搜档网
当前位置:搜档网 › 05 第五节 无穷小与无穷大

05 第五节 无穷小与无穷大

05 第五节  无穷小与无穷大
05 第五节  无穷小与无穷大

第五节 无穷小与无穷大

没有任何问题可以像无穷那样深深地触动人

的感情,很少有别的观念能像无穷那样激励理智

产生富有成果的思想,然而也没有任何其它的概

念能像无穷那样需要加于阐明.

-------大卫. 希尔伯特

对无穷小的认识问题,可以远溯到古希腊,那时,阿基米德就曾用无限小量方法得到许多重要的数学结果,但他认为无限小量方法存在着不合理的地方. 直到1821年,柯西在他的《分析教程》中才对无限小(即这里所说的无穷小)这一概念给出了明确的回答. 而有关无穷小的理论就是在柯西的理论基础上发展起来的.

分布图示

★ 无穷小

★ 无穷小与函数极限的关系

★ 例1 ★ 无穷小的运算性质

★ 例2 ★ 无穷大

★ 例3 ★ 例4

★ 无穷小与无穷大的关系

★ 例5

★ 内容小结 ★ 课堂练习

★ 习题 1- 5

★ 返回

内容要点

一、无穷小

二、无穷小的运算性质

有限个无穷小的代数和仍是无穷小

有界函数与无穷小的乘积是无穷小.

三、无穷大

四、无穷小与无穷大的关系

例题选讲

无穷小的概念与无穷小的运算性质

例1 根据定义证明:x x y 1sin

2=当0→x 时为无穷小. 证 ,0>?ε要使 ,1sin ||01sin 222ε<≤=-x x

x x x 只须,||ε

sin 2ε<-x x

.01sin lim 20

=∴→x x x 证毕.

例2 (E01) 求.sin lim

x

x x ∞→ 解 因为 x x x

x x x s i n 1l i m s i n l i m ?=∞→∞→ 而当∞→x 时, x 1是无穷小量, x sin 是有界量),1|sin (|≤x 所以

.0sin lim

=∞→x x x

无穷大的概念

例3 (E02) 证明 .1

1lim 1∞-→=x x 证 ,0>?M 要使,1

1M x >-只要,11M x <-取,1M =δ当M x 1|1|0=<-<δ时,就有

,1

1M x >-所以.11lim 1∞-→=x x 例4 证明).1()1(lim >+∞=-+∞→a a x

x 证 ,0>?M 取),1(log +=M X a 当X x >时,有 1)1(log +==>+M a a a M X x a

从而,)1(lim +∞=-+∞→x

x a 即当+∞→x 时,)1(-x a 是正无穷大.

例5 (E03) 求 .5

lim 34

+∞→x x x 解 因为 051lim 5lim 434=??? ?

?+=+∞→∞→x x x x x x 根据无穷小与无穷大的关系有

.5

lim 34

∞=+∞→x x x

课堂练习

1. 求 .)1(22lim 2

21--→x x x x

2.(1)设0x x →时,)(x g 是有界量,)(x f 是无穷大量,证明:)()(x g x f ±是无穷大量.

(2)设0x x →时,M M x g (|)(|≥是一个正的常数),)(x f 是无穷大量,证明:)()(x g x f 是无穷大量.

无穷大量与无穷小量极限的运算法则

第五讲 Ⅰ 授课题目: §2.4无穷大量与无穷小量;§2.5极限的运算法则。 Ⅱ 教学目的与要求: 1、理解无穷大与无穷小的概念,弄清无穷大与无穷小的关系; 2、掌握极限的运算法则。 Ⅲ 教学重点与难点: 1、无穷大与无穷小的概念、相互关系; 2、用极限的运算法则求极限。 Ⅳ 讲授内容: §2.4无穷大量与无穷小量 一、无穷大的概念: 引例:讨论函数 1 1 )(-==x x f y ,当 1→x 时的变化趋势。 当 1→x 时, 1 1 -x 越来越大(任意大),即:+∈?R E ,要 E x >-11?E x 1 1<-, 也即:+∈?R E ,01>?E ,当 E x 1 1<-时,有: E x >-11。 定义2.9:+∈?R E ,变量y 在其变化过程中,总有一时刻,在那个时刻以后,E y >成立,则称变量y 是无穷大量,或称变量y 趋于无穷大,记:∞=y lim 。 如:∞=-→11 lim 1 x x ,-∞=+→x x lg lim 0,+∞=-→ tgx x 2 lim π。 注 1. 若:∞=y lim ,则习惯地称此时)(x f y =的极限为无穷(大); 2.无穷大不能与很大的数混淆; 3.无穷大与无界变量的区别; 例如:x x f y sin 1 )(= = 当)2,1,0(,ΛΛ±±==k k x π时,∞→)(x f ,无界,但非无穷大,πk x ≠Θ时,)(x f 为有限数。 例1 函数 ?),(cos 内是否有界在+∞-∞=x x y 又当 +∞→x 时,此函数是否为无穷大?为什么? 解 用反证法

