搜档网
当前位置:搜档网 › 三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换(含答案)
三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换

一、单选题(共8道,每道12分)

1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整

个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( )

A.2

B.3

C.4

D.5

答案:C

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( )

A. B.

C. D.

答案:D

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( )

A.1

B.2

C.3

D.4

答案:B

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( )

A.π

B.

C. D.

答案:D

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

7.函数的图象如图所示,为了得到

的图象,则只要将f(x)的图象( )

A.向左平移个单位长度

B.向右平移个单位长度

C.向左平移个单位长度

D.向右平移个单位长度

答案:C

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

8.将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

三角函数的平移、伸缩变换测试题(人教A版)(含答案)

三角函数的平移、伸缩变换(人教A版) 一、单选题(共14道,每道7分) 1.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象的解析式为( ) A. B. C. D. 答案:B 解题思路: 由题意, 函数经平移,得到, 该函数横坐标再经变换,得到. 故选B 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.由的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,则为( ) A. B. C. D. 答案:D

解题思路: 将变换的过程倒推, 函数横坐标经变换,即横坐标缩短为原来的, 得到; 再将该函数图象向右平移个单位长度,得到 . 故选D. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.将函数的图象向右平移个单位长度,再将所得图象的所有点的横坐标缩短为原来的,纵坐标不变,得到的函数解析式为( ) A. B. C. D. 答案:D 解题思路: 由题意, 函数经平移,得到 ; 再经横坐标变换后,得到, 故选D. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

4.将函数的图象上每点的横坐标缩短为原来的,再将所得图象向左平移个单位长度,得到的函数解析式为( ) A. B. C. D. 答案:B 解题思路: 由题意, 函数横坐标经变换得到, 该函数再经平移,得到, 故选B. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.将函数的图象上每点的横坐标伸长到原来的2倍,再将所得图象向右平移个单位长度,纵坐标不变,得到的函数解析式为( ) A. B. C. D. 答案:C 解题思路: 由题意, 函数横坐标经变换,

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

平面内曲线平移伸缩变换的技巧

平面内曲线平移伸缩变换的技巧 平移变换是在向量中提出来的,而伸缩变化是在三角函数介绍的,因为有了初中的“左加右减,上加下减”的结论,在教学过程中,很多同学往往会简单的套用这个结论,导致得到和正确答案完全相反的结论,我在近几年教学中,总结了一套简单且容易操作的处理方法,以供参考。 曲线平移和放缩都可以依据以下结论处理:所有的平移和放缩都是x,y在变,且变化的规律与习惯相反。 一、平移 规律中的“习惯”就是在坐标平面内特征,即左右平移是x在变化,且向左变小,向右变大;上下平移是y在变,且向下变小,向上变大。下面举例说明。 例1 将函数的图象向左平移2个单位,向上平移1个单位。求平移后的函数解析式。 解:向左平移2个单位,“习惯”是越左越小,而变化的结果将原来解析式中的x变成;向上平移1个单位,“习惯”是越上越大,而变化的结果是将原来解析式中的y变成。 所以平移后的函数解析式是。 例2 求向右平移个单位,向下平移2个单位后的得到的函数解析式。

解:依据以上规律,就是将原来的解析式中的x变成,y变成, 所以平移后的函数解析式是, 化简后得。 例1也可以用“左加右减,上加下减”来处理,但如果不能从本质上弄清问题,就会出现错误,如例2还是套用“左加右减,上加下减”来处理,得到的结论就可能是。 二、放缩 课本在三角函数这一章中给出了放缩的规律,笔者发现这个规律可以和平移规律整合在一起。 具体的规律是:纵坐标不变横坐标变为原来的ω倍就是将原来解析式中的x 变成;横坐标不变纵坐标变为原来的A倍就是将原来解析式中的y变成。 例3 (2000年理科全国卷)经过怎样的平移和伸缩得到。 解:。 (变化一) (1)y变成了2y,故横坐标不变,纵坐标变为原来的; (2)x变成了2x,故纵坐标不变,横坐标变为原来的; (3)x变成了,故将图象右移个单位,需要将写成;

