搜档网
当前位置:搜档网 › 基于windows api的串口通信方式、软件设计、终端通信协议

基于windows api的串口通信方式、软件设计、终端通信协议

基于windows api的串口通信方式、软件设计、终端通信协

摘要:手机、gps等终端的通信已经深入人民的日常生活中,大部分通信的手段为无线传输、蓝牙、usb,终端通信的串口通信是

探究终端核心和通信网络协议等的重要手段,本文主要介绍终端通信的基于windows api的串口通信方式、软件设计、终端通信协议等有关内容。

关键词串口;模块;通信;软件;设计;结构;协议;

中图分类号:s611 文献标识码:a 文章编号:

引言

串口是常用的计算机与外部串行设备之间的数据传输通道。为

了提高串口通信的速度和资源利用率,软件采用windows api函数并基于多线程技术和异步串口通信的设计理念,实现了终端(手机终端、gps)与上位机之间的数据交换,并且将采集到的数据保存

到数据库中,便于分析和处理。

软件结构及概述

软件涉及的核心内容包含三部分:串口通信模块,终端设备操

控模块,通信数据分析模块。

串口通信模块由三个“类”组成-串口初始化

(communication_init)、数据发送(message_send)、数据接收(message_receive)。

c语言串口通信范例

一个c语言的串口通信程序范例 分类:技术笔记 标签: c语言 串口通信 通信程序 it 最近接触一个项目,用HL-C1C激光位移传感器+易控组态软件完成生产线高度跳变检测,好久没有接触c c#,一些资料,找来做个记录,也许大家用的着 #include #include #include #include #define COM232 0x2f8 #define COMINT 0x0b #define MaxBufLen 500 #define Port8259 0x20 #define EofInt 0x20 static int comportaddr; static char intvectnum; static unsigned char maskb; static unsigned char Buffer[MaxBufLen]; static int CharsInBuf,CircIn,CircOut; static void (interrupt far *OldAsyncInt)();

static void interrupt far AsyncInt(void); void Init_COM(int ComPortAddr, unsigned char IntVectNum, int Baud, unsigned char Data, unsigned char Stop, unsigned char Parity) { unsigned char High,Low; int f; comportaddr=ComPortAddr; intvectnum=IntVectNum; CharsInBuf=0;CircIn=0;CircOut=0; f=(Baud/100); f=1152/f; High=f/256; Low=f-High*256; outp(ComPortAddr+3,0x80); outp(ComPortAddr,Low); outp(ComPortAddr+1,High); Data=(Data-5)|((Stop-1)*4); if(Parity==2) Data=Data|0x18; else if(Parity==1) Data=Data|0x8; outp(ComPortAddr+3,Data); outp(ComPortAddr+4,0x0a);

串口通信协议

串口通讯—通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA 与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提出的串行通信接口基本任务的大部分工作,且都是可编程的。才用这些芯片作为串行通信接口电路的核心芯片,会使电路结构比较简单。 3.有关串行通信的物理标准 为使计算机、电话以及其他通信设备互相沟通,现在,已经对串行通信建立了几个一致的概念和标准,这些概念和标准属于三个方面:传输率,电特性,信号名称和接口标准。 1、传输率:所谓传输率就是指每秒传输多少位,传输率也常叫波特率。国际上规定了一个标准波特率系列,标准波特率也是最常用的波特率,标准波特率系列为110、300、600、1200、4800、9600和19200。大多数CRT终端都能够按110到9600范围中的任何一种波特率工作。打印机由于机械速度比较慢而使传输波特率受到限制,所以,一般的串行打印机工作在110波特率,点针式打印机由于其内部有较大的行缓冲

上位机与51单片机串口通信

上位机与51单片机串口通信 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六 进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中, 则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

//参考源程序 #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容sbit gewei=P2^4; //个位选通定义

