搜档网
当前位置:搜档网 › 引物篇

引物篇

引物篇
引物篇

引物篇

1.引物是如何合成的?

目前引物合成基本采用固相亚磷酰胺三酯法。DNA合成仪有很多种, 主要都是由ABI/PE 公司生产,无论采用什么机器合成,合成的原理都相同,主要差别在于合成产率的高低,试剂消耗量的不同和单个循环用时的多少。

亚磷酰胺三酯法合成DNA片段,具有高效、快速的偶联以及起始反应物比较稳定的特点。亚磷酰胺三酯法是将DNA固定在固相载体上完成DNA链的合成的,合成的方向是由待合成引物的3'端向5'端合成的,相邻的核苷酸通过3'→5'磷酸二酯键连接。

第一步是将预先连接在固相载体CPG上的活性基团被保护的核苷酸与三氯乙酸反应,脱去其5'-羟基的保护基团DMT,获得游离的5'-羟基;

第二步,合成DNA的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3'端被活化,5'-羟基仍然被DMT保护,与溶液中游离的5'-羟基发生缩合反应。

第三步,带帽(capping)反应,缩合反应中可能有极少数5'-羟基没有参加反应(少于2%),用乙酸酐和1-甲基咪唑终止其后继续发生反应,这种短片段可以在纯化时分离掉。

第四步,在氧化剂碘的作用下,亚磷酰形式转变为更稳定的磷酸三酯。

经过以上四个步骤,一个脱氧核苷酸被连接到固相载体的核苷酸上。再以三氯乙酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。合成过程中可以观察TCA处理阶段的颜色判定合成效率。

通过氨水高温处理,连接在CPG上的引物被切下来,通过OPC, PAGE等手段纯化引物,成品引物用C18浓缩,脱盐,沉淀。沉淀后的引物用水悬浮,测定OD260定量,根据定单要求分装。

2.引物纯化方式有哪些,如何选择?

◆C18柱脱盐:有人称其为简易反相柱,它对DNA有特异性的吸附,可以被有机溶解洗脱,但不会被水洗脱,所以能有效地去除盐分。它不能有效去除比目的片段短的小片段。实际上,它是一种脱盐的作用。这种方法一般不会对普通PCR 反应产生影响。对于需要用于测序、克隆的引物不能使用这个级别。

◆OPC纯化: OPC纯化是根据DNA保护基(DMTr基)和Cartridge柱中树脂间的亲合力作用的原理进行纯化目的DNA片段。OPC法纯化的DNA纯度大于95%。适用于40mer以下引物的纯化。

◆PAGE纯:PAGE纯化法是使用变性聚丙烯酰胺凝胶电泳,对DNA片段进行分离,然后从凝胶中回收目的DNA的方法。PAGE纯化法也是一种非常有效的DNA纯化方法,纯化后的DNA纯度大于95%,对长链Oligo DNA (大于50mer)的纯化特别有效。

◆HPLC纯化:HPLC纯化是使用高效液相色谱的原理,对DNA片段进行纯化。纯度可以大于99%。主要用于短链和修饰引物的纯化。该法的弱点是成本较高,批量生产效率不高。

3.引物的OD数如何定量?

答:引物合成引物OD数是这样测定的:用紫外分光光度计,波长260nm,石英比色杯,光程为1厘米,测定溶液的光密度。测定时溶液的光密度最好稀释到0.2-1.0之间。DNA干粉用一定体积的水充分振荡溶解以后,用1ml水稀释测OD值。需要根据稀释倍数换算出母液的OD值。

4.需要什么级别的引物?

答:引物常用的纯化方式C18脱盐,OPC纯化,PAGE纯化,HPLC纯化。根据实验需要,确定订购引物的纯度级别。应用引物长度要求纯度级别要求

一般PCR扩增 < 45base OPC

>45 base PAGE

诊断PCR扩增 < 40base OPC, PAGE

DNA测序 20base左右 OPC

亚克隆,点突变等根据实验要求定 OPC, PAGE,HPLC

基因构建(全基因合成)根据实验要求定 PAGE

反义核酸根据实验要求定 PAGE

修饰引物根据实验要求定 PAGE, HPLC

5.最长可以合成多长的引物?

答:引物越长,出现问题的概率就越大。我们合成过120base的引物,但是产率很低。除非需要,建议合成片段长度不要超过80mer,按照目前的引物合成效率,

80mer的粗产品,全长(还不一定正确)引物的百分比不会超过40%,后续处理还有丢失很多,最后的产量是很低。

6.需要合成多少OD数?

答:根据实验目的确定。一般PCR扩增,2 OD引物,可以做200-500次50ul标准PCR反应。如果是做基因拼接或退火后做连接,1 OD就足够了。但是有些研究人员,就做几次PCR,但是却要5-10 OD。做全基因构建的引物都比较长,但是我们有些研究人员也要求高OD数。片段越长, 最后全长得率就越低,出错的几率就越大。超出需要之外的OD 数要求,其实也是对社会资源的一种浪费,同时也从一个侧面反映了部分研究人员,特别是新手的自信心不足,总觉得需要重复多次才能成功。

7.如何检测引物的纯度?

答:实验室方便的作法是用PAGE方法。使用加有7M尿素的16%的聚丙烯酰胺凝胶进行电泳。取0.2-0.5OD的引物,用尿素饱和液溶解或引物溶液中加入尿素干粉直到饱和,上样前加热变性(95℃,2mins)。加入尿素的目的一是变性,二是增加样品比重,容易加样。600V电压进行电泳,一定时间后(约2-3小时),剥胶,用荧光TLC板在紫外灯下检测带型,在主带之下没有杂带,说明纯度是好的。如果条件许可,也可以用EB 染色或银染方式染色。

8.如何计算引物的浓度?

答:引物保存在高浓度的状况下比较稳定。引物一般配制成10-50pmol/ul。溶解前您需要核对合成报告单和引物标签上的引物OD数是否一致。如果不一致,请和我们联系。我们可以根据生产记录查到实际产量是多少。

一般情况下,我们建议将引物的浓度配制成50pmol/ul,加水的体积(微升)按下列方式计算:V (微升)= OD数*(乘)33 *(乘)*(乘)20000 / (除) 引物的分子量。引物的分子量可以从合成报告单上获得。如果需要配制成其他浓度,按上述公式换算。

注意:1 OD260= 33 ug/ml.

9.如何计算引物的Tm值?

答:引物设计软件都可以给出Tm,引物长度,碱基组成,引物使用缓冲的离子强度有关。

长度为25mer以下的引物,Tm计算公式为:Tm = 4℃(G + C)+ 2℃(A + T)

对于更长的寡聚核苷酸,Tm计算公式为:

Tm = 81.5 + 16.6 x Log10[Na+] + 0.41 (%GC) – 600/size

公式中,Size = 引物长度。

Tm的定义:Tm = Temperature at which 50% of a given oligonucleotide is hybridized to its complementary strand. In the absence of destabilizing agents, like formamide or urea, Tm will depend on 3 major parameters: The sequence: a GC-rich sequence has a higher melting temperature. The strand concentration: high oligonucleotide concentrations favor hybrid formation, which results in a higher melting temperature. The salt concentration: high ionic strength results in a higher Tm as cations stabilize the DNA duplexes.

10.引物(含修饰)的分子量是如何确定的?

