搜档网
当前位置:搜档网 › 智能化温室大棚整体控制设计方案和对策

智能化温室大棚整体控制设计方案和对策

智能化温室大棚整体控制设计方案和对策
智能化温室大棚整体控制设计方案和对策

目录

一、智能温室大棚简介 (2)

二、智能温室大棚结构设计 (2)

一、温室结构设计 (2)

1.温室结构布局 (3)

2.温室覆盖材料 (3)

3.温室的通风 (3)

二、温室运行机构 (3)

1.电力系统 (3)

2.降温增湿系统 (3)

3.遮阳系统 (3)

4.增温系统 (3)

5.浇灌系统 (4)

三、智能温室大棚控制系统 (4)

一、控制系统的主要构成 (5)

1、传感器 (5)

2、控制器 (5)

3、执行器件 (5)

4、上位机 (6)

二、具体控制过程 (6)

一、智能温室大棚简介

智能温室也称作自动化温室,是指由计算机控制温室的执行器件来改善温室的环境,营造适合农作物生长的环境。温室的主要系统有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统等自动化设施系统。

智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。

二、智能温室大棚结构设计

一、温室结构设计

首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资

源,力图降低制造成本和运行费用。

其结构框架设计的基本特点

1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光

平均日总量透过率最高。

2.温室覆盖材料温室材料透光率对温室的光照总量有着重

要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超

长塑料薄膜(穿透率85%)为覆盖材料。但其耐用性不高。PC

塑料板在造价、使用年限、透光率等方面是一个不错的选择。

3.温室的通风应充分利用自然条件,确定温室开窗的朝向十分

重要,如地区全年平均主导风向为东南,则天窗的位置应设在北

侧。同时还可安装自然风收集装置增加温室循环,冬天还可在

自然风收集装置上安装空气增温系统,增加循环的时候还可以

增肌温室的温度。

二、温室运行机构

1.电力系统可采用工业电网与自发电结合方式充分节省能

源与成本。自发电可采取风力发电,风力发电占地少,转化率高。成本相比太阳能发电低

2.降温增湿系统可采取湿帘降温增湿系统,或者高压喷雾

降温系统。降温还应配合风机降温。

3.遮阳系统采用移动遮阳慕,进行遮阳。

4.增温系统可采取水电共同增温,或单一增温系统。水电增温这

是在用热水增温与电力增温结合方式,增加增温效率,水力增温则是采用太阳能方式将水升温,再通过管道进入温室增温。

电力增温则是采用电热器增温。

5.浇灌系统可采用滴灌或雾化浇灌,可充分节省水资源,节省成

本,浇灌效率高。具体浇灌方式还应结合农作物特点,具体选定。浇灌系统同时还连接营养增施,通过浇灌方式给农作物增加营养。

三、智能温室大棚控制系统

智能温室大棚涉及到的技术参数主要有温度、湿度、CO2浓度、营养液的EC值、光照强度等主要技术参数。

控制系统主要采用过程控制系统。

R 控制器执行机构被控对象Y

传感器

变送器

智能温室大棚的各技术参数是同外部环境有着密切关系的。当外部环境中的某项技术参数符合棚要求,则无需对棚该参数进行调整。所以在选择控制系统的时候,过程控制系统较为合适。