若:当+∞→x 时,x x y cos =非无穷大, )1(,cos ,,0,0M x x X x X M >>>?>?有时当则,取2 2π π+ =n x n ,当n 充分大时 必有X x n >,而 0cos =n n x x 与(1)式矛盾。 ∴ +∞→x 时,x x y cos =,非无穷大。 4.无穷大运算的结论: (1)有界变量与无穷大量之和是无穷大量; (2)两个无穷大量之积是无穷大量; (3)有限个无穷大量之积是无穷大量。 二、无穷小量: 1.概念: 定义2.10 以零为极限的变量称为无穷小量。 例如:021lim =∞→n n ,则称 ∞→n 时,变量 n n y 21 =是无穷小量。 注 无穷小量非很小的数,但零是可作为无穷小量的唯一的数。 2.两个重要结论: 结论1 定理2.9 A y =lim ,?α+=A y ,0lim =α。 例如: ?56lim =+∞→x x x ,Θx x x 5656+=+,而:05lim =∞→x x ,∴65 6lim =+∞→x x x 。 结论2 定理2.10 若:0lim =α,且:0,>≤M M y ,?0lim =y α 推论 若:C 为常数,0lim =α?0lim =αC 。 例如:?1 sin lim 0=→x x x 0lim 0=→x x Θ,11sin ≤x ,∴01 sin lim 0=→x x x 。 三、无穷大量与无穷小量的关系: 定理2.11 若:∞=y lim ,? 01lim =y ;若:)0(,0lim ≠=αα?∞=α 1 lim 。 例如:∞=+∞ →x x e lim ,? 01 lim =+∞→x x e 。 注 无穷大、无穷小与极限过程有关。 四、无穷小的阶(无穷小的比较): 1.概念: 定义2.11 设βα,是关于同一过程的无穷小,α β lim 也是关于同一过程的极限, 若:0lim =α β ,则称β是比α较高阶的无穷小,记:)(αβο=;

(完整版)无穷小量与无穷大量

第周第学时教案授课教师:贾其鑫

第周第学时教案授课教师:贾其鑫

第 周第 学时教案 授课教师:贾其鑫 1.3.2 无穷大量 定义:1.13 如果在x 的某一变化过程中,1() y f x =是无穷小量,则在该变化过程中,()f x 为无穷大量,简称无穷大,记作:lim ()f x =∞ 如果在x 的某一变化过程中,对应的函数值的绝对值|f (x )|无限增大(函数), 就称函数 f (x )为当x →x 0(或x →∞)时的无穷大. 记为 ∞=→)(lim 0x f x x (或∞=∞ →)(lim x f x ). 应注意的问题: 当x →x 0(或x →∞)时为无穷大的函数f (x ), 按函 数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作 ∞=→)(lim 0x f x x (或∞=∞ →)(lim x f x ). 讨论: 无穷大的精确定义如何叙述?很大很大的数是否是无穷大? 提示: ∞=→)(lim 0x f x x ??M >0, ?δ>0, 当0<|x -0x |<δ时, 有 |f (x )|>M . 正无穷大与负无穷大: +∞=∞→→)(lim )( 0x f x x x , -∞=∞→→)(lim ) ( 0x f x x x . 例2 证明∞=-→1 1lim 1x x . 证 因为?M >0, ?M 1= δ, 当0<|x -1|<δ 时, 有 M x >-|11| , 所以∞=-→1 1lim 1x x . 提示: 要使M x x >-=-| 1|1|11| , 只要M x 1|1|<-.