函数 图像的平移变换与伸缩变换

函数()y f x =图像的平移变换与伸缩变换 在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数 y=Asin(x+)+m(A 0, 0)w j w 构的图像是由sin y x =的图像怎样变换得来的,这要涉及的变换有平移变换与伸缩变换。而我们在后来复习函数时,也要增加函数()y f x =的图像变换的内容。三角函数也属于函数,因此一般函数()y f x =的图像变换法则和方法对三角函数同样适用。所以为了使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。 大家知道,sin y x =的图像向上(下)平移10个单位,可得到 10sin y x -=(10sin y x +=),即s i n 10y x =+(sin 10y x =-)的图像;sin y x =的 图像向右(左)平移 10π,可得到sin()10y x p =-(sin()10 y x p =+)的图像;sin y x =的图像横向伸长至原来的2倍(横向缩至原来的12 ),可得到1sin 2 y x =(sin 2y x =)的图像;sin y x =的图像纵向伸长至原来的3倍(纵向缩短至原来的13),可得到1sin 3y x =(3sin y x =),即3s i n y x =(1sin 3y x =)的图像;我们可用表格把上述小题的变换内容与解析式的相应变化反

直角坐标系中的平移变换与伸缩变换

1.1 直角坐标系中的平移变换与伸缩变换 目标:平移变换与伸缩变换的应用与理解 一.直角坐标系 1.直线上,取定一个点为原点,规定一个长度为单位长度,规定直线的一个方向为正方向。这样我们就建立了直线上的坐标系 (即数轴)。它使直线上任意一点P 都可以由惟一的实数x 来确定。 2.平面上,取定两条互相垂直的直线作为x 、y 轴,它们的交点作为坐标原点,并规定好长度单位和这两条直线的正方向。这样我们就建立了平面直角坐标系。它使平面上任意一点P 都可以由惟一的二元有序实数对),(y x 来确定。 3.在空间中,选择三条两两垂直且交于一点的直线,以这三条直线分别作为x 、y 、z 轴,它们的交点作为坐标原点,并规定好长度单位和这三条直线的正方向。这样我们就建立了空间直角坐标系。它使空间中任意一点P 都可以由惟一的三元有序实数对),,(z y x 来确定。 事实上,直线上所有点的集合与全体实数的集合一一对应;平面上所有点的集合与全体二元有序数对),(y x 的集合一一对应;空间中所有点的集合与全体三元有序数对),,(z y x 的集合一一对应. 二.平面直角坐标系中图形的平移变换 1.平移变换 在平面内,将图形F 上所有点按照同一个方向,移动同样长度,称为 图形F 的平移。若以向量a 表示移动的方向和长度,我们也称图形F 按向量a 平移. 在平面直角坐标系中,设图形F 上任意一点P 的坐标为),(y x ,向量),(k h a = ,平移后的对应点为),(y x P '''. 则有:),(),(),(y x k h y x ''=+ 即有:?? ?' =+'=+y k y x h x . 因此,我们也可以说,在平面直角坐标系中,由???' =+'=+y k y x h x 所确定的变换 是一个平移变换。

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩 函数sin()y A x k ω?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象()ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0) ???ω >

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

角函数的平移与伸缩变换_整理

函数)sin(A ?ω+=x y 的图像 (1)物理意义:sin()y A x ω?=+(A >0,ω>0),x ∈[0,+ ∞)表示一个振动量时,A 称为振幅,T = ωπ 2, 1 f T = 称为频率,x ω?+称为相位,?称为初相。 (2)函数sin()y A x k ω?=++的图像与sin y x =图像间的关系: ① 函数sin y x =的图像纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图像; ② 函数()sin y x ?=+图像的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图像; ③ 函数()sin y x ω?=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数 sin()y A x ω?=+的图像; ④ 函数sin()y A x ω?=+图像的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图像。 要特别注意,若由()sin y x ω=得到()sin y x ω?=+的图像,则向左或向右平移应平移| |? ω 个单位。 ?对)sin(?+=x y 图像的影响 一般地,函数)sin(?+=x y 的图像可以看做是把正弦函数曲线上所有的点向____(当?>0时)或向______(当?<0时)平移?个单位长度得到的 注意:左右平移时可以简述成“______________” ω对x y ωsin =图像的影响 函数x y ωsin =)10(≠>∈ωω且R x ,的图像可以看成是把正弦函数上所有的点的横坐标______)1(>ω或_______)10(<<ω到原来的ω 1 倍(纵坐标不变)。 A 对x y sin A =的影响

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

2018年必修一-函数图象地平移和翻折

2018年必修一-函数图象的平移和翻折 一、图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 二、图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面的部分及与y 轴的交点,去掉左半平面的部分,而利用偶函数的性质,将右半平面的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形 课堂练习