一、控制系统的主要构成

主要由传感器、控制器、执行器件、上位机组成。

1、传感器主要用于各个技术参数的信息采集。温度传感器,棚

温度传感器以及棚外温度传感器量程:温度0--60 ℃室外

量程:-40-60℃精度:温度±0.3℃采用非接触式温度传感

器,温度传感器可采用自带变送器的温度传感器,可以直接将

数字信号传入控制器。湿度传感器,量程:0-100%RH 精度:湿度±3%RH。主要用于监测棚空气湿度和土壤湿度。Co2浓

度传感器,监测棚co2浓度。EC传感器主要用于检测营养液

的浓度。光强传感器,监测棚光照强度。

2、控制器智能温室大棚控制器主要采用PLC其系统构成灵活,

扩展容易,以开关量控制为其特长;也能进行连续过程的PID

回路控制;并能与上位机构成复杂的控制系统,如DDC和DCS

等,实现生产过程的综合自动化。使用方便,编程简单,采用

简明的梯形图、逻辑图或语句表等编程语言,而无需计算机知

识,因此系统开发周期短,现场调试容易。另外,可在线修改

程序,改变控制方案而不拆动硬件。能适应各种恶劣的运行环

境,抗干扰能力强,可靠性强,远高于其他各种机型。综合PLC

这些特点采用它为这能温室大棚控制器更符合温室大棚的各项

要求。

3、执行器件主要有风机、湿帘、移动天窗的电机、移动遮阳

慕电机、增温系统的各个执行元件、浇灌系统的执行元件。

温室大棚方案设计说明

温室大棚方案设计 一、方案概述 根据自贡的气候温度(年平均气温17.5℃至18.0℃)、湿度、日照(年日照1150至1200小时)等自然因素、建造成本并兼顾作物的生长需要,采用连栋96型文洛式(Venlo)玻璃温室方案。 Venlo型温室来源于荷兰,是一种小屋面玻璃温室,这种类型的温室得到了世界的认可,成为世界上应用最广、使用数量最多的玻璃温室类型,它具有构件截面小、安装简单、透光率高、密封性好、通风面积大等特点。 温室主体结构安装为装配式(无焊接)及专用铝合金型材(符合GB 5237-2008),骨架及各种连接件均经热浸镀锌防腐蚀处理。 覆盖材料为浮法玻璃,透光率90%-92%,热传递效率3%,正常使用寿命≥15年,抗结露,适合于南方种植温室、展览温室和科研用温室。 另外温室还配置:外遮阳系统、内保温遮荫系统、喷灌系统、计算机控制系统、供水系统、补光/补气系统、降温/加温设备、配电系统、循环通风系统等。 图样: 二、主要技术参数 1、连栋温室规格尺寸 温室跨度 9.6m×4跨,采用一跨三(尖顶)屋面;开间 4.0m,共10个开间,屋面倾斜角21°。 2、温室排列方式及面积 (1)温室东西向排跨,屋脊走向为南北向(南北向排开间) (2)连栋长:9.6m×4=38.4m 开间长:4m×10开间=40m (3)总面积:38.4m×40m=1536m2 3、温室性能指标 (1)抗风载荷:≤0.45KN/m2; (2)抗雪载荷:≤0.30KN/m2; (3)最大排雨量:110 mm/h; (4)电参数:220V/380V,50Hz; (5)温室主体骨架寿命(正常使用):≥15年。 4、其它主要参数 (1)温室基础及室内地面 基础钢筋混凝土结构,钢筋I、II级,混凝土C20。基础埋深0.8m。顶面标高0.5m,采用两端排水,其余地面夯实铺地布,提供给水、排水系统。排水管采用PVC110。 (2)温室主体骨架 温室主体物料采用国产优质热镀锌碳素结构钢,温室钢柱和侧面梁截面尺寸为100×60×3mm、80×40×2.5mm、50×30×2mm的热镀锌矩形管,立柱底板采用10mm厚的钢板。桁架截面尺寸为50×50×2mm,天沟采用2.5mm厚,冷弯热镀锌钢板用于排水。温室钢材均按行业标准配备,骨架及各种连接件均经热浸镀锌防腐蚀处理。 (3)温室门 为方便温室日常使用和操作管理,在温室东侧及隔断处设一套铝合金推拉门,在东门内设一缓冲间,防止开门时冷气进入,温室每个隔间设一扇铝合金门。 (4)覆盖材料

