产品,这点大家需注意。 5.硬盘的磁头 硬盘上采用的磁头类型,主要有MR和GMR两种。GMR巨磁阻磁头已开始取代MR磁头成为硬盘磁头的主流。 MR磁阻磁头,采用的是写入和读取磁头分离式的磁头结构,它是通过阻值的变化去感应信号幅度,对信号的变化相当敏感,使其读取数据的准确性也相应提高,而且由于其读取的信号幅度与磁道宽度无关,因而磁道可以做得很窄,从而就提高了盘片的密度,这就使硬盘的容量能够做得很大。 而GMR磁头同MR磁头相比它使用了磁阻效应更好的材料和多层薄膜结构,它比MR磁头更敏感,因而可以实现更高的存储密度。现在的MR磁头的盘片存储密度可达到3Gbit-5Gbit/in2(每平方英寸每千兆位),而GMR磁头则可达10Gbit-40Gbit/in2以上。 6.硬盘的寻道时间

影响钢材力学性能的因素2.

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

SATA硬盘BIOS设置图解

由于各家厂商主板的BIOS不尽相同,但是设置原理都是基本一致的,在此我们以磐正的 9NPA+Ultra为例,相信读者都能够根据自己主板BIOS的实际情况参考本文解决问题。 开机,按DEL键进入主板的BIOS设置页面,见下图: BIOS设置页面 BIOS设置页面 首先,我们进行硬盘的相关设置。选择Integrated Peripherals进入,这一项中包含有硬盘的相关设置选项,其中有SATA Mode、Secondary Master UDMA、Secondary Slave UDMA、SATA1/2、SATA3/4、RAID Enable等几个选项。 BIOS设置 BIOS设置 在每个选项中,均有Enabled和Disabled两个选项可供选择,这里我们只要将“SATA1/2”、“SATA3/4”设置为[Enabled],以激活SATA,其它的选项保持不变。 BIOS设置页面 另外,如果你的机器机只安装了一块硬盘,不需要组建RAID,那么你把“RAID Enable”选项设置为[Disabled],也就是关闭这项功能。反之,如果你需要组RAID模式,则需要设置成[Enabled],以便打开项功能。另外Delay For HDD(Secs)选项中提供了0,1两种模式供大家选择。 完成硬盘的设置后,我们还要对系统的启动顺利进行一下简单的设置。 按ESC键,退出硬盘设置项,选择Aduanced BIOS Features项进入基本的BIOS设置选项,在这一项中,我们可以看到First Boot Device、Second Boot Device、Third Boot Device三个设置项,每项中又包括Removable、Hard Disk、CDROM三个可选项,其中第一个为系统自动寻找可启动磁盘、第二、三项为硬盘启动和光驱启动。那么我们将First Boot Device设置为Hard Disk,系统便会默认将硬盘做为第一启动盘。 设置启动项 另外,在使用SATA硬盘时,如果你的机器中没有安装软驱,我们还要将软驱这一项给关闭。方法是首先选择Aduanced BIOS Features项进入基本的BIOS设置选项,选择BOOT UP Floppy Seek回车,选择[Disabled]即可。