1、把函数y = 1 1 +x 的图像沿x 轴向右移动1个单位后所得图像记为C ,则图像C 的表 达式为( ) A. y= x -21 B. y=-x 1 C. y=x 1 D. y=2 1 -x 2、函数y=|x|-1的图像是( ) A. B. C. D. 3、函数y=| 2 1(x-1)2 -3|的单调递增区间是 4、某人骑自行车沿直线旅行,先前进了a km,休息了一阵,又沿原路返 回b km(b

三角函数的平移与伸缩变换

三角函数的平移与伸缩变换 1、为了得到函数)3 2sin(π-=x y 的图象,只需把函数)6 2sin(π +=x y 的图 象向____平移_____个单位长度. 2、设,0>ω函数2)3 sin(++=π ωx y 的图象向右平移 3 4π 个单位后与原图象重合则ω的最小值是__________. 3、将函数x y sin =的图象上所有的点向右平行移动 10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式是_____________. 4、将函数x x x f cos sin 3)(-=的图象向左平移m 个单位(m>0),若得到图象对应的函数为偶函数,则m 的最小值是_____________. 5、把函数)2 ||,0)(sin(π ?ω?ω<>+=x y 的图象向左平移3 π 个单位长度, 所得曲线的一部分图象如图所示,则( ) A. 6 ,1π?ω== B. 6 ,1π ?ω-== C. 6 ,2π?ω== D. 6 ,2π ?ω-== 6、已知函数)0,0(2cos )(2>>+=?ωA x A x f 的最大值为6,其相邻两条对称轴间的距离为4,求.________)20()6()4()2(=+???+++f f f f 7、右图是函数))(sin(R x x A y ∈+=?ω在区间 )6 5,6(ππ- 上的图象,只要将 (1)x y sin =的图象经过怎样的变换? (2)x y 2cos =的图象经过怎样的变换? 8、把x y sin =作何变换可得.1)6 3sin(8-+=π x y 17π12 π3 x y o 1-1 5π6 -π6y x o

函数图像的平移变换练习题

A 组 基础对点练 1.如图的曲线是幂函数y =x n 在第一象限内的图象.已知n 分别取±2,±1 2四个值,与 曲线C 1,C 2,C 3,C 4相应的n 依次为( ) A .2,12,-1 2,-2 B .2,12,-2,-1 2 C .-12,-2,2,1 2 D .-2,-12,1 2 ,2 解析:C 1,C 2对应的n 为正数,且C 1的n 应大于1; 当x =2时,C 4对应的值小,应为-2. 答案:A 2. 如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( ) 解析:直线l 在AD 圆弧段时,面积y 的变化率逐渐增大,l 在DC 段时,y 随x 的变化率不变;l 在CB 段时,y 随x 的变化率逐渐变小,故选D. 答案:D 3.函数y =xa x |x | (0<a <1)的图象的大致形状是( ) 解析:函数定义域为{x |x ∈R ,x ≠0},且y =xa x |x |=? ??? ? a x ,x >0,-a x ,x <0.当x >0时,函数是一 个指数函数,其底数0<a <1,所以函数递减;当x <0时,函数递增,所以应选D.

答案:D 4.函数f (x )=ln ??? ?x -1 x 的图象是( ) 解析:自变量x 满足x -1x =x 2-1 x >0,当x >0时可得x >1,当x <0时可得-1<x <0, 即函数f (x )的定义域是(-1,0)∪(1,+∞),据此排除选项A 、D 中的图象.当x >1时,函数x -1 x 单调递增,故f (x )=ln ????x -1x 单调递增. 答案:B 5. (2018·武昌调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( ) A .f (x )=2-x 2 2x B .f (x )=cos x x 2 C .f (x )=-cos 2x x D .f (x )=cos x x 解析:A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x →0+ 时,f (x )<0,与题图不符,故不成立.选D. 答案:D 6.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ) A .e x + 1 B .e x - 1 C .e -x +1 D .e -x -1 解析:与曲线y =e x 关于y 轴对称的图象对应的函数为y =e - x ,将函数y =e - x 的图象向左平移1个单位长度即得y =f (x )的图象,∴f (x )=e -(x +1) =e -x -1 ,故选D. 答案:D 7.函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( )