答:非修饰的引物的Molecular Weight在随引物提供的报告单上都有明确的标示。如果需要估计一个引物的分子量按每个碱基的平均分子量为324.5,引物的分子量=碱基数 x 碱基的平均分子量。或按下列公式计算MW= (NA * WA) + (NC * WC) + (NG * WG) + (NT * WT) +(Nmod * Wmod) +(Nx * Wx)+( Ni* Wi) +16* Ns– 62. NA, NG, NC, NT, Ni分别为引物中碱基A或G或C或T或I的数量,WA, WC, WG, W, Wi分别为引物中碱基A 或G或C或T或I的分子量,Nmod,Wmod 分别为修饰基团的数目和分子量。

对于混合碱基的分子量为混合碱基的分子量总合除以混合数,例如G+A混合的分子量为(313.21+329.21)/2 = 321.21。Ns为硫代数目,硫代每个位置增加分子量16。

常规碱基分子量

Base Molecular Weight

A 313.21

C 289.18

G 329.21

T 304.19

I 314.2

U 290.17

常规修饰基团分子量

5’-Biotin 405.45 3’-TAMARA 623.60

5’-(6 FAM) 537.46 3’-Dabsyl 498.49

5’-HEX 744.13 3’-(6 FAM) 569.46

5’-TET 675.24 3’-Amino Modifier C3 153.07

5’-Cy5 533.63 3’-Amino Modifier C7 209.18

5’-Cy3 507.59 3’-Thiol Modifier C3 154.12

11.如何溶解引物?

答:干燥后的引物质地非常疏松,开盖前最好离心一下,或管垂直向上在桌面上敲敲,将引物粉末收集到管底。根据计算出的体积加入去离子无菌水或10mM Tris pH7.5缓冲液,室温放置几分钟,振荡助溶,离心将溶液收集到管底。溶解引物用的水一般不要用蒸馏水,因为有些蒸馏水的pH值比较低(pH4-5),引物在这种条件下不稳定。

12.如何保存引物?

答:引物合成后,经过一系列处理和纯化步骤,旋转干燥而成片状物质。引物在溶解前,室温状态下可以长期保存。溶解后的引物-20度可以长期保存。如果对实验的重复性要求较高,合成的OD数较大,建议分装,避免反复冻融。修饰荧光引物需要避光保存。

13.合成的引物5’端是否有磷酸化

答:合成的引物5’为羟基,没有磷酸基团。如果需要您可以用多核苷酸激酶进行5'端磷酸化,或者要求我们合成时直接在5'或3'端进行磷酸化,需要另外收费。

14.引物片段退火后不能连接到载体上是什么问题?

连接反应需要引物的5’磷酸基团。如果需要将合成的引物退火直接连接相应的载体上,引物需要磷酸化。磷酸化的产物如果还不能连接载体上,需要检查载体的酶切效果,需要改善引物退火的条件。SiRNA分子具有特殊的对称结构,退

火的难度较大,退火时需要提高退火温度。

15.测序发现引物有突变是怎么回事?

答:测序发现引物区域有突变,特别是40个碱基以下的引物, 发生的概率不大,但是肯定也会发生。用户一般可以放心,引物序列一般都是通过电脑直接将您的序列COPY到合成仪的,碱基输错的机会不多。我们有一套控制办法,预防碱基输入错误。发生这种突变的原因有很多解释,人们还没有办法彻底解决这个问题。引物合成的固相合成原理都一样,采用的机器也基本相同,合成主要原料都是由可数的几家跨国公司提供的,所有每个合成服务商遇到的问题也基本类似,没有人可以超脱。

引物合成是一种多步骤的化学反应,合成效率最高也就是99%,副产品不可以避免。引物序列中插入突变往往是碱基重复,一般认为,偶连过程中,正在偶连的部分单体发生丢失DMT,导致单体又接了上去,故发生插入同一碱基的突变。至于缺失突变,一般认为是一般认为是带帽(capping)反应不彻底造成的,Caping反应主要是封闭极少数5'-羟基没有参加反应单体。被封闭的引物,在下一轮偶连时将不能继续参与合成。对于碱基置换的突变,产生的原因一般认为是碱基不能100%脱保护,即引物上可能含有残留保护基团,引物的这些区域不能很好地与互补链配对,当扩增的产品被亚克隆转化到大肠杆菌中,可能被细菌中修复系统补上了非配对的碱基。置换突变通常发生在G 转换成其它碱基。碱基G在一定条件下可以转化为烯醇异构体(脱嘌呤),2,6 diaminopurine , DNA复制和扩增过程中DNA聚合酶将2,6 diaminopurine看作碱基A,测序就会发现碱基G-A置换。脱嘌呤现象在富含嘌呤的引物中发生的频率较高。脱嘌呤的引物在引物后处理脱保护阶段如果被降解,测序就会发现碱基G或A的缺失。

引物合成过程中,造成碱基插入,缺失,置换突变的因素客观存在,有不少降低发生的频率建议和措施,但是这些措施还停留在实验室阶段,还没有能够应用到规模化生产中。

16.长链引物为什么出错的几率非常高?

答:引物合成时,每一步反应效率都不能达到100%,产生碱基插入,缺失,置换突变的因素客观条件都有一直存在。引物链越长,突变的频率累加起来就越高。研究人员总希望合成的引物万无一失,这种心情可以理解。但是犹如PCR扩增,不可能绝对保证扩增产物中没有突变,引物合成也不可能保证100%正确。要知道,引物合成中发生错误(非人为因素)的频率,比任何高保真高温聚合酶PCR扩增过程所产生的频率都要高。做引物合成,长链引物合成,您要有引物中部分引物可能有突变的思想准备。

17.如果测序发现突变,该如何处理?

答:对您遇到的困惑,我们表示同情。遇到这种情况,首先和我们取得联系,我们的生产人员会检查生产的原始记录,主要是核对合成序列是否和定单一致,我们在电脑中保留所有原始数据。如果确认引物合成序列没有输错,我们建议重新挑取克隆测序,您可能会找到正确克隆的。根据我们经验,40个碱基以下的引物,测1-2个克隆就可以了;40个以上的特别是用于全片段拼接合成的,就需要多测一些了。一般情况下,每个克隆突变的位点都不一样,提示正确的总是有的,就是如何找到它。您也可以要求我们将引物免费重合一次,不过重合的引物和第一次的引物一样,都可能含突变,不会因为重合的引物就减少您的遇到问题的几率。基因拼接过程中,如果发现一段区域突变点不多,就多测几个,否则就重合一下引物。

18.引物是经过PAGE纯化的,为什么还有碱基缺失或插入?

