搜档网
当前位置:搜档网 › 纳米氧化亚铜的制备方法研究

纳米氧化亚铜的制备方法研究

纳米氧化亚铜的制备方法研究
纳米氧化亚铜的制备方法研究

纳米氧化亚铜的制备方法研究

2008-01-23 10:56

https://www.sodocs.net/doc/1414357374.html, 化学通报2004年第67卷w021

纳米氧化亚铜的制备方法研究

余颖杜飞鹏

(华中师范大学物理科学与技术学院武汉430079)

摘要近年来,国内外专家学者对纳米材料的制备表现出很大的兴趣,并通过不同的物理,

化学方法制备出了许多纳米材料,纳米氧化亚铜就是其中之一.本文着重综述了近年国内外制备纳

米氧化亚铜粉末,薄膜及纳米线的方法.

关键词纳米氧化亚铜制备进展

Progress of Research on Preparation Methods of

Nano-Cuprous Oxide

Yu Ying, Du Feipeng

(College of Physical Science and Technology Wuhan 430079)

Abstract Nano-cuprous oxide, which has been received much attention in recent years, has many promising applications in various fields. The aim of this paper is to give a preliminary review on the preparation of nano-granule, nano-membrane and nano-thread for cuprous oxide.

Key words Nano-cuprous oxide, Preparation, Research development

氧化亚铜(Cu2O)是p型半导体材料,用途广泛.除在有机合成中可作为催化剂使用外,也

可作为船舶防腐涂料及杀虫剂,更应用于陶瓷和电子器件方面.由于量子尺寸效应,纳米级氧

化亚铜具有特殊的光学,电学及光电化学性质,在太阳能电池,传感器,超导体[1~5],制氢[6~8]

和电致变色[9]等方面有着潜在的应用,甚至有专家预言[10,11]纳米氧化亚铜可以在环境中处理有机

污染物,因此研究制备纳米氧化亚铜的方法就成为当前的研究热点之一.本文主要对近年来制

备纳米氧化亚铜粉末,薄膜及纳米线的方法进行了详细综述.

1 制备纳米氧化亚铜粉体的方法

1.1 化学沉积法

化学沉积法是在化学反应中加入沉淀分散剂来得到所需微粒.本法较其它方法实验条件要

求简单,但合适的添加剂很重要.

Dong等[12]的研究表明,反应体系中不添加有机添加剂得到的氧化亚铜不纯,因为体系中的

还原剂N2H4是强还原剂,很容易把Cu2+还原为Cu单质;添加十六烷基三甲基溴化铵(CTAB)得

到的是六边形纯单晶氧化亚铜;添加葡萄糖得到的是多晶纯氧化亚铜,而且随添加量由小到大

余颖女,博士,副教授. E-mail: yythata@https://www.sodocs.net/doc/1414357374.html,

国家自然科学基金资助项目(20207002)

2003-04-08收稿

https://www.sodocs.net/doc/1414357374.html, 化学通报2004年第67卷w021

2

变化时,晶形从立方形向球形转化,微粒大小也由30nm减小到9nm.其可能的机理是,添加

CTAB起到两个作用:一是Cu2O核吸附溶液中的OH-而带负电荷,CTAB带正电荷吸附Cu2O

核而形成覆盖层,抑制了N2H4把Cu+还原为Cu,其二是形成的覆盖层由于同荷排斥作用,阻

止核与核之间聚集.添加葡萄糖不仅仅是有OH的缘故,主要是由于位阻效应,OH配体形成

了笼子,把Cu2+关在里面,只有小分子的OH-能自由渗透.当N2H4把Cu2+还原为Cu+,就迅速

的和OH-结合得到CuOH,最后得到纯氧化亚铜.

Borgohain等[13]在聚乙烯吡咯烷酮存在下,加热铜的酒石酸钾钠与葡萄糖溶液,离心,真空

干燥,得到10~45nm的氧化亚铜.随着晶体尺寸的减小,晶体颜色由红色向橙色变化.