无穷大与无穷小,极限的四则运算

第 4 次课 2 学时

§1.5 无穷小与无穷大 一、无穷小 若)(x f 当0x x →(或x →∞)时的极限为零,就称)(x f 为当0x x →(或x →∞)时的无穷小,即有 定义1:对,0>?ε若)0(0>>?X δ,使得当00()x x x X δ<-<>时,有ε<)(x f 成立,就称)(x f 为当0()x x x →→∞时的无穷小,记为0 lim ()0(lim ()0)x x x f x f x →→∞ ==,。 注⑴:除上两种之外,还有0,0,,00+→-→+∞→-∞→x x x x x x 的情形。 ⑵:无穷小不是一个数,而是一个特殊的函数(极限为0),不要将其与一个绝对值非常小的数混淆,因为任一常数不可能任意地小,除非是0,即0是唯一可作为无穷小的常数。 【例1】 因为0422)42(lim 2 =-?=-→x x ,所以42-x 当2→x 时为无穷小; 同理:0sin lim =∞→x x x ,所以 x x sin 当∞→x 时为无穷小, 定理1:当自变量在同一变化过程0x x →(或∞→x )中, (i )具有极限的函数等于其极限值与一个无穷小之和,即:A 为)(x f 的极限()()0(),0,()f x A x x x x x αα?=+→→→∞其中或。 (ii )若一函数可表示为一常数与无穷小之和,那么该常数就是其极限。 ()()()()()0 0000lim (),0,0,(). (),)().().(),()0())lim (). . x x x x f x A x x f x A f x A x x x f x A f x A x f x A x x x x f x A x x x f x A εδδεααεαααααεδ→→=?>?>-<-<=-→=-<→=+=+→→-=<-<=0证明:若则对使得当 0<时有令x 显然当时,(故当x x 时,x 为无穷小,且 反之,设 , 则可使(在0<时成立,故二、无穷大 若当0x x →或∞→x 时∞→)(x f ,就称)(x f 为当0x x →或∞→x 时的无穷大。 定义2:若对)0(0,0>>?>?X M δ,使得当)(00X x x x ><-<δ时,有 M x f >)(,就 称 ) (x f 当 ) (0∞→→x x x 时的无穷大,记 作:))(lim ()(lim 0 ∞=∞=∞ →→x f x f x x x 。 注⑴:同理还有+∞→-∞→)(,)(x f x f 时的定义。 ⑵:无穷大也不是一个数,不要将其与非常大的数混淆。

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

无穷小量与无穷大量之间关系的应用

无穷小量与无穷大量之间关系的应用 【摘要】结合教学中的体会,从无穷小量与无穷大量之间的相互关系入手,进一步认识无穷小量与无穷大量.学会利用二者之间的关系,解决一些实际问题,达到提高教学质量的目的. 【关键词】无穷大量;无穷小量 【基金项目】中国矿业大学2012年青年教师校级教学改革资助项目(2001245). 一、前言 不论是在《高等数学》还是在《数学分析》中,都把无穷小量与无穷大量当作重点内容介绍,这是因为此部分内容为后续课程的学习提供了基础,例如用等价无穷小替换求极限、判定级数的收敛性等.从教材的编排上看,《高等数学》和《数学分析》中都是先讲无穷小量,后讲无穷大量.但是对无穷的概念的认识过程看,人类是先认识无穷大,后认识无穷小.所以在文献[1]中,作者按照人们认识无穷的进程,提出了自己的观点,认为先认识清楚无穷大,再认识无穷小.教材中这样安排,主要都是考虑教学的目的. 相对于无穷小与无穷大的比较,一般的教材中都讲无穷小的比较,在求极限时可以用等价无穷小代替等.在文献[2]