VC++_串口上位机编程实例

VC++串口上位机简单例程(源码及详细步骤) (4.33MB) VC++编写简单串口上位机程序 2010年4月13日10:23:40 串口通信,MCU跟PC通信经常用到的一种通信方式,做界面、写上位机程序的编程语言、编译环境等不少,VB、C#、LABVIEW等等,我会的语言很少,C语言用得比较多,但是还没有找到如何用C语言来写串口通信上位机程序的资料,在图书管理找到了用VC++编写串口上位机的资料,参考书籍,用自己相当蹩脚的C++写出了一个简单的串口上位机程序,分享一下,体验一下单片机和PC通信的乐趣。 编译环境:VC++6.0 操作系统:VMWare虚拟出来的Windows XP 程序实现功能: 1、PC初始化COM1口,使用n81方式,波特率57600与单片机通信。PC的COM口编号可以通过如下方式修改: 当然也可以通过上位机软件编写,通过按钮来选择COM端口号,但是此次仅仅是简单的例程,就没有弄那么复杂了。COM1口可用的话,会提示串口初始化完毕。否则会提示串口已经打开Port already open,表示串口已经打开,被占用了。 2、点击开始转换,串口会向单片机发送0xaa,单片机串口中断接收到0xaa后启动ADC转

换一次,并把转换结果ADCL、ADCH共两个字节的结果发送至PC,PC进行数值转换后在窗口里显示。(见文章末尾图) 3、为防止串口被一只占用,点击关闭串口可以关闭COM1,供其它程序使用,点击后按钮变为打开串口,点击可重新打开COM1。 程序的编写: 1、打开VC++6.0建立基于对话框的MFC应用程序Test,

2、在项目中插入MSComm控件:工程->增加到工程->Components and Controls->双击Registered ActiveX Controls->选择Microsoft Communications Control,version6.0->Insert,按

USB基本知识与通信协议书范本

串口通信协议 什么是串口 串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal SerialBus或者USB混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(b yte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。 典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配:a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。 b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。 c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇

VC与c51串口通讯程序

跟着步骤学习 1.建立项目:打开VC++6.0,建立一个基于对话框的MFC应用程序SCommTest 2.在项目中插入MSComm控件选择Project菜单下Add To Project子菜单中的 Components and Controls…选项,在弹出的对话框中双击Registered ActiveX Controls项(稍等一会,这个过程较慢),则所有注册过的ActiveX控件出现在列表框中。选择Microsoft Communications Control, version 6.0,,单击Insert按钮将它插入到我们的Project中来,接受缺省的选项。(如果你在控件列表中看不到Microsoft Communications Control, version 6.0,那可能是你在安装VC6时没有把ActiveX一项选上,重新安装VC6,选上ActiveX就可以了), 这时在ClassView视窗中就可以看到CMSComm类了,(注意:此类在ClassWizard中看不到,重构clw 文件也一样),并且在控件工具栏Controls中出现了电话图标(如图1所示),现在要做的是用鼠标 将此图标拖到对话框中,程序运行后,这个图标是看不到的。 3.利用ClassWizard定义CMSComm类控制对象打开ClassWizard ->Member Viariables选项卡,选择CSCommTestDlg类,为IDC_MSCOMM1 添加控制变量:m_ctrlComm,这时你可以看一看,在对话框头文件中自动 加入了//{{AFX_INCLUDES() #include "mscomm.h" //}}AFX_INCLUDES (这时运行程序,如果有错,那就再从头开始)。 4.在对话框中添加控件向主对话框中添加两个编辑框,一个用于接收显 示数据ID为IDC_EDIT_RXDATA,另一个用于输入发送数据,ID为 IDC_EDIT_TXDATA,再添加一个按钮,功能是按一次就把发送编辑框中的内 容发送一次,将其ID设为IDC_BUTTON_MANUALSEND。别忘记了将接收编辑 框的Properties->Styles中把Miltiline和Vertical Scroll属性选上,发送编辑框若你想输入多行文字,也可选上Miltiline。 再打开ClassWizard->Member Viariables选项卡,选择CSCommTestDlg类,为IDC_EDIT_RXDATA 添加CString变量m_strRXData,为IDC_EDIT_TXDATA添加CString变量m_strTXData。说明: m_strRXData和m_strTXData分别用来放入接收和发送的字符数据。 5.添加串口事件消息处理函数OnComm()打开ClassWizard->Message Maps,选择类CSCommTestDlg,选择IDC_MSCOMM1,双击消息OnComm,将弹出的对话框中将函数名改为OnComm,(好记而已)OK。 这个函数是用来处理串口消息事件的,如每当串口接收到数据,就会产生一个串口接收数据缓冲区中有字符的消息事件,我们刚才添加的函数就会执行,我们在OnComm()函数加入相应的处理代码就能实现自已想要的功能了。请你在函数中加入如下代码: void CSCommTestDlg::OnComm() { // TODO: Add your control notification handler code here VARIANT variant_inp; COleSafeArray safearray_inp; LONG len,k; BYTE rxdata[2048]; //设置BYTE数组 An 8-bit integerthat is not signed. CString strtemp; if(m_ctrlComm.GetCommEvent()==2) //事件值为2表示接收缓冲区内有字符 { ////////以下你可以根据自己的通信协议加入处理代码 variant_inp=m_ctrlComm.GetInput(); //读缓冲区 safearray_inp=variant_inp; //VARIANT型变量转换为ColeSafeArray型变量 len=safearray_inp.GetOneDimSize(); //得到有效数据长度 for(k=0;k