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统
解决方案

目录
1、设计原则.............................................................................................................................................. 3 2、设计依据.............................................................................................................................................. 3 3、系统简介.............................................................................................................................................. 4 3、系统架构.............................................................................................................................................. 5 4、系统组成.............................................................................................................................................. 6
结构图................................................................................................................................................ 6 现场的监测设备: ........................................................................................................................ 7 智慧大棚系统结构: .................................................................................................................... 7 智慧农业大棚系统介绍 ................................................................................................................ 8 温度控制系统 ............................................................................................................................ 8 通风控制系统 ............................................................................................................................ 8 光照控制系统 ............................................................................................................................ 9 水分控制系统 ............................................................................................................................ 9 湿度控制系统 .......................................................................................................................... 10 视频监控系统 .......................................................................................................................... 10 控制系统平台: .......................................................................................................................... 10 应用软件平台:.......................................................................................................................... 11 视频监控系统:.......................................................................................................................... 11 农业溯源系统.............................................................................................................................. 12 种植环节: .............................................................................................................................. 12 物流环节: .............................................................................................................................. 12 其他:...................................................................................................................................... 12 室外气象观测站.......................................................................................................................... 13
5、系统特点............................................................................................................................................ 14 预测性:...................................................................................................................................... 14 强大的扩展功能:...................................................................................................................... 14 完善的资料处理功能:.............................................................................................................. 14 远程监控功能:.......................................................................................................................... 14 数据联网功能:.......................................................................................................................... 14
6、项目定位............................................................................................................................................ 14 7、控制逻辑............................................................................................................................................ 16
温度控制...................................................................................................................................... 16 控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 16 控制方式: .............................................................................................................................. 16
降温控制过程:.......................................................................................................................... 16 在软件中可以设定温度默认正常的上下限的值 .................................................................. 16 温度超过设定上限时 .............................................................................................................. 16
增温控制过程:.......................................................................................................................... 16 空气湿度控制.............................................................................................................................. 16
控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 17 控制方式: .............................................................................................................................. 17 增湿控制过程:.......................................................................................................................... 17 在软件可设定湿度默认正常的上下限的值; ...................................................................... 17 湿度低于设定下限时: .......................................................................................................... 17 除湿控制过程:.......................................................................................................................... 17

农业温室大棚智能控制系统详解

随着温室大棚近年来的发展,农业智能温室大棚控制系统也被广泛的应用,该监控系统充分应用现代信息技术,集成软件、物联网技术、音视频技术、智能控制、3S技术、无线通信技术及专家智慧与知识,实现大棚控制各关键环节的信息化、标准化,是云计算、物联网、地理信息系统等多种信息技术在大棚控制中综合、的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。 【温室大棚控制系统作用】 (农业温室大棚智能控制系统构架-图例) 农业智能温室大棚控制系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像、通过模型分析,自动控制温室湿帘风机、喷淋灌溉、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者发送实时监测信息、

报警信息,以实现温室大棚智能化远程管理,充分发挥物联网技术在设施农业生产中的作用,保证温室大棚内环境适宜作物生长,实现精细化的管理,为作物的高产、生态、安全创造条件,帮助客户提率、降低成本、增加收益。 【温室大棚控制系统组成部分】 (农业温室大棚智能控制系统-图例) 一、智能控制 通过控制系统,可以对农业生产区域内各种设备运行条件进行设定,当传感器采集的实时数据结果超出设定的阈值时,系统会自动通过继电器控制设备或模拟输出模块对温室大棚自动化设备进行控制操作,如自动喷洒系统、自动换气系统等,确保温室内为植物生长适宜环境。 常用的现场设备包括灌溉设备、风机、水帘、遮阳板等,这些设备均可以通过信号线进行控制,服务