高中数学平面曲线平移伸缩变换的技巧.doc

用心 爱心 专心 平面内曲线平移伸缩变换的技巧 江苏省靖江高级中学 蔡正伟 在高中教材中,平移变换是在向量中提出来的,而伸缩变化是在三角函数介绍的,因为有了初中的“左加右减,上加下减”的结论,在教学过程中,很多同学往往会简单的套用这个结论,导致得到和正确答案完全相反的结论,笔者在近几年教学中,总结了一套简单且容易操作的处理方法,供同学们学习时参考。 曲线平移和放缩都可以依据以下结论处理:所有的平移和放缩都是x ,y 在变,且变化的规律与习惯相反。 一、平移 规律中的“习惯”就是在坐标平面内特征,即左右平移是x 在变化,且向左变小,向右变大;上下平移是y 在变,且向下变小,向上变大。下面举例说明。 例1 将函数)(x f y =的图象向左平移2个单位,向上平移1个单位。求平移后的函数解析式。 解:向左平移2个单位,“习惯”是越左越小,而变化的结果将原来解析式中的x 变成2+x ;向上平移1个单位,“习惯”是越上越大,而变化的结果是将原来解析式中的y 变成1-y 。 所以平移后的函数解析式是)2(1+=-x f y 。 例2 求)43sin(21π+= x y 向右平移3π个单位,向下平移2个单位后的得到的函数解析式。 解:依据以上规律,就是将原来的解析式中的x 变成3π- x ,y 变成1+y , 所以平移后的函数解析式是?? ????+-=+4)3(3sin 211ππx y , 化简后得1)4 33sin(21--=πx y 。 例1也可以用“左加右减,上加下减”来处理,但如果不能从本质上弄清问题,就会出现错误,如例2还是套用“左加右减,上加下减”来处理,得到的结论就可能是14)3(3sin 211-?? ????+-=+ππx y 。 二、放缩 课本在三角函数这一章中给出了放缩的规律,笔者发现这个规律可以和平移规律整合在一起。

三角函数图像平移与伸缩变换(学生版)陈妍

三角函数图像题 异名三角函数平移变换 1.要得到函数x y cos 2= 的图象,只需将函数)4 2sin(2π + =x y 的图象上所有的点的 ( )(A)横坐标缩短到原来的 21倍(纵坐标不变),再向左平行移动8 π 个单位长度 (B)横坐标缩短到原来的 21倍(纵坐标不变),再向右平行移动4 π个单位长度 (C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 4 π 个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 8 π 个单位长度 2. 将函数()y f x =的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),再将整个图 形沿x 轴正向平移3π ,得到的新曲线与函数3sin y x =的图象重合,则()f x =( ) A. 3sin(2)3x π+ B. 3sin()23x π+ C. 23sin(2)3x π- D. 23sin()23 x π + 3.为得到函数πcos 23y x ?? =+ ?? ? 的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位 4.要得到函数sin y x =的图象,只需将函数cos y x π?? =- ?3?? 的图象( ) A .向右平移π 6个单位 B .向右平移 π 3个单位 C .向左平移π 3 个单位 D .向左平移π 6 个单位 5.为了得到函数)6 2sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) (A)向右平移 6π个单位长度 (B)向右平移3π 个单位长度 (C)向左平移6π个单位长度 (D)向左平移3 π 个单位长度

函数图象的平移与对称变换.doc

专题:函数图象的平移与对称变换 一.知识结构 1.利用描点法作函数的图象的基本步骤: ①确定函数的定义域 ②简化函数的解析式 ③讨论函数的性质(奇偶性、单调性、最值等) ④画出函数的图象 2.图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 3.图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形 二.题型选编 题组一:利用描点法作函数的图象 1.作出函数|5||2|)(--+=x x x f 的图象; 2.作出函数2 213)(-+=x x x f 的图象; 3.作出函数34)(2+-=x x x f 的图象; 题组二:利用图象的变换解决相应的问题 1.设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变

《函数图像的平移变换》专题

《函数图像的平移变换》专题 2014年( )月( )日 班级 姓名 【一次函数图像的平移】 画x x f 2)(=、22)(+=x x f 、22)(-=x x f 的图像 备用图 思考:已知x x f 2)(=,那么=+)1(x f ,=-)1(x f 。 对比上图,我们发现: ①函数22)1(+=+x x f 可以看作x x f 2)(=向 平移 单位得到,也可以看做x x f 2)(=向 平移 单位得到。 ②函数2-2)1-(x x f =可以看作x x f 2)(=向 平移 单位得到,也可以看做 x x f 2)(=向 平移 单位得到。 ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向()00()(a a a x f x f ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向(00)()(a a a x f x f 【反比例函数图像的平移】