答:理论上分析型PAGE变性电泳,可以区分引物之间一个碱基的差别。但是制备PAGE电泳,上样量都是非常大,电泳时的条带非常宽,带与带之间有重叠,分辨率已下降,电泳后割带回收目的引物时,很难说不割到差别仅几个碱基的引物。国内有一个不好的现象,PAGE纯化的引物,特别是长引物要的量都比较高,导致割的条带有时可能比较宽。建议:您如果减少OD数,引物遇到的问题可能就会少一些。

19. TaqMan 探针设计的基本原则是什么?

答:下列原则供您参考。

◆TaqMan 探针位置尽可能靠近扩增引物(扩增产物50-150bp),但不能与引物重叠。

◆长度一般为18-40mer 。

◆G-C含量控制在40-80%左右。

◆避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。

◆在引物的5’端避免使用G。

◆选用比较多的碱基C。

◆退火温度Tm控制在 68-70C左右。

有用的荧光染料参数

Name Name 吸收波长发射波长 colors

6-FAM 6-carboxy-fluorescein 494nm 518nm Green

TET 5-tetrachloro-fluorescein 521nm 538nm Orange

HEX 5-hexachloro-fluorescein 535nm 553nm Pink

TAMRA tetramethyl-6-carboxyrhodamine 560nm 582nm Rose

ROX 6-carboxy-x-rhodamine 587nm 607nm Red

Cy3 Indodicarbocyanine 552nm 570nm Red

Cy5 Indodicarbocyanine 643nm 667nm Violet

20.Primer设计的基本原则是什么?

答:引物设计的下列原则供您参考。

◆引物长度一般在18-35mer。

◆G-C含量控制在40-60%左右。

◆避免近3’端有酶切位点或发夹结构。

◆如果可能避免在3’端最后5个碱基有2个以上的G或C。

◆如果可能避免在3’端最后1个碱基为A。

◆避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。

◆退火温度Tm控制在 58-60C左右。

◆如果是设计点突变引物,突变点应尽可能在引物的中间。

21.为什么引物的OD260/OD280小于1.5 ?

答:我们多次接到类似的投诉:引物应该全是DNA,但是OD260/OD280的比值为什么那么低,怎么会有蛋白质污染?遇到这样的投诉有时我们感到很是为难。投诉者有时心情很不好,还不听解释。撇开其他不谈,引物化学合成,哪里有机会污染到蛋白质?

需要指出的是OD260/OD280的比值不能用来衡量引物的纯度。OD260/OD280的比值过低一般是由于引物中C/T 的含量比较高所致。下表是一个20mer 同聚体引物的OD260/OD280的比值,清楚表明OD260/OD280的比值与引物的碱基组成密切相关。

A260/280 ratios of Crude 20-mer Oligos of Differing Base Compositions

Base Composition A260/280

5-AAAAAAAAAAAAAAAAAAAA-3 2.50

5-GGGGGGGGGGGGGGGGGGGG-3 1.85

5-CCCCCCCCCCCCCCCCCCCC-3 1.15

5-TTTTTTTTTTTTTTTTTTTT-3 1.14

5-AAAAAGGGGGTTTTTCCCCC-3 1.66

22.同样的OD用PAGE检测,EB染色为什么深浅不一?

答:通常可以用EB染色的方法来判断双链DNA的量(如质粒DNA),因为EB可以嵌合到双链DNA中。而合成的单链DNA,由于碱基组成不同,形成二级结构的可能性不同,EB的染色程度也会有差异,比如Oligo(dT)等不形成二级结构,EB染色效果就非常差。所以不要用EB染色的方法来定量,而用紫外分光光度计检测。同样道理,用EB染色来照片不适合所有引物。

23.引物不纯会有什么后果?

答:引物不纯可能会导致:1)非特异性扩增;2)无法用预先设计在引物5'端酶切位点的酶切开,特别是没有保护碱基的引物;3) 用于测序出现双峰或乱峰。解决办法重新合成或重新纯化。

24.为什么我们的引物重合了几遍都扩增不出来?

答:有些PCR扩增没有成功,怀疑是引物不好。PCR扩增不成功的因素很多,需要您耐心地分析,最好在实验时设置对照来判定原因。

如果您怀疑引物的问题,请您首先测定您溶解的引物的OD值,看实验时加入的引物量是否正确。如果量是正常的,请您告诉我司您的引物编号,我们会复查留存样品。如不明原因,我们免费为您重新合成一次。如果仍然不能扩增,请您查找其它原因。

25.已经溶解的引物,为什么原先使用正常,而过一段时间再使用就不好了?

答:如果您溶解引物的水PH过低或污染了菌或核酸酶,会使引物降解。使用时没有充分解冻混合,液体不均匀也可能会造成引物加入量不准确。建议分装引物,避免反复冻溶。建议使用10mM Tris pH7.5缓冲液溶解引物,因为有些蒸馏水的pH值比较低(pH4-5), 引物在这种条件下不稳定。还有一种可能性是引物没有问题,而是PCR使用材料特别是模板的质量与先前使用的不完全一致。

26.引物质量好坏的判断标准是什么?

答:合成的引物和您的定单序列一致,而不是能否扩增出您所需要的产物。

27.PCR扩增不出就引物有问题吗?

答:基本不是。当今发展出各色各样的PCR扩增技术,各色各样的高温聚合酶,就是来解决PCR扩增中遇到的扩不出,扩增效率低的问题。如槽式PCR就是扩增那些拷贝数很低的基因片段。有些重复片段的扩增, GC含量高的片段,非要采用特殊扩增手段才能扩增出了。

引物扩增不出,主要是下列两种情况比较常见(1) RT-PCR。请注意,很多基因通过常规RT –PCR方法是很难不增出来的。 RT- PCR成功的关键在于RT的反应的RNA质量和目标基因在特定组织和细胞中含量。(2)从基因组中扩增。一般情况下,基因在基因组中都是单拷贝,基因组作为模板需要严格控制用量。基因组DNA过高,会影响反应体系中的Mg和pH。

28.PCR扩增有很强的非特异条带,说明引物有污染吗?

答:不能。瞧,扩增目标很弱或没有,道是非特异性条带很亮,说明引物不纯或有污染。一些用户如是说。我们曾分析过一些非特异条带,测序发现在这些非特异性片段的两头至少可以发现一条引物序列。我们只能说非特异性扩增一般是模板污染(如RNA中污染基因组)或扩增条件不合适所致。

我最近合成了几十对引物,,在实战中多多少少有些心得,拿出来给大家分享。我感觉想把引物合成的比较好,除了前引物和后引物的Tm不能相差太大,我们还要重点考虑以下因素:

一、GC% GC含量

对于PCR反应来说GC含量在40%—60%,一般50%左右比较合适;而对于测序引物和杂交探针来说GC含量至少应为

50%。产物中GC含量最好大于引物中的GC含量。

二、Degeneracy 多义性

当设计多义引物时应尽量减少引物多义性,这样会带来更好的特异性,应尽量避免3末端的多义性,因为这里即使一个碱基的错配都能阻止引物延伸。

三、3’ End Stability 3 末端稳定性

引物稳定性影响它的错配效率,一条理想的引物应该有一个稳定性较强的5 末端和相对稳定性较弱的3 末端。如果引物3 稳定性强,有可能在即使5 末端不配对的情况下造成错配,形成非特异性扩增条带(secondary bands)。而3 末端稳定性低的引物较好的原因是在引物发生错配时,由于3 末端不太稳定引物结合不稳定而难以延伸。

四、GC Clamp GC钳

引物与目的位点的有效结合需要有稳定的5 末端。这一段有较强稳定性的5 末端称为GC钳。它保证引物与模板的稳定结合。选择有合适稳定性的引物能在确保不产生非特异性条带的前提下尽量降低退火温度。

五、Secondary Structures 二级结构

二级结构是引物设计中必须考虑的一个重要因素。二级结构能显著影响反应中能与模板正确结合的引物数量,发卡结构的存在能限制引物与目的位点的结合能力,从而降低扩增效率,形成发卡环的引物则不能在PCR扩增中发挥作用。六、Hairpin 发卡结构