器发送的指令被转化成控制信号后即可实现远程启动/关闭现场设备的运转。 用户通过点击界面上的按钮即可完成启动/关闭现场设备的指令发送。 除了手工进行指令的发送之外,系统还能够根据检测到的环境指标进行自动控制现场设备的启动/关闭。用户可以自定义温湿度、光照、CO2浓度等指标的上限值、下限值,并定义当指标超过上限或者下限时,现场设备如何响应(启动/关闭);此外,用户可以设置触发后的设备工作时间。 建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。 二、视频监控 (农业温室大棚智能控制系统-图例) 通过在农业生产区域内安装高清摄像机置,对包括种植作物的生长情况、投入品使用情况、病虫害状况情况进行实时视频监控,实现现场无人职守情况下,种植者对作物生长状况的远程在线监控,农业专家远程在线病虫害作物图像信息获取,质量监督检验检疫部门及上主管部门对生产过程的有效监督和及时干预,以及信息技术管理人员对现场数据信息和图像信息的获取、备份和分析处理。

农业大棚远程智能监控与PLC自动化控制系统解决方案

农业大棚远程智能监控与P L C自动化控制系统解决方案 目录

1前言 1.1 智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显着的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,

降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2 实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民投入的良性运行机制,当前,全省发展智能农业,有丰富的资源、成熟的技术和广阔的市场,具备了进一步发展的基础,也蕴藏着巨大的潜力。 智能农业远程监控管理系统融合先进的信息技术、自动化控制、无线通讯技术等高新技术和农业科技专家为一体的综合平台,实现资金、技术、人才和信息的有效调配,改善农民的传统作业和手工操作,将产生巨大的经济和社会效益,推动农业和农村经济发展,成为江苏统筹城乡经济发展,建设现代化农业的重要内容和全面建设小康社会的强势产业。 2背景分析 江苏省在“十二五”期间加大智慧城市建设,将智能农业纳入六大智慧产业之一,突出显示了农业信息化在智慧城市建设中的重要地位。智慧农业建设较好地适应了市场经济发展要求和农业增效、农民增收的需要,取得了突破性进展,生产规模稳步扩大,突破了光热水气资源的限制,基本实现了淡季不淡、全年生产、保障供应;科技含量较快提高,无立柱日光温室、二氧化碳气肥、病虫害生物防治、无公害栽培、组织培养、工厂化育苗等先进技术得到推广应用,科技进步贡献率达到65%以上,成为种植业中科技含量较高的产业;智能农业以其病虫害相对较轻、用药量少、标准化程度高的优势,成为全省无公害蔬菜的骨干,质量安全水平明显提高。 随着自动化农业、精准农业、绿色农业的发展需求,迫切需要在农业领域引入物联网、4G等技术,进一步深化农业各环节的信息化水平,结合ZigBee技术、CDMA网络数据传输和传感器技术组成无线传感网络,通过ZigBee无线网络实时采集温室内温度、湿度信号以及光照、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为智能农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依

洛阳智能化温室大棚项目可行性研究报告

洛阳智能化温室大棚项目可行性研究报告 编制单位:郑州经略智成企业管理咨询有限公司 可行性研究报告按用途: (1)用于企业融资、对外招商合作的可行性研究报告。这类研究报告通常要求市场分析准确、投资方案合理、并提供竞争分析、营销计划、管理方案、技术研发等实际作方案 (2)用于国家发展和改革委(以前的计委)立项的可行性研究报告。项目建议书、项目申请报告,该文件是根据《中华人民共和国行政许可法》和《国务院对确需保留的行政审批项目设定行政许可的决定》而编写,是大型基础设施项目立项的基础文件,发改委根据可研报告进行核准、备案或批复,决定某个项目是否实施。另外医药企业在申请相关证书时也需要编写可行性研究报告。 (3)用于银行贷款的可行性研究报告。商业银行在贷款前进行风险评估时,需要项目方出具详细的可行性研究报告,对于国家开发银行等国内银行,若该报告由甲级资格单位出具,通常不需要再组织专家评审,部分银行的贷款可行性研究报告不需要资格,但要求融资方案合理,分析正确,信息全面。另外在申请国家的相关政策支持资金、工商注册时往往也需要编写可研报告,该文件类似用于银行贷款的可研,但工商注册的可行性报告不需要编写单位有资格。 (4)用于境外投资项目核准的可行性研究报告。项目申请报告,企业在实施走出去战略,对国外矿产资源和其他产业投资时,需要编写可行性研究报告或项目申请报告、报给国家发展和改革委或省发改委,需要申请中国进出口银行境外投资重点项目信贷支持时,也需要可行性研究报告和项目申请报告。 (5)用于企业上市的可行性研究报告。这类可行性报告通常需要出具国家发改委的甲级工程咨询资格。经略智成为多家创业板和中小板企业提供可行性研究报告编写服务(包括已经上市和正准备上市的),积累的丰富的编写经验。公司拥有行业内最为丰富的数据库、一流的市场调查和行业分析能力、高素质的复合型人才以及丰富的上市公司可行性研究报告编写经验。 (6)用于申请政府资金(发改委资金、科技部资金、农业部资金)的可行性研究报告。这类可行性报告通常需要出具国家发改委的甲级工程咨询资格.