中,作者给出了无穷大的比较.在求极限的过程中,同样可以用等价无穷大相互之间替换求函数的极限.在文献[3]中,作者阐述了无穷小的哲学问题,指出了人们对无穷小认识的一些错误,提出了正确的观点,证明了认识无穷小的过程是符合实践――认识――再实践――再认识的自然辩证法. 从教科书和一些文献中,我们能很清楚地认识无穷大量和无穷小量及其性质,也能解决一些实际问题.但我们不能把二者割裂开来独立地去认识.现有的教材中只轻描淡写地说无穷大量和无穷小量符合倒数关系,先讲无穷小量,无穷大量的所有结论利用二者之间的倒数关系可以得到.这就使得学生产生一种误解,认为认识了无穷小量,就等于认识了无穷大量,而不会利用二者之间的关系灵活解决实际问题.本论文正是从解决上述问题出发,利用无穷大量和无穷小量之间的关系进一步认识二者,从而能更好地解决在实际应用中的一些问题.目的是改正教学过程中出现的错误和打消学生的疑惑,提高教学质量,这也符合人们认识自然的实践、认识、再实践、再认识的自然辩证法.

无穷小与无穷大教学设计

陕西国际商贸学院 教学设计 课程名称:经济应用数学.A 授课教师:_____________ 授课班级:_____________ 基础课部大学数学教研室 2017至2018学年第 1 学期

课题:无穷小与无穷大 课程:经济应用数学A教学对象:课时:2课时 任课教师:教材:《高等数学(经管类)》吴玉梅,古佳,康敏,科学出版社 一、教材分析 选用的是《高等数学(经管类)》,教材,教材适用于经济,金融和管理类的学生。本节课的主要介绍的是无穷小与无穷大,从无穷小与无穷大的定义到运算性质,让学生对无穷小与无穷大有一个整体的认识,之后对无穷小的比较做进一步学习。 1、以教材作为出发点,依据《课程标准》,引导学生体会、参与科学探究过程。首先复习数列的极限函数的极限,通过对极限概念的进一步分析和总结,让学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法,不仅要保证数学知识的完整性,也要提升学生运用数学的思想和应用数学知识解决实际问题的方法。 二、教学目标与内容 1.教学目标 知识与技能 通过对本节的学习,理解无穷小与无穷大的概念及它们的关系,掌握无穷小的运算性质,熟记常用的等价无穷小量,会用等价无穷小替换定理求极限。 过程与方法 通过对本节的学习,使同学理解无限与有限的相对性,学会在无限的范围考虑问题,在此过程中,要培养学生将实际问题转化为数学问题的能力,培养学生提出、分析、理解问题的能力,进而发展整合所学知识解决实际问题的能力。 情感态度与价值观 通过对本节的学习,使同学理解无限与有限的相对性,学会在无限的范围考虑问题让学生体验数学在实际生活中的运用,激发学生自主学习的兴趣,也培养了学生的创新意识和探索精神。 2.教学重难点 教学重点: 1.无穷小与无穷大的定义 2.无穷小的运算性质 3.无穷小的比较

求极限的方法和例题总结

8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→解:原式 11)32(1)31 (lim 3 =++-= ∞→n n n n 上下同除以 。

3.两个重要极限 (1) 1 sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 例如:133sin lim 0=→x x x ,e x x x =--→210 ) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 利用两个重要极限求极限 例5 2 03cos 1lim x x x -→解:原式= 61 )2(122sin 2lim 32sin 2lim 2 2 02 2 0=?=→→x x x x x x 。 注:本题也可以用洛比达法则。 例 6 x x x 2 ) sin 31(lim -→=6 sin 6sin 31 sin 6sin 310 ] ) sin 31[(lim ) sin 31(lim ---→-? -→=-=-e x x x x x x x x x x 例7 n n n n )12(lim +-∞→= 31 331 1 331])131[(lim )131(lim -+--+∞→+-?-+∞→=+-+=+-+ e n n n n n n n n n n 。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0 x x →时的无穷小,且)(x f ~ )(1x f ,)(x g ~)(1x g ,则当 ) () (lim 110 x g x f x x →存在时, )() (lim x g x f x x →也存在且等于 ) (x f ) ()(lim 110 x g x f x x →,即 )() (lim x g x f x x →=)()(lim 11 0x g x f x x →。