画x x f 2)(= 、22)(+=x x f 、22)(+=x x f 的图像 备用图 思考:已知x x f 2 )(= ,那么=+)2(x f ,=+2)(x f 。 对比上图,我们发现: ①函数=+)2(x f 可以看作x x f 2 )(= 向 平移 单位得到。 ②函数=+2)(x f 可以看作x x f 2 )(=向 平移 单位得到。 ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向()00()(a a a x f x f ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向(00)()(a a a x f x f 【二次函数图像的平移】 画2)(x x f =、32)(2--=x x x f 、54)(2 --=x x x f 的图像

平面曲线平移伸缩变换的技巧

平面内曲线平移伸缩变换的技巧 江苏省靖江高级中学 蔡正伟 在高中教材中,平移变换是在向量中提出来的,而伸缩变化是在三角函数介绍的,因为有了初中的“左加右减,上加下减”的结论,在教学过程中,很多同学往往会简单的套用这个结论,导致得到和正确答案完全相反的结论,笔者在近几年教学中,总结了一套简单且容易操作的处理方法,供同学们学习时参考。 曲线平移和放缩都可以依据以下结论处理:所有的平移和放缩都是x ,y 在变,且变化的规律与习惯相反。 一、平移 规律中的“习惯”就是在坐标平面内特征,即左右平移是x 在变化,且向左变小,向右变大;上下平移是y 在变,且向下变小,向上变大。下面举例说明。 例1 将函数)(x f y =的图象向左平移2个单位,向上平移1个单位。求平移后的函数解析式。 解:向左平移2个单位,“习惯”是越左越小,而变化的结果将原来解析式中的x 变成2+x ;向上平移1个单位,“习惯”是越上越大,而变化的结果是将原来解析式中的y 变成1-y 。 所以平移后的函数解析式是)2(1+=-x f y 。 例2 求)4 3sin(2 1π + =x y 向右平移 3 π 个单位,向下平移2个单位后的得到的函数 解析式。 解:依据以上规律,就是将原来的解析式中的x 变成3 π - x ,y 变成1+y , 所以平移后的函数解析式是????? ? +-= +4)3(3sin 21 1ππx y , 化简后得1)4 33sin(2 1--=πx y 。 例1也可以用“左加右减,上加下减”来处理,但如果不能从本质上弄清问题,就会出现错误,如例2还是套用“左加右减,上加下减”来处理,得到的结论就可能是 14)3(3sin 21 1-????? ? +-= +ππx y 。 二、放缩 课本在三角函数这一章中给出了放缩的规律,笔者发现这个规律可以和平移规律整合在一起。

三角函数的平移与伸缩变换-整理

三角函数的平移与伸缩变换-整理

练习:将2)5 42sin(2++=π x y 做下列变换: (1)向右平移 2 π 个单位长度; (2)横坐标缩短为原来的一半,纵坐标不变; (3)纵坐标伸长为原来的4倍,横坐标不变; (4)沿y 轴正方向平移1个单位,最后得到的函数._________)(==x f y 例3、把)(x f y =作如下变换: (1)横坐标伸长为原来的1.5倍,纵坐标不变; (2)向左平移3 π个单位长度; (3)纵坐标变为原来的5 3 ,横坐标不变; (4)沿y 轴负方向平移2个单位,最后得到函数),4 23sin(43π +=x y 求).(x f y = 练习1:将)4 8sin(4π π+=x y 作何变换可以得到.sin x y = 练习2:对于)53 6sin(3x y +=π作何变换可以得到.sin x y = 例4、把函数)2 ||,0)(sin(π ?ω?ω<>+=x y 的图象向左平移 3 π 个单位长度,所得曲线的一部分图象如图所示,则( ) A. 6 ,1π ?ω== B. 6 ,1π ?ω- == C. 3 ,2π ?ω= = D. 3 ,2π ?ω- == 练习:7、右图是函数))(sin(R x x A y ∈+=?ω在区间 )6 5,6(π π- 上的图象,只要将 (1)x y sin =的图象经过怎样的变换? (2)x y 2cos =的图象经过怎样的变换? 【课堂练习】 1、为了得到函数)6 3sin(π +=x y 的图象,只需把函数x y 3sin =的图象 1-1 5π6 -π6y x o