农业大棚远程智能监控与PLC自动化控制系统项目解决方案

农业大棚远程智能监控与PLC自动化控制系统解决方案 目录 1 前言 (2) 1.1 智能农业远程智能监控系统的概念 (2) 1.2 实施农业远程智能监控系统的必要性 (2) 2 背景分析 (3) 3 大棚温湿度光照采集与自动化控制设计 (5) 3.1 系统设备组成 (9) 3.2 网络架构 (10) 3.3 采集原理 (11) 3.4 数据架构 (13) 3.5 设计原则 (14) 4 系统功能 (16) 4.1 功能架构 (16) 4.2 功能特点 (17) 4.2.1 数据采集 (17) 4.2.2 数据查询 (18) 4.2.3 数据分析与诊断 (18) 4.2.4 数据报警 (18) 4.2.5 视频监控 (19) 4.3 设备参数 (19) 4.3.1 数据采集与传输设备 (19) 4.3.2 温/湿度测试仪昆仑海岸 (20) 4.3.3 光照测试仪昆仑海岸 (25) 5 施工组织方案 (25) 5.1 施工方案介绍 (25) 5.2 施工计划安排 (26) 5.3 资源准备 (27) 5.4 施工内容 (27) 6 售后服务及承诺 (28) 7施工与验收时间表 (28)

1前言 1.1智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显著的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民

智能化温室大棚整体控制设计方案和对策

目录 一、智能温室大棚简介 (2) 二、智能温室大棚结构设计 (2) 一、温室结构设计 (2) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (3) 二、温室运行机构 (3) 1.电力系统 (3) 2.降温增湿系统 (3) 3.遮阳系统 (3) 4.增温系统 (3) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (4) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (5)

4、上位机 (6) 二、具体控制过程 (6) 一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室的执行器件来改善温室的环境,营造适合农作物生长的环境。温室的主要系统有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资

源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(穿透率85%)为覆盖材料。但其耐用性不高。PC 塑料板在造价、使用年限、透光率等方面是一个不错的选择。 3.温室的通风应充分利用自然条件,确定温室开窗的朝向十分 重要,如地区全年平均主导风向为东南,则天窗的位置应设在北 侧。同时还可安装自然风收集装置增加温室循环,冬天还可在 自然风收集装置上安装空气增温系统,增加循环的时候还可以 增肌温室的温度。 二、温室运行机构 1.电力系统可采用工业电网与自发电结合方式充分节省能 源与成本。自发电可采取风力发电,风力发电占地少,转化率高。成本相比太阳能发电低 2.降温增湿系统可采取湿帘降温增湿系统,或者高压喷雾 降温系统。降温还应配合风机降温。 3.遮阳系统采用移动遮阳慕,进行遮阳。 4.增温系统可采取水电共同增温,或单一增温系统。水电增温这