无穷小与无穷大

1.4 无穷小与无穷大 1.4.1 无穷小 1.无穷小量的定义 定义:如果x → x 0 (或x → ∞ )时, 函数f (x ) 的极限为零 ,那么把f (x ) 叫做当x → x 0(或x → ∞ )时的无穷小量,简称无穷小。 例如:因为 0)1(lim 1 =-→x x ,所以函数x-1是x →1时的无穷小。 因为 01 lim =∞ →x x ,所以函数x 1是当x →1时的无穷小。 因为 011lim =--∞ →x x ,所以函数x -11 是当x →-∞时的无穷小。 以零为极限的数列{x n },称为当n →∞时的无穷小, n 1,n 3 2 都是n →∞时的无穷小。 注:⑴不能笼统的说某函数是无穷小,说一个函数f(x)是无穷小,必须指明自变量的变化趋向。 ⑵不要把绝对值很小的常数说成是无穷小,因为这个常数在x →x 0(或x →∞)时,极限仍为常数本身,并不是零。 ⑶常数中只有零可以看作是无穷小,因为零在x →x 0(或x →∞)时,极限是零。 2.无穷小的性质 在自变量的同一变化过程中,无穷小有以下性质: ⑴有限个无穷小的代数和仍是无穷小(无穷多个无穷小之和不一定是无穷小)。 ⑵有限个无穷小的乘积仍是无穷小。 ⑶有界函数与无穷小的乘积仍是无穷小。(常数与无穷小的乘积仍是无穷小)。 ⑷无穷小除以具有非零极限的函数所得的商仍为无穷小。 例1.求 x x x sin lim ∞ → 解:∵1sin ≤x ,是有界函数, 而 01 lim =∞ →x x ∵有界函数与无穷小的乘积仍是无穷小。

∴ x x x sin lim ∞ →=0 3.函数极限与无穷小的关系 定理:具有极限的函数等于它的极限与一个无穷小之和;反之,如果函数可表示为常数与无穷小之和,那么该常数就是该函数的极限。 4.无穷小的比较 例:当x →0时,x, 3x , x 2, sinx, x x 1 sin 2 都是无穷小。 观察各极限: 032 lim =→x x x x 2比3x 要快得多 1sin lim =→x x x sinx 与x 大致相同 ∞=?=→→x x x x x x x sin 1sin lim lim 020 sinx 比x 2慢的多 x x x x x x 1sin 1 sin lim lim 220 →→= 不存在 不可比 极限不同,反映了无穷小趋于0的“速度”是多样的。 得到以下结论:设α和β都是在同一个自变量的变化过程中的无穷小 ⑴如果αβlim =0,则称β是比α高阶的无穷小 ⑵如果αβ lim =∞,则称β是比α低阶的无穷小 ⑶如果αβ lim =k (k ≠0),则称β与α是同阶的无穷小 ⑷如果α β lim =1,则称β与α是等价无穷小,记为α~β。 例2.比较当x →0时,无穷小 x x ---111 与x 2阶数的高低。

大一高数学习知识重点与例题讲解

大一高数 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1 f x -为无穷小;反之,若()x f 为无穷小,且

无穷大量与无穷小量&极限的运算法则

第五讲 Ⅰ 授课题目: §2.4无穷大量与无穷小量;§2.5极限的运算法则。 Ⅱ 教学目的与要求: 1、理解无穷大与无穷小的概念,弄清无穷大与无穷小的关系; 2、掌握极限的运算法则。 Ⅲ 教学重点与难点: 1、无穷大与无穷小的概念、相互关系; 2、用极限的运算法则求极限。 Ⅳ 讲授内容: §2.4无穷大量与无穷小量 一、无穷大的概念: 引例:讨论函数 1 1 )(-==x x f y ,当 1→x 时的变化趋势。 当 1→x 时, 1 1 -x 越来越大(任意大),即:+∈?R E ,要 E x >-11?E x 11<-, 也即:+∈?R E ,01>?E ,当 E x 11<-时,有:E x >-1 1 。 定义2.9:+∈?R E ,变量y 在其变化过程中,总有一时刻,在那个时刻以后,E y >成立,则称变量y 是无穷大量,或称变量y 趋于无穷大,记:∞=y lim 。 如:∞=-→11 lim 1 x x ,-∞=+ →x x lg lim 0,+∞=-→ tgx x 2 lim π。 注 1. 若:∞=y lim ,则习惯地称此时)(x f y =的极限为无穷(大); 2.无穷大不能与很大的数混淆; 3.无穷大与无界变量的区别; 例如:x x f y sin 1 )(= = 当)2,1,0(, ±±==k k x π时,∞→)(x f ,无界,但非无穷大,πk x ≠ 时,)(x f 为有限数。 例1 函数 ?),(cos 内是否有界在+∞-∞=x x y 又当 +∞→x 时,此函数是否为无穷大?为什么? 解 用反证法 若:当+∞→x 时,x x y cos =非无穷大, )1(,cos ,,0,0M x x X x X M >>>?>?有时当则,取2 2π π+ =n x n ,当n 充分大时