发卡结构的形成是由于引物自身的互补碱基分子内配对造成引物折叠形成的二级结构,并由于发卡结构的形成是分子内的反应,仅仅需要三个连续碱基配对就可以形成。发卡结构的稳定性可以用自由能衡量。自由能大小取决于碱基配对释放的能量以及折叠DNA形成发卡环所需要的能量,如果自由能值大于0 则该结构不稳定从而不会干扰反应,如果自由能值小于0 则该结构可以干扰反应。

七、Dimer 二聚体

引物之间的配对区域能形成引物二聚体,它是相同或不同的两条引物之间形成的二级结构。它造成引物二聚体扩增并减少目的扩增产物,二聚体可以在序列相同的两条引物或正反向引物之间形成,如果配对区域在3 末端问题会更为严重,

3 末端配对很容易引起引物二聚体扩增。

八、False Priming 错配

如果引物可以结合除目的位点外的其他区域,扩增效率将明显降低目的产物带将减少或出现涂布(smear)。3 末端连续几个碱基配对形成错配的倾向要高于引物上游区域同样数量的碱基配对,在使用引物设计软件时,您可以分别设定确认为错配的3 末端或引物全长形成连续碱基配对的数量。

顺便说一下,如果是新手,刚开始接触引物设计,推荐使用Primer Premier 5.0,因为它界面简单,易学易用;如果你想把引物设计得尽善尽美,公认的首选软件是Oligo,其次我认为是DNAstar。Oligo功能强大,所以使用起来就没有Primer Premier 5.0那么简便。先用Primer Premier 5.0设计,然后把设计好的引物拿到Oligo里去检测这对引物的优劣,我想这对大多数引物设计者是一个不错的选择!

分子生物学 常用引物序列

日常备库引物序列(5'-3') 1492R GGTTACCTTGTTACGACTT 27F\8F AGAGTTTGATCCTGGCTCA 35S GACGCACAATCCCACTATCC 3'AD AGATGGTGCACGATGCACAG 3'AOX\AOX1rev GGCAAATGGCATTCTGACAT 3'BD TAAGAGTCACTTTAAAATTTGTATAC 5'AD\GAL4AD\P17110 TACCACTACAATGGATGATG 5'AOX\AOX1for GACTGGTTCCAATTGACAAGC 5'BD\GAL4-BD-Cfor TCATCGGAAGAGAGTAG 96gIII\M13-96 CCCTCATAGTTAGCGTAACG a-FACTOR\Alphafor TACTATTGCCAGCATTGCTGC BAC1 AACCATCTCGCAAATAAATA BAC2 ACGCACAGAATCTAGCGCTT BGH\pCDNA3.1R TAGAAGGCACAGTCGAGG CMV-24 TTAGGACAAGGCTGGTGG CMV-30 ATAACCCCGCCCCGTTG CMV-F\CMV-Profor CGCAAATGGGCGGTAGGCGTG\ATGGGCGGTAGGCGT G CMV-R TCGTTGGGCGGTCAGC DuetDOWN1 GATTATGCGGCCGTGTACAA DuetUP1 GATCTCGACGCTCTCCCT DuetUP2 TTGTACACGGCCGCATAATC EBVrev GTGGTTTGTCCAAACTCATC EGFP-Cfor AGCACCCAGTCCGCCCTGAGC EGFP-Nrev CGTCGCCGTCCAGCTC GAL1-Profor AACATTTTCGGTTTGTATTACTTC GLP1 TGTATCTTATGGTACTGTAACTG GLP2 CTTTATGTTTTTGGCGTCTTCCA

PCR个人经验总结

PCR经验总结 1.primers design 这是最重要的一步。理想的,只同目的序列两侧的单一序列而非其他序列退火的引物要符合下面的一些条件 a足够长,18-24bp,以保证特异性.当然不是说越长越好,太长的引物同样会降低特异性,并且降低产量。 bGC% 40%-60% c5'端和中间序列要多GC,以增加稳定性 d避免3'端GC rich, 最后3个BASE不要有GC,或者最后5个有3个不要是GC e. 避免3'端的互补, 否则容易造成DIMER f. 避免3'端的错配 g. 避免内部形成二级结构 h. 附加序列(RT site, Promoter sequence)加到5'端, 在算Tm值时不需要加上这些序列,但在检测互补和二级结构是要加上它们 i. 需要使用兼并引物时, 要参考密码子使用表,注意生物的偏好性,不要在3'端使用兼并引物,并使用较高的引物浓度(1uM-3uM) j. 最好学会使用一种design software. PP5,Oligo6,DNAstar, Vector NTI, Online desgin et al. * 引物的另一个重要参数是熔解温度(Tm)。这是当50%的引物和互补序列表现为双链DNA 分子时的温度.Tm对于设定PCR退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的Tm低5℃。 设定Tm有几种公式。有的是来源于高盐溶液中的杂交,适用于小于18碱基的引物。有的是根据GC含量估算Tm。确定引物Tm最可信的方法是近邻分析法。这种方法从序列一级结构和相邻碱基的特性预测引物的杂交稳定性。大部分计算机程序使用近邻分析法。 根据所使用的公式及引物序列的不同,Tm会差异很大。因为大部分公式提供一个估算的Tm 值,所有退火温度只是一个起始点。可以通过分析几个逐步提高退火温度的反应以提高特异性。开始低于估算的Tm5℃,以2℃为增量,逐步提高退火温度。较高的退火温度会减少引物二聚体和非特异性产物的形成。 为获得最佳结果,两个引物应具有近似的Tm值。引物对的Tm差异如果超过5℃,就会引物在循环中使用较低的退火温度而表现出明显的错误起始。如果两个引物Tm不同,将退火温度设定为比最低的Tm低5℃或者为了提高特异性,可以在根据较高Tm设计的退火温度先进行5个循环,然后在根据较低Tm设计的退火温度进行剩余的循环。这使得在较为严紧的条件下可以获得目的模板的部分拷贝。 2.stability of primers 定制引物的标准纯度对于大多数PCR应用是足够的。引物产量受合成化学的效率及纯化方法的影响。定制引物以干粉形式运输。最好在TE重溶引物,使其最终浓度为100μM。TE比去离子水好,因为水的pH经常偏酸,会引起寡核苷的水解。引物的稳定性依赖于储存条件。应将干粉和溶解的引物储存在-20℃。以大于10μM浓度溶于TE的引物在-20℃可以稳定保存6个月,但在室温(15℃到30℃)仅能保存不到1周。干粉引物可以在-20℃保存至少1年,在室温(15℃到30℃)最多可以保存2个月。 3.optimize reactants concentration a. magnesiom ions Mg离子的作用主要是dNTP-Mg 与核酸骨架相互作用,并能影响Polymerase的活性。一般的情况下Mg的浓度在之间调整。同样要记住的是在调整了dNTPs的浓度后要相应的调整