农业智能大棚控制溯源系统设计方案

农业智能大棚控制溯源系统设计方案

生态农业智能温室大棚监测、溯源及控制系统 设 计 方 案xxxxxxxx有限公司

目录 背景......................................................................错误!未定义书签。一:客户需求 ......................................................错误!未定义书签。二:系统结构及控制模式 ..................................错误!未定义书签。三:现场数据采集与控制功能...........................错误!未定义书签。四:监测软件数据平台 ......................................错误!未定义书签。五:功能应用 ......................................................错误!未定义书签。六:农产品溯源系统 ..........................................错误!未定义书签。 七、条码仓储管理系统(WMS) ...........................错误!未定义书签。 八、商品盘点 ......................................................错误!未定义书签。

背景 温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可经过串口发射接收设备传送给上位PC 机进行分析处理。 一:客户需求 (1)智能温室大棚控制系统 随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

温室大棚湿度控制系统

温室大棚湿度控制系统 ——加湿设备及除湿设备的选择依据及应用领域 1、前言 1.1、课题背景 设施农业是外来词汇,在我国也称“工厂化农业”,目前学术界和经济界还没有一个统一和权威的定义。一般来说,所谓设施农业是具有一定的设施、能在局部范围改善或创造出适宜的气象环境因素、为动植物生长发育提供良好的环境条件而进行有效生产的农业。具体地说,设施农业是指利用人工建造的设施,通过调节和控制局部范围内环境、气象因素,为作物生长提供最适宜的温度、湿度、光照、水和肥等环境条件,使作物处于最佳生长状态,从而获得高产优质的农产品。但随着经济的发展和科技的进步,高新技术在设施农业中的应用的趋势日趋明显。 1.2、国内外温室控制技术发展概况 1.2.1我国温室产业发展现状与发展趋势 我国是温室栽培起源最早的国家,在2000多年前就已经能利用保护设施(温室的雏形)栽培多种蔬菜,至20世纪60年代,中国的设施农业始终徘徊在小规模、低水平、发展速度缓慢的状态,70年代初期地膜覆盖技术引入中国,对保温保墒起到一定的作用。随着经济的发展和科技的进步,70~80年代,相继出现了塑料大棚和日光温室。90年代开始,中国设施农业逐步向规模化、集约化和科学化方向发展,技术水平有了大幅度提高。随着近年来国家相关科研项目的启动,在学习借鉴、吸收消化国外先进技术成果的基础上,中国的设施农业有了较快发展,设施面积和设施水平不断提高。近代温室的发展经历了改良型日光温室、大型玻璃温室和现代化温室三个阶段,但由于各地区生产状况、经济条件和利用目的的差异,至今各阶段不同类型的温室依然并存。 我国在“九五”、“十五”期间,在科技部领导和组织下,实施了“工厂化高效农业研究与示范”项目,利用引进的现代化温室设备及配套技术,通过消化吸收与技术创新,进行了品 CO等环境因素综合调控技术的研究与种选育、设施栽培、配套设备及温室中温度、湿度和 2

大棚施工方案.

技术投标文件(正本)

施工组织设计目录 一、工程概况及编制依据; 二、施工方案及技术措施; 三、质量保证措施和创优计划; 四、施工总进度计划及保证措施; 五、施工安全措施计划; 六、文明施工措施计划; 七、施工场地治安保卫管理计划; 八、施工环保措施计划; 九、冬季和雨季施工方案; 十、施工现场总平面布置; 十一、承包人自行施工范围内拟分包的非主体和非关键性工作、材料计划和劳动力计划; 十二、成品保护和工程保修工作的管理措施和承诺; 十三、任何可能的紧急情况的处理措施、预案以及抵抗风险的措施; 十四、对总包管理的认识以及对专业分包工程的配合、协调、管理、服务方案;十五、与发包人、监理及设计人的配合; 十六、招标文件规定的其他内容。