1.2 电化学法

电化学法也称电解法,是制备纳米氧化亚铜比较常用的一种方法.Borgohain等[13]用电化学

方法制备氧化亚铜时,在电解池中铜电极作阴极,Pt电极作阳极,CH3CN和THF的加入比例

为4/1,支持电解质四正辛基溴化铵(TOAB)作为稳定剂.在合成前,把N2通入电解池中以除去

溶解的O2,使电解在N2氛围下进行,且池中多余的O2用于氧化得到氧化亚铜.在一定的电流

作用下,阴极溶解变为Cu2+,又迅速被还原得Cu+,同时被活性TOAB保护起来,得到纯的绿

色氧化亚铜晶体,大小为2~8nm.

1.3 辐照法

近几年在中国科技大学建立起来的γ辐射合成方法不需要真空,高温等条件,在常温和常压

下即可操作,而且合成工艺简单,成本低廉,是一种很有发展前途的纳米材料合成方法.这种

方法已经在纳米金属材料,纳米合金材料和纳米氧化物材料的制备方面显示了它的优越性.辐

射化学合成方法制备纳米材料所用γ辐射源主要是60Co源.其基本原理[14]如下:水接受辐射后被激发,并发生电离,其初级过程可总结为下式:

H2O + γ射线H2,H2O2,H,OH,eaq

-,H3O+,H2O,HO2

其中·H和e-

aq活性粒子是还原性的,e-

aq的标准还原电位为-2.77V,·H的某些还原电位为-2.13

V,具有很强的还原能力,可以还原水溶液中的某些金属离子.加入异丙醇或异丁醇清除氧化

性自由基·OH,水溶液中的e-

aq和·H可以逐步把溶液中的金属离子还原为金属原子或低价金

属离子,然后新生成的低价金属离子化合物聚集成核,形成胶体,由胶体再生长成纳米颗粒,从

溶液中沉淀出来.用γ射线辐照法生成14nm氧化亚铜的原理[15]为:调节化学配方使Cu2+在辐照过程中的还原控制在Cu+阶段,Cu+迅速与OH-反应生成CuOH,因其不稳定而随即分解为Cu2O. 图1 纳米氧化亚铜的TEM分析[16]

Fig.1 TEM morphology(a) and electron diffraction pattern(b) of Cu2O ultrafine powder[16] https://www.sodocs.net/doc/1414357374.html, 化学通报2004年第67卷w021

3

陈祖耀等[16]采用紫外射线辐照法制备了氧化亚铜超细粉:在0.001~0.1mol/L硫酸铜溶液中

加入缓冲溶液控制pH在4.6左右,再加入适量异丙醇,十二烷基磺酸钠或聚乙烯醇等分散剂和

表面活性剂后,超声脱气并通入氮气以尽可能降低溶液中的氧含量,采用紫外光辐照.结果产

生的粒子分布均匀,呈球形,平均尺寸小于20nm(如图1).在紫外射线辐照反应中并存两种效

应,即光化学吸收引起反应物激发而还原和受紫外射线辐照产生水合电子进行还原,它们在不

同反应阶段起主导作用.

微波辐照法[17]具有加热速率快,反应时间短,可以提供更均匀的温度分布和增大产物的结

晶度等优点而格外受到重视.翟幕衡等[18]用水合肼作还原剂来还原含有酒石酸钾钠的醋酸铜溶液,在水浴中,由微波炉满功率微波辐照升温到95°C,制备了均匀分散的氧化亚铜纳米粒子.

实验显示,改变醋酸铜和水合肼及酒石酸钾钠的浓度,可影响粒子的大小及晶型,当醋酸铜浓

度降至5×10-4mol/L时,制得了立方晶系的纳米粒子,直径为6nm及30nm.微波加热是一种体

加热,由此产生的内热效应可使化学反应体系均匀升温,避免了普通加热所产生的温度梯度,

从而有利于反应体系均匀地产生Cu2O,并迅速生长为晶粒,因此可以得到均匀分散的纳米粒子(如图2).