常用的β-actin 引物序列

human actin f ctc cat cct ggc ctc gct gt human actin r gct gtc acc ttc acc gtt cc product size:268 rabbit actin r agt gcg acg tgg aca tcc g rabbit actin f tgg ctc taa cag tcc gcc tag product size:295 mouse actin r cgt tga cat ccg taa aga cc mouse actin f aac agt ccg cct aga agc ac product size:281 rat actin f TCAGGTCATCACTATCGGCAAT rat actin r AAAGAAAGGGTGTAAAACGCA product size:432 human actin r gag cta cga gct gcc tga cg human actin f cct aga agc att tgc ggt gg product size:416 mouse actin f tca tca cta ttg gca acg agc mouse actin r aac agt ccg cct aga agc ac product size:399 rat actin f CCCATCTATGAGGGTTACGC rat actin r TTTAATGTCACGCACGATTTC product size:150 rabbit actin f tct tcc agc cct cct tcc tg rabbit actin r cgt ttc tgc gcc gtt agg t product size:409 内参基因名称引物引物最佳退火扩增 基因库序列号引物名称序列位置Tm 温度C 长度 Human actin beta F305 ctgggacgacatggagaaaa 305-324 52.3 BC002409 R868 aaggaaggctggaagagtgc 868-849 52.6 59.4 564 F1379 agcgagcatcccccaaagtt 1379-1398 57.3 R1663 gggcacgaaggctcatcatt 1663-1644 56.3 54 285 Rat actin beta F18 cacccgcgagtacaaccttc 18-37 54.5 NM_031144 R224 cccatacccaccatcacacc 224-205 54.4 60.4 207 F694 gagagggaaatcgtgcgtgac 694-714 54 R1146 catctgctggaaggtggaca 1146-1127 53.2 57.1 452 Mouse actin beta F91 atatcgctgcgctggtcgtc 91-110 57.5 NM_007393 R607 aggatggcgtgagggagagc 607-588 57.8 60.4 517 F1566 gtccctcaccctcccaaaag 1566-1585 54.5 F1831 gctgcctcaacacctcaaccc 1831-1811 54.4 55.7 266 human GAPDH F369 agaaggctggggctcatttg 369-388 55.6 BC004109 R626 aggggccatccacagtcttc 626-607 55.1 57.5 258

PCR扩增原理及操作

PCR扩增反应的操作 第一节PCR扩增反应的基本原理 一、聚合酶链式反应(PCR)的基本构成 PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。 PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA 膜板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。反应时先将上述溶液加热,使模板DNA 在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。 1.模板DNA的变性 模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。故PCR 中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。 2.模板DNA与引物的退火 将反应混合物温度降低至37~65℃时,寡核苷酸引物与单链模板杂交,形成DNA模板-引物复合物。退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。一般要求引物的浓度大大高于模板DNA的浓度,并由于引物的长度显著短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1~2min。 3.引物的延伸 DNA模板-引物复合物在Taq DNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。延伸所需要的时间取决于模板DNA的长度。在72℃条件下,Taq DNA聚合酶催化的合成速度大约为40~60个碱基/秒。经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。在以后的循环中,新合成的DNA都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。每完成一个循环需2~4min,一次PCR经过30~40次循环,约2~3h。扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用Y =(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,

引物设计原则(必看)

mi引物设计原则 1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。 3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。另外,引物二聚体或发夹结构也可能导致PCR反应失败。5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。 4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。 5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。 6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。 7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。 8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。 引物序列应该都是写成5-3方向的, Tm之间的差异最好控制在1度之内, 另外我觉得扩增长度大一些比较好,500bp左右。 要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能

引物

一、引物的合成和纯化 1. 引物是如何合成的? 目前引物合成基本采用固相亚磷酰胺y三酯法。该方法具有高效、快速的偶联以及起始反应物比较稳定的特点。主要是将DNA固定在固相载体上完成DNA链的合成的,合成的方向是由待合成引物的3'端向5'端合成的,相邻的核苷酸通过3'→5'磷酸二酯键连接。 固相亚磷酰胺三酯法合成引物的具体步骤如下: 1) 将预先连接在固相载体CPG上的活性基团被保护的核苷酸与三氯乙酸反应,脱去其5'-羟基的保护基团DMT,获得游离的5'-羟基。 2) 合成DNA的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3'端被活化,5'-羟基仍然被DMT保护,与溶液中游离的5'-羟基发生缩合反应。 3) 带帽(capping)反应,缩合反应中可能有极少数5'-羟基没有参加反应(少于2%),用乙酸酐和1-甲基咪唑终止其后继续发生反应,这种短片段可以在纯化时分离掉。 4) 在氧化剂碘的作用下,亚磷酰形式转变为更稳定的磷酸三酯。 经过以上四个步骤,一个脱氧核苷酸被连接到固相载体的核苷酸上。再以三氯乙酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。合成过程中可以观察TCA处理阶段的颜色判定合成效率。 通过氨水高温处理,连接在CPG上的引物被切下来,通过OPC、PAGE等手段纯化引物,成品引物用C18浓缩,脱盐,沉淀。沉淀后的引物用水悬浮,测定OD260定量,根据定单要求分装。 2. DNA合成粗产物中含有什么杂质? 主要是合成反应过程中产生的失败片段以及脱保护基团时产生的铵盐。 3. 引物纯化方式有哪些? 引物常用的纯化方式C18脱盐、OPC纯化、PAGE纯化、HPLC纯化。 纯化方式详细说明 C18柱脱盐又称为简易反相柱,对DNA有特异性吸附,可被有机溶液洗脱,但不会被水洗脱,因此能有效地去除盐分,但不能有效去除比目的片段短的小片段。该方法一般不会对普通PCR反应产生影响。对于需要用于测序、克隆的引物不能使用这个级别。 OPC纯化OPC柱纯化,OPC柱中装有对Dmt具有亲和力的树脂,合成DNA片段时保留5'端最后一个碱基上的Dmt,所有合成产物吸附在OPC柱上以后,用稀的有机溶剂洗柱,带有Dmt的片段吸附能力强,不易被洗脱,不带有Dmt的片段吸附能力弱,被洗脱。然后用三氟乙酸TFA或三氯乙酸TCA脱去Dmt基团,再用浓一点的有机溶剂洗脱DNA。这

实验室常用缓冲液 常用引物序列汇总

实验常用试剂、缓冲液的配制方法 Na2HPO4,2 mM KH2PO4 1 M Tris-HCl 、11M Tris-HCl □组份浓度 □配制量□配制量1L 1L (pH7.4,7.6,8.0) □配置方法1. 称量下列试剂,置于1L烧杯中。烧杯中。□配置方法1. 称量121.1gTris置于1L NaCl 加入约800mL的去离子水,充分搅拌溶解。 8 g 2. KCl 0.2g 3. 按下表量加入浓盐酸调节所需要的pH值。 Na2HPO4 1.42 g 浓值 HCl pH KH2PO4 0.27g 7.4 约70mL 2. 向烧杯中加入约800 mL的去离子水,充分搅拌溶解。 7.6 约60mL 3. 滴加HCl将pH42mL 8.0 约值调节至7.4,然后加入去离子水将溶液定容至1L。 4. 将溶解定容至1L。 4. 高温高压灭菌后,室温保存。 5. 高温高压灭菌后,室温保存。注意:上述PBS Buffer中无二价阳离子,如需要,可在配方中pH注意:应使溶液冷却至室温后再调定pH值,因为Tris溶液的补充1mM CaCl2和0.5 mM MgCl2。pH值随温度的变化差很大,温度每升高1℃,溶液的值大约降低 6、10 M醋酸铵0.03个单位。□组份浓度10 M醋酸铵 □配制量100mL 1.5 M Tris-HCl 2、1.5 M Tris-HCl □组份浓度□配置方法1. 称量77.1g醋酸铵置于100~配制量pH8.8 ()□1L 200 mL烧杯中,加入约30 mL的去离子水搅拌溶解。1L1. □配置方法称取181.7gTris置于烧杯中。 2. 加入约800mL2.加去离子水将溶液定容至100mL。的去离子水,充分搅拌溶解。 3.使用8.8pH3. 用浓盐酸调值至。0.22μm滤膜过滤除菌。 4.密封瓶口于室温保存。。1L 4. 将溶液定容至 5. 高温高压灭菌后,室温保存。注意:醋酸铵受热易分解,所以不能高温高压灭菌。 7、Tris- HCl平衡苯酚□溶液的注意:应使溶液冷却至室温后再调定pH值,因为Tris配置方法 1. 使用原料:大多数市售液化苯酚是清亮无色的,pH值大约无需重蒸馏℃,溶液的值随温度的变化差异很大,温度每升高pH1便可用于分子生物学实验。0.03降低个单位。但有些液化苯酚呈粉红色或黄色,应避免使用。同时也应避免使用结晶苯酚,结晶苯酚必须在160℃对其,□TE Buffer、310×组份浓度100 mM Tris-HCl10 mM EDTA