数学分析答案无穷小量与无穷大量的阶)

习 题 3.3 无穷小量与无穷大量的阶 1. 确定a 与α,使下列各无穷小量或无穷大量等价于(~) a x α: (1) u (x ) = x x x 543 32-+, (x →0,x →∞); (2) u (x ) = x x x x 524 3 23+- (x →0,x →∞); (3) u (x ) = x 3 + x 2 3 (x →0+,x →+∞); (4) u (x ) = x x x ++ (x →0+,x →+∞); (5) u (x ) = 13+x - 123 +x (x →0,x →+∞); (6) u (x ) = x 2 1+ - x (x →+∞); (7) u (x ) = - 3 2 x (x →0+); (8) u (x ) = 1+x x - e 2x (x →0+); (9) u (x ) = ln cos x - arc tan x 2 (x →0); (10) u (x ) = x tan 1+ - 1-sin x (x →0)。 解(1))(x u ~)0(23→x x ;)(x u ~)(5∞→x x 。 (2))(x u ~)0(21→--x x ;)(x u ~ ) (3 1∞→x x 。 (3))(x u ~)0(3 2 +→x x ;)(x u ~)(2 3 +∞→x x 。 (4))(x u ~)0(81 +→x x ;) (x u ~)(21 +∞→x x 。 (5))(x u ~)0(65→x x ;)(x u ~ )(321 +∞→x x 。 (6))(x u ~ )(2 11 +∞→-x x 。 (7))(x u ~)0(21 +→x x 。 (8))(x u ~)0(2+→-x x 。

关于高等数学等价无穷小替换极限的计算

关于高等数学等价无穷小替换极限的计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极 限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1 为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理1 0 lim () () (),x x x f x A f x A x α其中)(x α是自变量在同一变化过程0 x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim () ,x x f x A 令()(),x f x A α则有0 lim () 0,x x x α (充分性)设() (),f x A x α其中()x α是当0x x 时的无穷小,则 【意义】 (1)将一般极限问题转化为特殊极限问题(无穷小);

作业(无穷大与无穷小、极限四则运算)(答案)

一、在下列各题中,指出哪些变量是无穷小量,哪些变量是无穷大量? 1.当∞→x 时,变量 x 2是无穷小量; 【0 2lim =∞ →x x 】 2.当-∞→x 时,变量x -2是无穷大量; 【 +∞ =--∞ →x x 2 lim 】 3.当0→x 时,变量x sin 是无穷小量; 【0sin lim 0 =→x x 】 4.当+→0x 时,变量x ln 无穷大量. 【-∞=+→x x ln lim 0 】 二、利用无穷小与有界变量的关系,计算下列极限 1. x x x sin lim ∞ → 2.x x x 1sin lim 2 → 解:由0 1lim =∞ →x x ,且1sin ≤x , 解:由0lim 2 =→x x ,且11sin ≤x , 故0 sin lim =∞ →x x x . 故0 1sin lim 2 =→x x x . 3.)21(cos lim +→x x x 4.x x x 1sin lim 2 +∞ → 解:由0lim 0 =→x x ,且 3 21cos ≤+x , 解:由0 1lim =∞ →x x ,且11sin 2 ≤+x , 故0 )21(cos lim =+→x x x . 故0 1 sin lim 2 =+∞ →x x x . 三、求下列极限 1.)158(lim 2 5 +-→x x x 176 155582 =+?-?=. 2. 1 1lim 2 1 ---→x x x 0111)1(2 =----= . 3.59lim 2 3 -+→x x x 3 5 3 932 =-+=. 强行代入 4.x x x -+→13lim 1 ∞=. 无穷小的倒数是无穷大 5.1 1 lim 2 1 --→x x x 1 ) 1)(1(lim 1 --+=→x x x x 2 11)1(lim 1 =+=+=→x x . 分解约分

相关主题