图2 不同反应时间(0h, 0.5h, 1h)得到的Cu2O的TEM分析[18]

Fig.2 TEM morphology of nano-Cu2O for different reaction times(0h,0.5h,1h)[18]

1.4 多元醇法

以多元醇为介质的方法类似于溶胶-凝胶法,在最初主要是利用高沸点的多元醇(如乙二醇,

丙三醇等)的还原性来制备元素金属或合金.但这种方法也适合制备二元或三元氧化物.Feldmann

等[19]用多元醇来制备Cu2O微粒,得到粒子的大小为30~200nm.具体方法是,把二乙烯乙二

醇与Cu(CH3COCH2COCH3)2混合后充分搅拌,把透明溶液加热到140°C;随后加入去离子水,

再加热到180°C,混合物经冷却,离心分离,再用乙醇处理,以去除剩余的二乙烯乙二醇,最

后得到Cu2O粒子.

此方法制备氧化亚铜比较简单,易操作,但制得的纳米粒子粒径较大,且粒径范围较宽.

2 制备氧化亚铜薄膜的方法

2.1 气相沉积法

化学气相沉积法也叫气相化学反应法,是利用挥发性金属化合物蒸气的化学反应来合成所

需物质的方法.用此法制氧化亚铜的特点是:(1)由于前驱物具有挥发性,所得超微粒子纯度高,

https://www.sodocs.net/doc/1414357374.html, 化学通报2004年第67卷w021

4

(2)生成的微粒子分散性好;(3)控制反应条件可获得粒径分布狭窄的纳米粒子;(4)有利于合成高

熔点无机化合物.气相中颗粒的形成是在气相条件下的均匀成核及生长的结果.为了获得纳米

粒子,就需要产生更多的核;而成核速度与过饱和度有关,故必须有较高的过饱和度.

Ramirez-Ortiz等[10]用前驱体乙酰丙酮化铜(Cu(acac)2)以8 m的玻璃纤维板作底物制备了氧

化亚铜膜.所得到氧化亚铜薄膜纯度与底物的温度有关,在320°C的底物上,能得到清晰的精

细的氧化亚铜晶体,粒径为8.3nm;当底物温度为325°C时得到6CuO.Cu2O,为7.0nm;当底

物温度为340°C,得到CuO膜,大小为7.9nm.利用该方法要想得到精细纳米氧化亚铜膜,关

键在于控制好底物温度.

2.2 喷雾热解法

喷雾热解法是以水,乙醇或其他溶剂将原料配成溶液,再通过喷雾装置将反应液雾化并导

入反应器内,使溶液迅速挥发,反应物发生热分解,或者同时发生燃烧和其他化学反应,生成

与初始反应物完全不同的具有新化学组成的纳米粒子.

喷雾热解法可以把Cu2O沉积在各种底物上做成膜,底物可以是SnO2,In2O3,CuO和CdS

等.这种方法,所需仪器简单,同时能形成大尺寸的薄膜.另外,在热解中反应物能很好的控

制薄膜的结构和形态.Kosugi等[20]把Cu(Ac)2·H2O和C6H12O6溶于水中,作为反应开始物,把

异丙醇添加到上述溶液中,溶液通过气动喷雾系统雾化,将雾滴转到热的玻璃底物上.条件最优

化后表明:当Cu(Ac)2·H2O为0.02mol/L,葡萄糖为0.02mol/L及异丙醇为20%且底物温度为280°C 时,获得圆形的氧化亚铜微粒,大小为50nm,厚度为300nm,表面粗糙度为30nm左右.