( ) A 、向左平移 6π B 、向左平移18π C 、向右平移6π D 、向右平移18 π 2、为得到函数πcos 23y x ? ?=+ ?? ?的图像,只需将函数sin 2y x =的图像( ) A 、向左平移5π 12个长度单位 B 、向右平移 5π 12个长度单位 C 、向左平移5π 6 个长度单位 D 、向右平移5π 6 个长度单位 3、要得到函数sin y x =的图象,只需将函数cos y x π? ?=- ?3? ?的图象( ) A 、向右平移π6个单位 B 、向右平移π3个单位 C 、向左平移π 3 个单位 D 、向 左平移 π 6 个单位 4、为了得到函数)6 2sin(π -=x y 的图象,可以将函数x y 2cos =的图象( ) A 、向右平移6π个单位长度 B 、向右平移3π 个单位长度 C 、向左平移6π个单位长度 D 、向左平移3 π 个单位长度 5、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把 所得图象上所有点的横坐标缩短到原来的1 2 倍(纵坐标不变),得到的图象所表 示的函数是( ) A 、sin(2)3y x π=-,x R ∈ B 、sin()26x y π =+,x R ∈ C 、sin(2)3y x π=+,x R ∈ D 、sin(2)3 2y x π =+,x R ∈ 6、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6 y x π =+的图像( ) A 、向左平移4π个长度单位 B 、向右平移4π 个长度单位 C 、向左平移2π个长度单位 D 、向右平移2π 个长度单位 7、已知函数()sin()(,0)4 f x x x R π ??=+∈>的最小正周期为π,为了得到函数 ()c o s g x x ?=的图象,只要将()y f x =的图象 ( )

2018年必修一-函数图象的平移和翻折

2018年必修一-函数图象的平移和翻折 一、图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 二、图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形

课堂练习 1、把函数y = 1 1 +x 的图像沿x 轴向右移动1个单位后所得图像记为C ,则图像C 的表 达式为( ) A. y= x -21 B. y=-x 1 C. y=x 1 D. y=21-x 2、函数y=|x|-1的图像是( ) A. B. C. D. 3、函数y=| 2 1(x-1)2 -3|的单调递增区间是 4、某人骑自行车沿直线旅行,先前进了a km,休息了一阵,又沿原路返 回b km(b

三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题 1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5 y x π =- (C )1sin()210y x π=- (D )1sin()220y x π=- 5y Asin x x R 66ππω???=∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个 函数的图象,只要将y sin x x R =∈()的图象上所有的( ) (A)向左平移 3π个单位长度,再把所得各点的横坐标缩短到原来的12 倍,纵坐标不变 (B) 向左平移3 π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移 6 π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω? ?=+> ???的图像向右平移6 π个单位长度后,与函数tan 6y x πω??=+ ?? ?的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12 5、已知函数()sin()(,0)4f x x x R π ??=+∈>的最小正周期为π,为了得到函数 ()cos g x x ?=的图象,只要将()y f x =的图象( )

函数图像的平移变换经典例题讲解

函数图象 考纲解读 1.考查常见函数的图象的平移变换与对称变换;2.以基本初等函数经过代数运算构成的基本函数的图象辨认;3.利用函数图象解决函数性质的应用. [基础梳理] 1.利用描点法作函数图象的基本步骤及流程 (1)基本步骤:列表、描点、连线. (2)流程: ①确定函数的定义域; ②化简函数解析式; ③讨论函数的性质(奇偶性、单调性、周期性、对称性等); ④列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.平移变换 y =f (x )――→a >0,右移a 个单位 a <0,左移|a |个单位y =f (x -a ); y =f (x )――→ b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . 3.伸缩变换 y =f (x )―――――――――――→纵坐标不变 各点横坐标变为原来的1 a (a >0)倍 y =f (ax ). y =f (x )―――――――――――――→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ). 4.对称变换 y =f (x )―――――→关于x 轴对称 y =-f (x ); y =f (x )―――――→关于y 轴对称y =f (-x ); y =f (x )―――――→关于原点对称y =-f (-x ). 5.翻折变换 y =f (x )―――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )――――――――→留下x 轴上方图 将x 轴下方图翻折上去 y =|f (x )|. [三基自测] 1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合的最好的图象是( )

相关主题