一、工程概况及编制依据 (一)工程概况: 本工程为武川县上秃亥乡2016年食用菌大棚项目,建筑结构形式为砖混,基础类型为毛石基础。 项目名称:武川县上秃亥乡上秃亥村、桃力盖村食用菌生产基地建设项目。 建设地点:武川县上秃亥乡上秃亥村,桃力盖村委会后渠子村、五家村林场。 项目规模:项目占地约470.1亩,规划新建温室(640.29㎡)88栋,新建温室(367.29㎡)45栋,维修改造温室(336㎡)11栋,新建(400㎡)9栋,新建(600㎡)7栋,新建温室(330㎡)2栋,改造温室(366.6㎡)6栋,并配置卷帘机、卷管、微喷管等设施;硬化道路15539㎡;铺砂石路面52063㎡;安装铁艺围栏5550m;安装金属网围栏719m;修筑河槽防洪堤1350m。 (二)编制依据 武川县上秃亥乡上秃亥村、桃力盖村食用菌生产基地建设项目招标文件。 现行建设工程标准、规范、验评标准。 根据《中华人民共和国建筑法》。 根据国务院《建筑工程质量管理条例》。 现场条件及同类型工程施工经验。 我公司的技术、机械设备情况及管理制度。 有关国家现行设计、施工规范的标准: 《工程测量规范》(GB50026---93); 《建筑地基处理技术规范》(JGJ79---2002); 《建筑地基基础工程施工质量验收规范》(GB50202----2002); 《混凝土结构工程施工质量验收规范》(GB50204---2002); 《钢筋焊接及验收规程》(JGJ18---96); 《建筑工程施工质量验收统一标准》(GB50300---2001); 根据建设部发布的《工程建设强制性条文》。 《施工现场临时用电安全技术规程》(JGJ46-88) 《钢筋焊接及验收规程》(JGJ18-2003) 二、施工方案及技术措施 (一)测量放线 1、检查校核经纬仪和水准仪并检定钢尺。

智能温室建设方案

智能温室建设方案 1、智能温室建设的必要性 随着科技的进步,原有农业种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。经过多年的实践,人们总结出一种新的种植方法——温室农业,即“用人工设施控制环境因素,使作物获得最适宜的生长条件,从而延长生产季节,获得最佳的产出”。这种农业生产方式最大的特点是不受环境的限制,可以在任何条件下按照人们事先设计的方式生产,从而可以取得高产、高效的效果。温室农业主要用于瓜果、蔬菜、花卉等农产品的超季节培育,使冬春两季也能生产供应,尤其在寒冷的北方地区,该技术已成为农业发展的一项必需的必然选择。 在北方寒冷地区,温室大棚作为温室农业发展的重要组成部分,它可以在不适宜植物生长的季节为其提供生育期和增加产量,多用于低温季节喜温蔬菜、花卉、林木等植物栽培或育苗等,在农业农村经济发展中也发挥着日趋重要的作用。但是随着经济的发展,过去的传统温室大棚往往只是起到保温的效果,并不能完全满足温室作物对温室环境的需要,因此其产生的产量和品质还是会受到一定的制约。而随着互联网技术的发展,人们将物联网技术应用于传统温室大棚,实现温室种植的高效和精准化管理,智能温室大棚应运而生。 顺应当前农业产业快速发展的需要,智能温室配备了由计算机控制的可移动天窗、遮阳系统、保温系统、升温系统、湿窗帘/风扇降温系统、喷滴灌系统或滴灌系统、移动苗床等自动化设施,采用计算机集散网络控制结构对温室内的空气温度、土壤温度、相对湿度、CO2浓度、土壤水份、光照强度、水流量以及PH值、EC值等参数进行实时自动调节检测,创造植物生长的最佳环境,使温室内的环境接近人工设想的理想值,以满足温室作物生长发育的需求。智能温室适用于种苗繁育、高产种植、名贵珍稀花卉培养等场地,以增加温室产品产量,提高劳动生产率。可以说智能温室大棚通过智能化控制系统可以实现对温室内的环境精确控制,不仅推动了我国现代设施农业的改造升级,同时对于农业生产效益的提升也