本方法的优点在于:(1)干燥所需时间短,因此每一颗多组分细微液滴在反应过程中来不及

发生偏析,从而可以获得组分均匀的纳米粒子;(2)由于原料是在溶液状态下均匀混合,所以可

以精确地控制所合成的化合物组成;(3)可以通过不同的工艺条件来制得各种不同形态和性能的

超微粒子,此法制得的纳米粒子表观密度小,比表面积大,粉体烧结性能好;(4)操作简单,反

应一次完成,可连续进行生产.

2.3 活性反应蒸发法

图3 纳米氧化亚铜薄膜的TEM [21]

Fig.3 A typical transmission electron micrograph of nanocrystalline Cu2O

thin film sample prepared with an oxygen flow rate of 8s/cm and Ts=30°C [21]

O2流速为8s/cm,Ts=30°C

活性反应蒸发法被用作生长Cu的氧化物纳米微粒,尺寸范围为8~10nm.Balamurugan等[21]

建立了活性反应蒸发系统制备氧化亚铜纳米膜,实验是在真空室进行,一个精细的钨丝用作电

子发射极,阴极上铜碟作为收集极,以便制得等离子体.先把真空室抽真空至5×10-6Torr,然

https://www.sodocs.net/doc/1414357374.html, 化学通报2004年第67卷w021

5

后通氧气制得等离子体,热的发射电子加速到阴极,离解氧气,导致等离子体在两电极之间形

成,等离子体进一步蒸发高纯度的铜,以使纳米晶体氧化亚铜膜生长在玻璃,硅及其它底物上.

结果表明:沉积膜在室温下有很好的立方相,在150~200°C有单晶氧化亚铜立方相,通过改变

氧气的流量和底物的温度,得到晶相大小为4.9~9.0nm的氧化亚铜(如图3).

Balamurugan等[22]通过活性反应蒸发方法得到氧化亚铜后,用XPS进行观察,发现纳米氧

化亚铜微粒上覆盖着一层CuO微粒,使得氧化亚铜更稳定.

3 制备氧化亚铜纳米线的方法

由于准一维纳米材料具有许多特殊的性质,导致它们在光电设备和其它领域具有广泛的应

用前景[23,24],如极低能耗的纳米线光发射设备[25],也使准一维纳米材料的制备受到广泛的关注.

目前,氧化亚铜准一维纳米材料的制备只有纳米线有报道,制备的方法包括微乳液-还原法和电

沉积法两种.

3.1 微乳液-还原法

与其它方法比较,这种方法对温度的要求低,没有特殊的条件和繁琐的步骤.利用在微乳

液乳滴中的化学反应生成固体,以制得所需的超微粉末.由于微乳滴中水体积及反应物浓度可

以控制,单分散性较好,可控制成核及控制生长,因而可获得各种粒径的单分散纳米粒子.此

法的独特之处是在体系中形成表面活性剂和助表面活性剂包覆的"微反应器".

Wang等[26]选择合适的表面活性剂聚乙烯乙二醇(PEG),在室温下,通过还原反应制得纳米

线,这种方法不需要复杂的仪器或技术,合成时间短.大部分纳米线的直径在8nm左右,长度

为10~20 m,也发现有小于5nm的纳米线.在PEG存在下,具体反应为:

CuCl2 + 2NaOH Cu(OH)2 + 2NaCl

4Cu(OH)2 + N2H4 2Cu2O + 6H2O + N2

3.2 电沉积法(液晶相及自组装)

制纳米线的化学或物理沉积通常大多需要模板,硬模板效果好,但不容易制造,同时为了

得到纳米线又需要分离开模板,表面活性剂中间相在制备纳米线时充当"软"模板.最近反相六

边形液晶相被用做模板合成ZnS纳米线(γ射线激发)[27].Huang等[28]也从易溶的反相六边形液晶

相出发电沉积制备氧化亚铜,此反应首先制备反相晶相,再开始电沉积形成纳米线.电沉积完

后,用乙醇洗涤以除去液晶相.结果显示,当沉积时间为1h,得到了直径为25~45nm,长度

为3~5 m的纳米线;延长沉积时间,纳米线的长度增加,同时直径也增大.