引物设计常见问题

引物设计常见问题与解答(二) 17. 长链引物为什么出错的几率非常高 答:引物合成时,每一步反应效率都不能达到100%,产生碱基插入,缺失,置换突变的因素客观条件都有一直存在。引物链越长,突变的频率累加起来就越高。研究人员总希望合成的引物万无一失,这种心情可以理解。但是犹如PCR扩增,不可能绝对保证扩增产物中没有突变,引物合成也不可能保证100%正确。要知道,引物合成中发生错误(非人为因素)的频率,比任何高保真高温聚合酶PCR扩增过程所产生的频率都要高。做引物合成,长链引物合成,您要有引物中部分引物可能有突变的思想准备。 18. 如果测序发现突变,该如何处理 答:对您遇到的困惑,我们表示同情。遇到这种情况,首先和我们取得联系,我们的生产人员会检查生产的原始记录,主要是核对合成序列是否和定单一致,我们在电脑中保留所有原始数据。如果确认引物合成序列没有输错,我们建议重新挑取克隆测序,您可能会找到正确克隆的。根据我们经验,40个碱基以下的引物,测1-2个克隆就可以了;40个以上的特别是用于全片段拼接合成的,就需要多测一些了。一般情况下,每个克隆突变的位点都不一样,提示正确的总是有的,就是如何找到它。您也可以要求我们将引物免费重合一次,不过重合的引物和第一次的引物一样,都可能含突变,不会因为重合的引物就减少您的遇到问题的几率。基因拼接过程中,如果发现一段区域突变点不多,就多测几个,否则就重合一下引物。 19. 如果测序发现引物突变,是否有补偿 答:没有。我们可以免费重合一次,没有其他任何补偿或赔偿,不承担其他连带责任。原因我们在前面已提到,化学合成效率不可能达到100%.您选择了化学合成引物,合成过程中一些副产品所带来的后果就可能不可避免的遇到。 20. 引物是经过PAGE纯化的,为什么还有碱基缺失或插入 答:理论上分析型PAGE变性电泳,可以区分引物之间一个碱基的差别。但是制备PAGE电泳,上样量都是非常大,电泳时的条带非常宽,带与带之间有重叠,分辨率已下降,电泳后割带回收目的引物时,很难说不割到差别仅几个碱基的引物。国内有一个不好的现象,PAGE纯化的引物,特别是长引物要的量都比较高,导致割的条带有时可能比较宽。建议:您如果减少OD数,引物遇到的问题可能就会少一些。 21. 为什么OPC或PAGE纯化的引物,再用HPLC鉴定纯度不高

ISSR通用引物序列

ISSR通用引物序列

UBC Primer Set #9 (Microsatellite) 引物名称序列 801 ATA TAT ATA TAT ATA TT 802 ATA TAT ATA TAT ATA TG 803 ATA TAT ATA TAT ATA TC 804 TAT ATA TAT ATA TAT AA 805 TAT ATA TAT ATA TAT AC 806 TAT ATA TAT ATA TAT AG 807 AGA GAG AGA GAG AGA GT 808 AGA GAG AGA GAG AGA GC 809 AGA GAG AGA GAG AGA GG 810 GAG AGA GAG AGA GAG AT 811 GAG AGA GAG AGA GAG AC 812 GAG AGA GAG AGA GAG AA 813 CTC TCT CTC TCT CTC TT 814 CTC TCT CTC TCT CTC TA 815 CTC TCT CTC TCT CTC TG 816 CAC ACA CAC ACA CAC AT 817 CAC ACA CAC ACA CAC AA 818 CAC ACA CAC ACA CAC AG 819 GTG TGT GTG TGT GTG TA 820 GTG TGT GTG TGT GTG TC

821 GTG TGT GTG TGT GTG TT 822 TCT CTC TCT CTC TCT CA 823 TCT CTC TCT CTC TCT CC 824 TCT CTC TCT CTC TCT CG 825 ACA CAC ACA CAC ACA CT 826 ACA CAC ACA CAC ACA CC 827 ACA CAC ACA CAC ACA CG 828 TGT GTG TGT GTG TGT GA 829 TGT GTG TGT GTG TGT GC 830 TGT GTG TGT GTG TGT GG 831 ATA TAT ATA TAT ATA TYA 832 ATA TAT ATA TAT ATA TYC 833 ATA TAT ATA TAT ATA TYG 834 AGA GAG AGA GAG AGA GYT 835 AGA GAG AGA GAG AGA GYC 836 AGA GAG AGA GAG AGA GYA 837 TAT ATA TAT ATA TAT ART 838 TAT ATA TAT ATA TAT ARC 839 TAT ATA TAT ATA TAT ARG 840 GAG AGA GAG AGA GAG AYT 841 GAG AGA GAG AGA GAG AYC 842 GAG AGA GAG AGA GAG AYG

常用的通用引物序列

常用之Universal Primer 序列 Primer Primer sequence Applicable vectors T7 TAATACGACTCACTATAGGG pGEM-T, pGEM-T-Easy, pCRII, pET, pBlueScript, pcDNA3.1, pT7Blue SP6 TATTTAGGTGACACTATAG pGEM-T, pGEM-T-Easy, pCRII T3 ATTAACCCTCACTAAAGGGA pBlueScript pUC/M13 Forward (-40) GTTTTCCCAGTCACGAC pUC, pGEM-T, pCRII, pBlueScript pUC/M13 Forward (-21) TGTAAAACGACGGCCAGT pUC, pCRII, pBlueScript pUC/M13 Reverse TCACACAGGAAACAGCTATGAC pUC, pGEM-T, pCRII, pBlueScript T7 Terminator GCTAGTTATTGCTCAGCGG pET pGEX 5’GGGCTGGCAAGCCACGTTTGGTG pGEX pGEX 3’CCGGGAGCTGCATGTGTCAGAGG pGEX pQEF GGCGTATCACGAGGCCCTTTCG pQE pQER CATTACTGGATCTATCAACAGG pQE polyhedrin F AAATGATAACCATCTCGCAA Stag GAACGCCAGCACATGGACAGC pET-4x BGH reverse TAGAAGGCACAGTCGAGG pcDNA3.1, pTracer-CMV 5’ AOX GACTGGTTCCAATTGACAAGC pPlCZα α-factor TATTGCCAGCATTGCTGC pPlCZα 3’ AOX GCAAATGGCATTCTGACATCC pPlCZα