力学性能指标

力学性能指标:拉伸强度、断裂伸长率、硬度、弹性模量、冲击强度。 影响力学性能的因素:温度、拉伸速度、环境介质、压力等。 弹性变形特点:可逆变形虎克定律弹性变形量很小,一般不超过0.5%-1% 材料的弹性模量主要取决于结合键的本性和原子间的结合力,而材料的成分和组织对它的影响不大共价键的弹性模量最高. 弹性比功:又称弹性比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 循环韧性的意义:循环韧性越高,机件依靠自身的消振能力越好,所以高循环韧性对于降机器的噪声,抑制高速机械的振动,防止共振导致疲劳断裂意义重大 金属材料常见的塑性变形方式滑移和孪生 金属应变硬化机理与高分子应变硬化机理的区别:金属机理:位错的增殖与交互作用导致的阻碍高分子机理:发生应变诱导结晶、分子链接近最大伸长 韧性断裂:金属断裂前产生明显的宏观塑性变形的断裂,有一个缓慢的撕裂过程,在裂纹扩展过程中不断消耗能量。脆性断裂:突然发生断裂,基本上不发生塑性变形,没有明显征兆,因此危害性很大。 α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。拉伸时塑性很好的材料,在压缩时只发生压缩变形而不断裂。硬度:布氏、洛氏、维氏 缺口效应:缺口根部产生应力集中,同时缺口截面上的应力分布发生改变。 断裂韧性:由于裂纹破坏了材料的均匀连续性,改变了材料内部应力状态和应力分布,所以机件的结构性能就不再相似于无裂纹的试样性能,传统的力学强度理论就不再适用。 断裂力学就是在这种背景下发展起来的一门新型断裂强度科学,是在承认机件存在宏观裂纹的前提下,建立了裂纹扩展的各种新的力学参量,并提出了含裂纹体的断裂判据和材料断裂韧度。 分析裂纹体断裂问题的方法:应力应变分析方法:考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据。(2) 能量分析方法:考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判 KI和KIC的区别:应力场强度因子KI增大到临界值KIC时,材料发生断裂,这个临界值KIC称为断裂韧度。KI是力学参量,与载荷、试样尺寸有关,而和材料本身无关。KIC是力学性能指标,只与材料组织结构、成分有关,与试样尺寸和载荷无关。根据KI和KIC的相对大小,可以建立裂纹失稳扩展脆断的断裂K判据,由于平面应变断裂最危险,通常以KIC为标准建立: 应力腐蚀现象:在应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂现象。 应力腐蚀产生的条件:(1)必须有应力,特别是拉应力的作用, 远低于材料的屈服强度,是脆性断裂;(2)对一定成分的合金,只有在特定介质中才发生应力腐蚀断裂;(3)应力腐蚀断裂速度约为10-8-10-6 m/s数量级的范围内,远大于没有应力时的腐蚀速度,又远小于单纯力学因素引起的断裂速度。 机理:当应力腐蚀敏感的材料置于腐蚀介质中,首先在金属的表面形成一层保护膜,它阻止了腐蚀进行,即所谓“钝化”。由于拉应力和保护膜增厚带来的附加应力使局部地区的保护膜破裂,破裂处金属直接暴露在介质中,成为微电池的阳极,产生阳极溶解。阳极小阴极大,所以溶解速度很快,腐蚀到一定程度又形成新的保护膜,但在拉应力的作用下又可能重新破坏,发生新的阳极溶解。这种保护膜反复形成反复破裂的过程,就会使某些局部地区腐蚀加

数字硬盘录像基础知识

数字硬盘录像基础知识

也已广泛用于高质量图像压缩,如DVD产品等。 为什么目前的DVR产品大都采用MPEG4压缩标准呢?在图像及伴音质量方面,它远高于电视电话的图像及伴音质量,与VHS录像机的图像质量和光盘CD-ROM的放像质量相当。即使在通常的计算机显示屏上这些质量也是基本令人满意的。在存储方面,可以存储于多种媒体如光盘,数字录音带DAT,硬盘,可写光盘等。在压缩率或传输码率方面,普遍认为符合目前计算机网络的传输码率,以MPEG4的压缩比在目前容量的硬盘上可以存储一个月甚至更长时间的视音频数据(根据选择的压缩比和硬盘大小决定)。由于目前采用了一种可变码率的MPEG4压缩方法,给用户在容量和质量的选择上以更大的自由空间。在视频图像传输方面,压缩存储的图像可转存于光盘形成国内应用广泛的VCD格式,方便日后查看。 3.2 文件系统 数字硬盘录像系统的录像文件搜索查询功能要做到强大、高效、准确、方便实用。 对用户而言,一切与Windows系统有关的文件操作都应是透明的,即用户无需知道文件怎样放置,怎么样查询,以及如何自动覆盖。当用户查找到某一文件时他甚至无需知道文件存放在哪个硬盘上。这样就增强了对系统的安全保护,也极大地方便了用户。 在JH8000系统中的文件操作封装了快速文件的查找,文件大小的判断,逻辑硬盘的快速搜索,最小空间的快速判断,文件属性的快速动态修改,以及在硬盘总空间非常小时对报警的快速处理等。快速文件按摄像机通道号及日期时间排序。同时,对于文件备份,该系统封装了快速动态查找备份盘的函数,而且为文件备份单独开了一个线程,使备份能与系统其它操作同时进行而不相互影响。通过对文件属性的判断实现数据备份,在重要文件来不及备份前先实行有效地保护。在后台录像,前台播放历史文件时,把正在播放队列中的文件进行保护,使之不受系统自动覆盖的影响。 此外该设备在系统录像启动后会自动启动一个时钟,这个时钟每过一分钟自动侦测当前正用于录像的硬盘空间大小,如果空间不够会自动跳转查找下一个或上一个空间较大的硬盘,文件系统相应地做出处理。如果总的硬盘空间不够,系统会启动自动或手动覆盖方式,覆盖最早一天的部分未保护文件,并给出相应的提示。 总之,数字硬盘录像系统的文件系统要给用户一个安全、快速、方便的文件操作手段。 3.3 图像处理 图像处理也是数字硬盘录像系统的一个重要方面。对于历史影像的重现和处理可有助于对重要事件画面的辨认。 1.图像变换 图像变换,主要是指数字图像的几何变换,或称为图像的空间变换,即图像中点与点之间的空间映射关系。图像变换是图像变形的基础,被广泛应用于遥感图像的几何校正、医学成像、计算机视觉、电视监控以及电影、电视和媒体广告等的影像特技处理中。 数字图像的几何变换或空间变换,是指一种建立一幅图像与其变形后的图像中所有各点之间映射关系的函数,可表示为: [x,y]=[X(u,v),Y(u,v)] 或 [u,v]=[U(x,y),V(x,y)] 式中,[u,v]表示输入图像中像素的坐标,[x,y]表示变换后的坐标。X,Y,U,V表示惟一确定空间变换关系的映射函数,即它们惟一地定义了输入图像和输出图像中所有点之间的几何(或空间)对应关系。X,