图4 反相六边形液晶相电沉积氧化亚铜纳米线的SEM(反应时间分别为1h, 2h, 2h) [28]

Fig.4 SEM images of cuprite nanowires electrodeposited from reverse hexagonal liquid crystalline phas times:(a)1h,(b)2h,and(c)2h [28]

https://www.sodocs.net/doc/1414357374.html, 化学通报2004年第67卷w021

6

Kenane等[29]也用电沉积法在微孔膜上自组装Cu/Cu2O纳米线,结果发现在固定电极电流

下,电极电势自发振荡,通过变化电流强度控制振荡周期.当振荡产生时,Cu/Cu2O纳米线沉

积出来;相反,纯的Cu或Cu2O纳米线在振荡区域之外获得.

电沉积法是较好的制纳米线方法,因为它仅仅通过改变电沉积时间就可以控制纳米线的生

长,并获得较高的比表面积.

4 结语

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米TiO2的制备方法综述

纳米TiO2的制备方法综述 1.引言 纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。其中纳米二氧化钛作为一类无机功能材料备受关注。氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。制备和开发纳米二氧化钛成为国内外科技界研究的热点。纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。 2.气相法 气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。[3] 2.1 扩散火焰法 以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。典型的P25是德国的Deguss公司通过TiCl4氢氧火焰法制的,其反应方程式为: TiCl4(g)+2H2(g)+O2(g)→4Ti02(a)+4HC1(g) (1) 工艺流程见图1: 日本Aerosil公司和美国Cabot公司等也利用此方法制的了超细的纳米二氧化钛粉体。Jang等人分别用五路管径将空气与Ar,O2,Ar/TiCl4加入到经过改进的火焰反应器中,并且利用改变气体浓度来对二氧化钛的粒径和晶型进行控制。从前期文献可见,当反应器火焰的温度在1000℃一1700℃范围内时,可制得粒径在12nm-29nm范围的二氧化钛,所含锐钛矿所占的比例在28%-75%,产量最高可达到20g/h。 Katzer等人将N2 ,CH4 ,Ar/TiCl4与氧气混合使其反应,且通过对电极电场的控制来调整火焰的温度和结构,进而控制纳米二氧化钛的粒径和晶型。 此方法制备的纳米二氧化钛具有小粒径、高纯度、良好的分散性和大的表面活性、较小的团聚现象等优点,但是此过程要求温度较高,工艺参数的控制要比较精确,且对设备材质的要求比较严格,生产成本相对较高。[3] 2.2 TiCl4气相氧化法

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

制备纳米材料的物理方法和化学方法

制备纳米材料的物理方法和化学方法 (********) 纳米科学技术是20世纪80年代末产生的一项正在迅猛发展的新技术。所谓纳米技术是指用若干分子或原子构成的单元—纳米微粒,制造材料或微型器件的科学技术。 纳米材料的制备方法甚多,目前制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。 1物理制备方法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,这些方法我们统称为物理凝聚法,物理凝聚法主要分为 (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm 。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到410Pa 或更高的真空度,然后注人少量的惰性气体或性2N 、3NH 等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气体的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1 , Nb- Si 等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备