SrRNA扩增常用引物

Normally, we used following primers to amplify bacterial 16S rRNA genes (27F and 1492R pair) and sequencing them (using other primers). The primer sequencs are all listed in the reference:? Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115-175 27F 5' AGA GTT TGA TCM TGG CTC AG 3' PCR and sequencing, most eubacteria 357F 5' CTC CTA CGG GAG GCA GCA G 3' Most eubacteria 530F 5' GTG CCA GCM GCC GCG G 3' Most eubacteria and archaebacteria 926F 5' AAA CTY AAA KGA ATT GAC GG 3' Most eubacteria and archaebacteria 1114F 5' GCA ACG AGC GCA ACC C 3' Most eubacteria 342R 5' CTG CTG CSY CCC GTA G 3' Most eubacteria 519R 5' GWA TTA CCG CGG CKG CTG 3' Most eubacteria and archaebacteria 907R 5' CCG TCA ATT CMT TTR AGT TT 3' Most eubacteria and archaebacteria 1100R 5' GGG TTG CGC TCG TTG 3' Most eubacteria 1492R 5' TAC GGY TAC CTT GTT ACG ACT T 3' PCR and sequencing, most eubacteria 1525R 5' AAG GAG GTG WTC CAR CC 3' PCR and sequencing, most eubacteria M=C:A, Y=C:T. K=G:T, R=A:G, S=G:C. W=A:T; all 1:1 Any primer's reverse complement sequence is its revers prime. For example: 519R 5' GWA TTA CCG CGG CKG CTG 3' then 519F 3' CWT AAT GGC GCC GKC GAC 5'

RT-PCR常用引物序列

RT-PCR常用引物序列 RT-PCR引物序列基因来源引物序列产物大小(kb) β-actin 人有意义链CCTCG CCTTT GCCGA TCC 反义链GGA TC TTCAT GAGGT AGTCA GTC 0.62 kb β-actin* 大鼠有意义链TACAA CCTCC TTGCA GCTCC 反义链GGA TC TTCA T GAGGT AGTCA GTC 0.62kb β-actin 小鼠有意义链GTCGT ACCAC AGGCA TTGTG A TGG反义链GCAAT GCCTG GGTAC ATGGT GG 0.49 kb GAPDH 人有意义链GGTGA AGGTC GGAGT CAACG反义链CAAAG TTGTC ATGGA TGHACC 0.50kb GAPDH 大鼠有意义链GATGC TGGTG CTGAG TATGR CG反义链GTGGT GCAGG ATGCA TTGCT CTGA 0.20 kb Dynein 小鼠有意义链GCGGG CGCTG GAGGA GAA反义链GGA TC TTCA T GAGGT AGTCA GTC 12.3 kb Polymerase ε 人有意义链CGCCA AATTT CTCCC CTGAAA反义链CCGTA GTGCT GGGCA ATGTT C 6.8 kb Polymerase ε 人有意义链AAGGC TGGCG GATTA CTGCC反义链GA TGC TGCTG GTGAT GTACT C 3.5 kb Tuberous Sclerosis 人有意义链GGAGT TTATC ATCAC CGCGG AAATA CTGAG AG反义链TATTT CACTG ACAGG CAATA CCGTC CAAGG 5.3 kb 18S rRNA 大豆有意义链CTTTC GATGG TAGGA TAGTG GCCT反义链CAATG A TCCT TCCGC AGGTT CACCT AC 1.5 kb *引物不会扩增假基因 PCR引物序列基因来源引物序列产物大小(kb) HIV gag region 病毒SK 38ATTAAT CACTA TCCAG TAGGA GAAAT SK 39TTTGG TCCTG TCTTA TGTCC AGAAT GC 0.11kb β-globin 人(29923)GGTGT TCCCT TGATG TAGCA CA (34016)CCAGG ATTTT TGATG GGACA CG 4.1kb β-globin 人(31194)GCTGC TCTGT GCATC CGAGT GG (34016)CCAGG ATTTT TGATG GGACA CG 2.8kb

PCR个人经验总结

PCR经验总结 1. primers design 这是最重要的一步。理想的,只同目的序列两侧的单一序列而非其他序列退火的引物要符合下面的一些条件 a 足够长,18-24bp,以保证特异性.当然不是说越长越好,太长的引物同样会降低特异性,并且降低产量。 b GC% 40%-60% c 5'端和中间序列要多GC,以增加稳定性 d 避免3'端GC rich, 最后3个BASE不要有GC,或者最后5个有3个不要是GC e. 避免3'端的互补, 否则容易造成DIMER f. 避免3'端的错配 g. 避免内部形成二级结构 h. 附加序列(RT site, Promoter sequence)加到5'端, 在算Tm值时不需要加上这些序列,但在检测互补和二级结构是要加上它们 i. 需要使用兼并引物时, 要参考密码子使用表,注意生物的偏好性,不要在3'端使用兼并引物,并使用较高的引物浓度(1uM-3uM) j. 最好学会使用一种design software. PP5,Oligo6,DNAstar, Vector NTI, Online desgin et al. * 引物的另一个重要参数是熔解温度(Tm)。这是当50%的引物和互补序列表现为双链DNA分子时的温度.Tm对于设定PCR退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的Tm低5℃。 设定Tm有几种公式。有的是来源于高盐溶液中的杂交,适用于小于18碱基的引物。有的是根据GC含量估算Tm。确定引物Tm最可信的方法是近邻分析法。这种方法从序列一级结构和相邻碱基的特性预测引物的杂交稳定性。大部分计算机程序使用近邻分析法。 根据所使用的公式及引物序列的不同,Tm会差异很大。因为大部分公式提供一个估算的Tm值,所有退火温度只是一个起始点。可以通过分析几个逐步提高退火温度的反应以提高特异性。开始低于估算的Tm5℃,以2℃为增量,逐步提高退火温度。较高的退火温度会减少引物二聚体和非特异性产物的形成。 为获得最佳结果,两个引物应具有近似的Tm值。引物对的Tm差异如果超过5℃,就会引物在循环中使用较低的退火温度而表现出明显的错误起始。如果两个引物Tm不同,将退火温度设定为比最低的Tm低5℃或者为了提高特异性,可以在根据较高Tm设计的退火温度先进行5个循环,然后在根据较低Tm设计的退火温度进行剩余的循环。这使得在较为严紧的条件下可以获得目的模板的部分拷贝。 2. stability of primers 定制引物的标准纯度对于大多数PCR应用是足够的。引物产量受合成化学的效率及纯化方法的影响。定制引物以干粉形式运输。最好在TE重溶引物,使其最终浓度为100μM。TE比去离子水好,因为水的pH经常偏酸,会引起寡核苷的水解。引物的稳定性依赖于储存条件。应将干粉和溶解的引物储存在-20℃。以大于10μM浓度溶于TE的引物在-20℃可以稳定保存6个月,但在室温(15℃到30℃)仅能保存不到1周。干粉引物可以在-20℃保存至少1年,在室温(15℃到30℃)最多可以保存2个月。 3. optimize reactants concentration a. magnesiom ions Mg离子的作用主要是dNTP-Mg 与核酸骨架相互作用,并能影响Polymerase的活性。