物联网温室智能控制系统的应用案例

物联网温室智能控制系统的应用案例 在全国各地区,现代化的农场种引进物联网技术是时代发展的需要,也是现代科技农业的重要体现。在乌拉特中旗海流图镇设施农业科技示范园区的温室内,物联网温室智能控制系统正在在紧罗密鼓的安装中。 物联网温室智能控制系统通过基于物联网技术对温室内外监测数据的分析,结合作物生长发育规律,利用相关设备,对温室进行实时监控,实现对作物优质、高产、高效的栽培目的。该套智能监控系统具有自动开启关闭卷帘、补光、滴灌等功能,并凭借智能化、自动化控制技术,调节作物的最佳生长环境。种植户可通过电脑、手机等信息终端随时随地查看温室内实时环境监测、预警信息,实现对温室大棚的网络智能化远程管理,充分发挥物联网技术在设施农业生产中的作用。 在地区农业的发展中,引进物联网温室智能控制系统有利于建设该地区的科技农业设施,起到示范作用,也有利于提高地区设施农业生产的科技含量和综合生产水平,促进设施农业现代化发展。另外通过农产品的安全质量追溯,可以改善市民的食品安全条件,增强市民的购买信心,提升农产品的市场竞争力。目前来看,农业物联网技术是现代农业逐步实现智能化、精确化、信息化的有力保障,而随着种植规模的扩大和温室大棚的普及推广,物联网温室智能控制系统将会得到越来越多的应用。 对于规模化的温室种植而言,借助人工管理需要大量人手和时间,并且存在难以避免的 人工误差。物联网技术的应用,真正实现了农业信息数字化、农业生产自动化、农业管理智能化,使温室大棚种植可达到提高产量、改善品质、节省人力、降低人工误差、提高经济效益的目的,实现温室种植的高效和精准化管理。托普温室种植监控系统,改变了传统温室种植管理在技术上的桎梏状态。

基于单片机的智能温室大棚控制系统

摘要 温室是现代农业生产所必需的基本设备,用它有效地控制温度、光照、湿度、二氧化碳浓度等是改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的前提。本设计以STC89C52单片机为核心完成了对空气温度、土壤湿度、光照度进行数据的采集、处理、显示等系统的基本框图、工作原理和继电器控制的设计的工作。主要内容有:(1)通过单片双端集成温度传感器AD590采集实时温度。(2)通过湿度传感器HS1100采集实时湿度。(3)通过固态电化学性二氧化碳传感器TGS4160采集二氧化碳浓度。(4)判断采集到的参数值与设置值是否一致,并进行继电器控制。 通过以上设计可以对植物生长过程中的土壤湿度、环境温度、光照度以及二氧化碳浓度进行了实时地、连续地检测、直观地显示并进行自动地控制。克服了传统的人工测量方法不能进行连续测量的弊端,节省了工作量,并避免了人为的疏漏或错误造成的不必要的损失。 关键词:单片机温度传感器湿度传感器二氧化碳传感器

In this paper Greenhouse is essential for modern agriculture basic equipment, use it to effectively control, such as temperature, light, humidity, carbon dioxide concentration is to change the plant growth environment, create the best condition for plant growth, avoid the seasons change and the influence of bad weather. This design to STC89C52 single-chip microcomputer as the core to complete the air temperature, soil moisture, and light for data acquisition, processing and display system of the basic block diagram, working principle and the design of relay control work. Main contents are: (1) by monolithic integrated temperature sensor AD590 to collect real-time temperature. (2) by the humidity sensor HS1100 gathering real-time humidity. (3) through solid electric chemical carbon dioxide sensor TGS4160 collecting carbon dioxide concentrations. (4) determine whether collected parameter value and set value, and relay control. Through the above can be designed for plants to grow in the process of soil humidity, environment temperature, light and co2 concentration in real time, continuous detection, display visually and automatically control. Overcomes the traditional continuous measurement of the shortcomings of manual measurement method does not, and save the workload, and avoid the unnecessary loss caused by the omission or human error. Key words:SCM temperature sensor humidity sensor carbon dioxide sensor

相关主题