氧化镓纳米带的制备研究

氧化镓纳米带的制备研究 Synthesis of -GaQ Nan obelts 物理系98级向杰 摘要:纳米带是继纳米线、纳米管之后,在2001年新报道的又一种准一维纳米 结构。本文介绍了Ga^O s纳米带制备的新方法。这种方法与首次报道的纳米带的生长方法有很大不同。用扫描电子显微镜和透射电子显微镜对产物形貌进行了分析发现,纳米带宽约200nm,厚度约10nm,宽度-厚度比大于20。选区电子衍射(SAED)分析表明,产物是纯净的Ga2O s单晶。实验还发现了一些特殊形态的纳米结构,如纳米片、柳叶状纳米带等,证明了纳米带是纳米线之外Ga2O3一种很常见并稳定存在的形态。最后,我还根据实验现象对纳米带的生长机制进行了初步的分析与讨论。 Abstracts: Nano belts are a n ewly discovered family of quasi-one dime nsional nan ostructures besides nano tubes and nano wires. Here we report a new route to syn thesis Ga 2Q nano belts, which is differe nt from previously reported. SEM and TEM an alysis of the samples revealed that our nano belts are approximately 200nm wide, 10nm thick, with a width-thickness ratio larger than 20. Selected Area Electron Diffraction (SAED) has con firmed that the products con sist of pure GaQ sin gle crystals. Other kind of nano structures, such as nano sheets and shuttle-shaped belts are also observed. We have suggested that the nan obelts can occur as com monly as nano wires and is thermally stable. A brief analysis and discussion on how such structure is formed are prese nted. 近几年来,低维纳米材料的研究逐渐成为一个热点问题,其研究的焦点是纳 米管和纳米线。这些纳米材料已经显示出奇特的介观物理特性,包括电子弹道输运1,库仑阻塞2,纳米激光3等。这些准一维材料的结构与大块材料不完全相同,如纳米碳管是由单层或多层石墨原子层卷曲而成的管状结构,它们同体材料一样 都是热力学稳定的。为什么会形成纳米线、纳米管这样独特的稳定结构,这个问题到现在还没有彻底搞清楚。现在已经提出了以下模型来解释纳米线和纳米管的生长机制:(1)VLS(Vapor-Liquid-Solid)机制。反应物在高温下蒸发,在温度降低时与催化剂形成低共熔体小液滴,小液滴互相聚合形成大液滴,并且共熔体液滴作为端部不断吸收粒子和小的液滴,最后因为过饱和而凝固形成纳米线或纳米

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

半导体纳米材料的制备

新型半导体纳米材料的制备

摘要: 简要论述了半导体纳米材料的特点,着重讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括溶胶一凝胶法、微乳液法、模板法、基于MBE 和MOCVD的纳米材料制备法、激光烧蚀法和应变自组装法等,并分析了以上几种纳米材料制备技术的优缺点及其应用前景。 关键词: 纳米材料;溶胶一凝胶法;分子束外延;金属有机物化学气相淀积;激光烧蚀淀积:应变自组装法; Several Major Fabrication Technologies of Novel Semi conductor Nanometer Materials Abstract: The characteristics of semiconductor nanometer materials are introduced. Several major fabrication technologies of semiconductor nanometer materials are discussed,including sol-gel process,tiny-latex process,template process,based on MBE and MOCVD,laser-ablation and strain-induced self-organized process,their advantages and disadvantages and their prospects are analyzed. Key words: nanometer material;sol-gel process; MBE; MOCVD: laser ablation deposition; strain-induced self-organized process; 1.引言

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

纳米ZnO的制备及表征

化学化工学院材料化学专业实验报告实验实验名称:纳米ZnO的制备及表征. 年级:2015级材料化学日期:2017/09/20 姓名:汪钰博学号:222015316210016同组人:向泽灵 一、预习部分 1.1氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 3.1共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其

电化学方法制备纳米材料

电化学方法制备纳米材料 Mcc 引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。 摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了

纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。 关键词:纳米材料电化学制备特征应用 Electrochemical preparation of nano materials Mcc Introduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now. Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < https://www.sodocs.net/doc/1414357374.html,/gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the size

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。 ,缓慢滴加到冰水混合物中。 3.用量筒量取2mL的无水TiCl 4