力学性能整理

第一章 弹性比功——材料吸收弹性变形功的能力 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象 滞弹性的影响因素 (1)材料的成分、组织 材料组织越不均匀,滞弹性越明显。 (2)试验条件:a) 温度T↑→滞弹性速率和滞弹性应变↑ b) 切应力愈大,滞弹性越明显。 消除办法: 采用长期回火 回火的作用是使间隙原子到位错空位和晶界去,自身变得比较稳定。 金属的内耗 加载时消耗于金属的变形功大于卸载时金属放出的变形功,因而有一部分变形 功为金属所吸收,这部分吸收的功就称为金属的内耗。 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性, 也叫金属的内耗,表示材料吸收不可逆变形的能力,亦称消振性。 循环韧性的意义是:材料循环韧性愈高,则机件依靠材料自身的消振能力愈好。 包申格(Bauschinger )效应 金属材料经过预先加载产生少量塑性变形(残余应变小于1 -4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现 象。 消除方法(1)预先经受较大的塑性变形(2)在第二次反向受力前使金属材料于回复或再 结晶温度下退火 金属材料常见的塑性变形方式主要为滑移和孪生 屈服现象是金属材料开始产生宏观塑性变形时的标志。 屈服点σs :材料的在拉伸过程中试验力不增加(保持恒定)仍能 继续伸长时的应力。 σs =Fs/ A0 上屈服点σsu : 试样发生屈服而试验力首次下降前的最大应力。 σsu =Fsu/A0 下屈服点σsl : 当不计初始瞬时效应(指在屈服过程中试验力第一次发生下降)时的屈服阶 段的最小应力。 σsl =FsL/ A0 影响屈服强度的因素 (一) 影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 不同的金属其晶格类型,位错运动所受的阻力不同,故彼此的屈服强度不同,单晶的屈服强 度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力- -派拉力、位错运动交互作用产生的阻力)决定。 派拉力:

材料的力学行为及性能

第二章 材料在其他静载荷下的力学性能 研究材料在常温静载荷下的力学性能时,除采用单向静拉伸试验方法外,有时还选用压缩、弯曲、扭转等试验方法,目的是: ①很多机件在服役过程中常承受弯矩、扭矩或轴向压力的作用,有必要测定试样在相应承载条件下的力学性能指标,做为设计和选材的依据;(实际中存在) ②不同的加载方式产生不同的应力状态,材料在不同应力状态中表现的力学性能不完全相同,因此,应选用不同应力状态的试验方法。(和单向拉伸应力状态不同) 本章介绍压缩、弯曲、扭转和剪切等试验方法及测定的力学性能指标 §2.1 应力状态柔度因数(软性系数) 一、柔度因数 塑性变形和断裂是金属材料在静载荷下失效的两种主要形式,它们是金属所能承受的应力达到其相应的强度极限而产生的。当金属所受的最大切应力τmax 达到屈服强度τs 时,产生屈服;当τmax 达到切断强度τk 时,产生剪切型断裂;当最大正应力S max 达到正断强度S k 时,产生正断型断裂。但同一种金属材料,在一定承载条件下产生何种失效方式,除与自身的强度大小有关以外,还与承载条件下的应力状态有关。不同的应力状态,其最大正应力与最大切应力的相对大小是不一样的。 考虑到三向应力状态下另外两向应力的贡献,因此材料的最大正应力的计算采用第二强度理论给出: 即:不再采用S max =σ1 而采用(第二强度理论): ()max 123S σνσσ=-+ 称为最大当量正应力 最大切应力由第三强度理论给出: 13 max 2 σστ-=