引物设计原则(最全汇总)

引物设计原则(汇总) 普通引物设计(适用于从载体上扩增模板): 1. 普通引物长度一般在20-30bp之间,常用24-28bp左右以保证基因特异性; 2. 下载基因序列到Vector NTI; 3. 找到所需安装载体序列; 4. 将基因序列的CDS高亮标记; 5. 寻找载体序列中常用酶切位点,一般为EcoRI、BamHI、HindIII、XhoI等等,比对检测基因序列中是否有这些位点,有的话舍弃,最后选择两个酶切位点,最好离得远一点,并且最好buffer用一样的。酶切位点一般是6bp的回文序列; 6. 从基因ATG开始往后选择10-20bp均可(我的习惯是27bp-6bp酶切位点-2bp保护碱基-xbp 补齐序列),但最好保证最后两个是G或者C,以减少错配率; 7. 将上游酶切位点序列补在A TG前方,并根据载体对框情况补足两者之间的空缺,再根据序列的GC含量和TM值在酶切位点前补足保护碱基,以保证GC和AT的含量不能过高。注意,所有的补齐不能用到终止密码子; 8. 检测上游序列的结构情况,理论上不要太多二级结构以及3’端匹配即可;不过重复的序列也不能太多,以免移码; 9. 从下游终止密码子开始向前选择10-20bp均可,但最好保证最后两个是G或者C,以减少错配率; 10. 选择complementary sequence,在N端补齐下游酶切位点,如果tag在C端(即下游),则在第9点中应该从终止密码子前开始选择(即舍弃终止密码子),并且下游引物也要对框,如果tag在N端,则下游引物不需要对框,只要在N端加上下游酶切位点,再根据情况加上2个保护碱基,然后检测二级结构,原则上3’端部匹配即可。不过重复的序列也不能太多,以免移码; 11. 将设计好的上下游引物放在一起检测二级结构,原则上3’端部匹配即可。不过重复的序列也不能太多,以免移码; 12. 最后在NCBI的primer Blast网站上比对引物序列,看是否基因特异性的。 2011年10月18日左洁 1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。 3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。另外,引物二聚体或发夹结构也可能导致PCR反应失败。5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。 4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。 5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。

引物设计常用序列

RT-PCR引物序列基因来源引物序列产物大小(kb) β-actin 人有意义链CCTCG CCTTT GCCGA TCC 反义链GGATC TTCAT GAGGT AGTCA GTC 0.62 kb β-actin* 大鼠有意义链TACAA CCTCC TTGCA GCTCC 反义链GGATC TTCAT GAGGT AGTCA GTC 0.62kb β-actin 小鼠有意义链GTCGT ACCAC AGGCA TTGTG ATGG反义链GCAAT GCCTG GGTAC ATGGT GG 0.49 kb GAPDH 人有意义链GGTGA AGGTC GGAGT CAACG反义链CAAAG TTGTC ATGGA TGHACC 0.50kb GAPDH 大鼠有意义链GATGC TGGTG CTGAG TATGR CG反义链GTGGT GCAGG ATGCA TTGCT CTGA 0.20 kb Dynein 小鼠有意义链GCGGG CGCTG GAGGA GAA反义链GGATC TTCAT GAGGT AGTCA GTC 12.3 kb Polymerase ε人有意义链CGCCA AATTT CTCCC CTGAAA反义链CCGTA GTGCT GGGCA ATGTT C 6.8 kb Polymerase ε 人有意义链AAGGC TGGCG GATTA CTGCC反义链GATGC TGCTG GTGAT GTACT C 3.5 kb Tuberous Sclerosis 人有意义链GGAGT TTATC ATCAC CGCGG AAATA CTGAG AG反义链TATTT CACTG ACAGG CAATA CCGTC CAAGG 5.3 kb 18S rRNA 大豆有意义链CTTTC GATGG TAGGA TAGTG GCCT反义链CAATG ATCCT TCCGC AGGTT CACCT AC 1.5 kb *引物不会扩增假基因 PCR引物序列基因来源引物序列产物大小(kb) HIV gag region 病毒SK 38ATTAAT CACTA TCCAG TAGGA GAAAT SK 39TTTGG TCCTG TCTTA TGTCC AGAAT GC 0.11kb β-globin 人(29923)GGTGT TCCCT TGATG TAGCA CA (34016)CCAGG ATTTT TGATG GGACA CG 4.1kb β-globin 人(31194)GCTGC TCTGT GCATC CGAGT GG (34016)CCAGG ATTTT TGATG GGACA CG 2.8kb 序列来源nvitrogen 公司

ssr引物设计

引物设计原则: 1。长度一般为15-30bp,常用的是18-27bp,但不能大于38,因为过长会导致其延伸温度大于74℃,即Taq酶的最适温度 2。碱基分布的均衡性同一碱基连续出现不应超过5个 GC含量一般40-60% GC含量太低导致引物Tm值较低,使用较低的退火温度不利于提高PCR的特异性 GC含量太高也易于引发非特异扩增。 3。引物Tm值一般要求:55℃-65℃。 计算: 对于低于20个碱基的引物,Tm值可根据Tm=4(G+C)+2(A+T)来粗略估算 对于较长引物,Tm值则需要考虑热动力学参数,从“最近邻位”的计算方式得到,这也是现有的引物设计软件最常用的计算方式。 Tm = △H/(△ S + R * ln (C/4)) + 16.6 log ([K+]/(1 + 0.7 [K+])) - 273.15 4。引物二级结构引物二聚体 尽可能避免两个引物分子之间3’端有有较多碱基互补 发夹结构 尤其是要避免引物3’端形成发夹结构,否则将严重影响DNA聚合酶的延伸。5。引物3’端引物的延伸从3’端开始,因此3’端的几个碱基与模板DNA均需严格配对,不能进行任何修饰,否则不能进行有效的延伸,甚至导致PCR扩增完全失败。考虑到密码子的简并性,引物3’端最后一个碱基最好不与密码子第三个碱基配对。 6。引物5’端引物5’端可以有与模板DNA不配对碱基,在5’端引入一段非模板依赖性序列。 5’端加上限制性核酸内切酶位点序列(酶切位点5’端加上适当数量的保护碱基)。5’端的某一位点修改某个碱基,人为地在产物中引入该位点的点突变以作研究。5’端标记放射性元素或非放射性物质(如生物素、地高辛等)。 6。引物的内部稳定性过去认为,引物3’端应牢牢结合在模板上才能有效地进行延伸,故3’端最好为G或C。 现在的观点认为,引物的5’端应是相对稳定结构,而3’端在碱基配对的情况下最好为低稳定性结构,即3’端尽可能选用A或T,少用G或C。 仅仅3’端几个碱基与非特异位点上的碱基形成的低稳定性结构是难以有效引发引物延伸的。 如果3’端为富含G、C的结构,只需3’端几个碱基与模板互补结合,就可能引发延伸,造成假引发。 7。引物的保守性与特异性保守性:通用引物——检测同一类病原微生物尽可能多的型别 特异性:避免非特异性扩增 PCR引物又称为寡核苷酸引物,也就是RNA,是由人工合成的,PCR引物通常是一对,引物1和引物2。由于DNA聚合酶只能从核苷酸链的5'端到3'端进行

相关主题