国家自然科学基金标书-集成微流控芯片纳米材料制备与分析应用研究

集成微流控芯片纳米材料制备与分析应用研究 申请人: ***

摘要 本项目提出用流体动力学聚焦法在集成微流控芯片的微管道中合成金属, 有机导电聚合物及它们的核/壳结构的纳米颗粒, 并在线对纳米颗粒表面进行修饰与功能化. 然后用于样品标记, 实现在这一集成芯片上完成纳米颗粒合成, 修饰, 标记, 样品分析. Abstract The project proposes synthesizing various nanoparticles (NPs) such as metal NPs, conducting polymer NPs, and core/shell NPs in the microchannel of an integrated microfluidic chip by means of hydrodynamic focusing and on-line functioning those synthesized NPs. Then the use of these functionalized NPs directly to label the analyte of interest from samples and completing synthesis, modification, labeling and detection on the integrated microfludic system.

重要意义 本项目利用微流控芯片合成纳米颗粒并在同一芯片上集成纳米材料合成系统与样品分析系统,实现同一芯片完成纳米材料合成, 在线标记与样品检测. 将纳米分 析技术与微流控芯片分析有机结合, 由于纳米材料的独特的功能与性质, 从而大大提高了芯片分析的灵敏度, 同时不失芯片分析具有的其他优点. 本项目提出的微流控芯片集成电分析化学技术将实现该芯片分析仪的微型化, 可携带并可用于现场分析. 本项目提出的利用流体动力学原理调控纳米材料的合成等方面的基础研究, 对于纳米材料的形成机制及其结构特征也将富有成果. 因此, 本项目的研究将为促进新一代微流控芯片分析的出现和发展有积极和重要意义. 目前研究现状 集成微流控芯片, 通称为芯片实验室, 是指把生物, 环境和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术.1, 2它是在1990年提出的微全分析系统概念的基础上发展起来的.3目前, 芯片实验室分析已成为一个非常热门的研究领域.4-9它之所以倍受人们关注是因为其特点所决定的: (一), 集成性.10集成的单元部件越来越多,集成的规模也越来越大, 功能也越来越强; (二), 分析速度极快;11 (三), 高通量;10, 11 (四), 微型化可携带, 适于即时, 在线与现场分析; (五), 能耗低,物耗少,污染小因而非常廉价,安全, 被人为是一种环境友好的分析方法与“绿色”技术. 因此,芯片实验室研究显得非常重要. 例如, 在生物医学领域, 它可以使珍贵的生物样品和试剂消耗降低到微升甚至纳升级,而且分析速度成倍提高,成本成倍下降; 在化学领域它可以使以前需要在一个实验室花大量样品、试剂和很多时间才能完成的分析和合成,将在一块小的芯片上花很少量样品和试剂以很短的时间同时完成大量实验;在分析化学领域,它可以使以前 大的分析仪器变成平方厘米尺寸规模的分析仪,将大大节约人力与物力资源和能源. 在环境领域, 它使现场分析及遥控环境分析成为可能. 芯片实验室是一个跨多学科的研究领域, 它涉及物理, 化学, 工程, 医学等. 因而研究的范围非常广泛. 不同的学科研究的侧重点可能不一样. 分析化学家侧重于把芯片实验室用做全分析系统, 而有机化学家则把它用作微反应器用来化学合成. 目前, 芯片实验室主要用于分析,4-7分离12, 13与化学合成14等领域. 芯片实验室本身的一 些理论和应用基础研究,3制作工艺研究,15, 16适用新型材料开发等也在发展之中. 例如, 以芯片制作工艺而言, 芯片制造已由手工为主的微机电(MEMS)技术生产逐渐朝自动化、数控化的亚紫外激光直接刻蚀微通道方向发展, 同时其他技术如, 模板技术(Soft Lithography)10等也广泛应用起来; 芯片实验室的驱动源从以电渗流发展到流体动力、气压、重力、离心力、剪切力等多种手段. 芯片实验室所用材料由最初的价格较为昂贵的玻璃和硅片,发展成以便宜的聚合物为材料,如聚二甲基硅烷(PDMS)、聚甲基异丁烯酸(PMMA)及其他各种塑料等.

相关主题