观塑性变形,属正断型脆性断裂; ②单向拉伸(α=0.5)时,先与τs线相交,发生塑性变形(屈服),然后与S k线相交,发生正断,属正断型的韧性断裂; ③扭转(α=0.8)时,先与τs线相交,发生塑性变形(屈服),然后与τk线相交,发生切断,属于切断型的韧性断裂。 即:相同的材料在不同应力状态下表现出不同的断裂模式,也可称为在不同应力状态条件下的韧脆转变。(材料在其他外界因素下也会发生韧脆转变,因涉及到具体的试验测试手段,因此后面讲。) §2.2 材料在轴向压缩载荷下的力学行为(单向压缩试验)一、试样型式 常用的压缩试样为圆柱体(也可采用立方体或棱柱体), 为防止压缩时试件失稳,试件的高度与直径之比h0/d0=1.5~2.0,同时h0/d0越大,抗压强度越低,因此对于几何形状的试件,需要保证h0/d0为定值。(GB7314-87)二、试验过程 ①为保证两端面的自由变形,试件的两端面必须光滑平整(涂润滑油、石墨);或者将试样的端面加工成圆锥凹面,使锥面的倾角等于摩擦角,即tanα=f,f为摩擦因数,也要将压头改成相应的锥体; ②压缩可以看作是反向拉伸,因此,拉伸试验中所定义的各个力学性能指标和相应的计算公式,在压缩试验中基本可以应用; 1-高塑性材料;2-低塑性材料1-拉伸;2-压缩

双硬盘安装系统步骤20140507

步骤名称详细内容备注是否完成文件备份桌面、我的文档、聊天记录、浏览器收藏夹等 工具准备固态硬盘、光驱位硬盘托架、螺丝刀、拆机图示 软件准备1、用老毛桃刻录好的优盘 2、win7 32位ISO安装镜像(先解压),放在D盘,同时U盘上也拷一份 3、win7旗舰版序列号,安装系统的时候可能要输入(不输也能过) J783Y-JKQWR-677Q8-KCXTF-BHWGC C4M9W-WPRDG-QBB3F-VM9K8-KDQ9Y 2VCGQ-BRVJ4-2HGJ2-K36X9-J66JG 4、WIN7激活工具 5、驱动精灵万能网卡版(预防系统装好后不能联网的情况) 注:老毛桃PE系统中包含分区精灵、系统安装器,这两个软件不用准备 电脑断电关机、拔出电源线、取出电池 拆掉机械硬盘按照拆机图示,拆下机械硬盘 安装固态硬盘把固态硬盘安装在原硬盘位置不要太暴力 拆掉光驱按照拆机图示,拆下光驱 机械硬盘安装在托架上把机械硬盘装在托架上 托架安装到光驱位把托架安装在光驱位置可能不好装,多试 几次 插上优盘插上刻好的启动盘 开机装好电池,插上电源,开机 修改磁盘模式为AHCI开机第一屏按F1(迅速多按几次)进入BIOS设置 Config Seerial ATA (SATA) 如果本身是AHCI 就不用改了,Ctrl+Alt+Del重启

回车箭头下移AHCI 回车 F10保存并退出(重启) 从U盘启动开机第一屏按F12键(迅速多按几次),选择启动介质,选择General USB Flash Disk 进入PE系统移动光标,在老毛桃菜单中选择: 【03】运行老毛桃WIN8 PEx86 精简版(防蓝屏)如果这个PE里面不好弄,换其他菜单里面的PE再试试,本质上没区别 格式化固态硬盘并分区1、在桌面打开分区工具(Dsik Ginus) 2、在固态硬盘上单击右键(从硬盘品牌可以分辨),建立新分区 点击软件左上角,保存更改 在固态硬盘上单击右键,格式化当前分区(注意4K对齐:簇大小默认值4096)固态硬盘建一个分区就够了 格式化原C盘打开分区工具(Dsik Ginus),在原C盘上单击右键,格式化分区全部默认 在PE中 安装win7系统有三种安装方式 1、用PE桌面的Windows安装器,找到vim文件安装(推荐) 2、双击setup.exe直接安装 3、把三个文件夹拷到C盘,重启后进入安装 如果遇到“安装程序无法创建新的系统分区,也无法定位系统分区”问题: 1、从解压的目录中找到boot、sources这两个文件夹和bootmgr 文件,复制到C盘根目 录下。 2、在Win PE系统中运行cmd ,输入c:\boot\bootsect.exe /nt60 c: ,然后回车 3、关闭电脑,拔出优盘,开机进入安装 三种方式可以按 顺序尝试,第一种 不行则换第二种。 遇到其他问题先 搜索。 这一步结束系统 就安装完了 排除原硬盘启动开机第一屏按F1键进入BOIS设置 Startup Boot 原C盘格式化以后,这一步不做也没关系

钢材成分对机械性能的影响

钢材成分对机械性能的影响 一、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳含量超过0.23%时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 二、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有 0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 三、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

四、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于 0.045%,优质钢要求更低些。 五、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 六、铬(Cr):增加耐磨损性,硬度,最重要的是耐腐蚀性。在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。性铬又能提高钢的抗氧化和耐腐蚀性,因而是不锈钢、耐热钢的重要合金元素,拥有13%以上的认为是不锈钢。 七、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 八、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。

相关主题