51单片机与PC机通信资料

《专业综合实习报告》 专业:电子信息工程 年级:2013级 指导教师: 学生:

目录 一:实验项目名称 二:前言 三:项目内容及要求 四:串口通信原理 五:设计思路 5.1虚拟串口的设置 5.2下位机电路和程序设计 5.3串口通信仿真 六:电路原理框图 七:相关硬件及配套软件 7.1 AT89C51器件简介 7.2 COMPIN简介 7.3 MAX232器件简介 7.4友善串口调试助手 7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计 九:proteus仿真调试 十:总结 十一:参考文献 一:实验项目名称:

基于51单片机的单片机与PC机通信 二:前言 在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。 目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。 为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。 用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时,系统的更改和扩充极为容易。MCS-51系列单片机,由于内部带有一个可用于异步通讯的全双工的穿行通讯接口,阴齿可以很方便的构成一个主从式系统。 串口是计算机上一种非常通用的设备通讯协议,大多数计算机包容两个基于RS232的串口。串口同时也是仪器仪表设备通过用的通讯协议,很多GPIB兼容的设备也带有RS-232口。同时串口通讯协议也可以用于获取远程采集设备数据。所以,深入的理解学习和研究串口通信相关知识是非常必要的。此次毕业设计选题为“PC机与MCS-51单片机的串口通讯”,使用51单片机来实现一个主从式

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.sodocs.net/doc/1c18555622.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

AB DF1串口通讯协议API接口

Fax: 1-703-709-0985 https://www.sodocs.net/doc/1c18555622.html, Allen-Bradley DF1 Serial Communication Interface API The DASTEC Corporation Allen-Bradley DF1 Serial Communication Interface API allows the user to implement bi-directional serial communications to exchange data between applications running on a Windows/WinCE-based system with other devices supporting the Allen-Bradley DF1 full-duplex serial protocol. The devices can be AB devices, other host computers or even other system applications using the API. The Allen-Bradley DF1 Serial Communication Interface API enables a system to acts as a client device to other Allen-Bradley peer devices, initiating read and write operations on behalf of the system applications. The API also allows the system to emulate an Allen-Bradley PLC to respond to read and write requests and thus acts as a “virtual PLC” to other AB peers. The API is available for different Windows/WinCE-based systems/platforms and can be used with C/C++ or Visual Basic. The API consists of two component functionalities, client side and server side. The client side functionality is implemented with a single API DLL. Server side functionality is implemented with a DLL/executable pair. Together these components manage all aspects of the protocol and data exchange including responding to peers with proper acknowledgements, error/success codes and protocol data byte ordering. The system application need only to deal with the data values exchanged in native byte order. The user can employ either the API’s client, server or both functionalities with minimal code implementation.

VC6.0MFC串口通信编写全过程(DOC)

其于MFC 的串口调试助手编辑过程 一、新建 打开 VC6.0 文件 新建 工程 MFC AppWiard(exe) 位置(选择保存工程位置) 工程名称(输入工程名XXXX ) 确定 选择基本对话框 下一步 下一步 下一步 选择(CXXXXDlg ) 完成 确定 在生成的基本对话框内将不需要按钮及提示框(自动生成的“确定”“取消” 及提示框)删除或修改使用,至此基本框架完成如下图: 二、往生成的基本框架中添加控件 1、因为控件列表框内没有串口通信用到的通信控件,所以要先添加到控件列表框内再将控件添加到基本框内使用,步骤如下: 菜单栏 工程 添加到工程 Components and controls … Registered ActiveX Controls 选择“Microsoft Communications Control, version 6.0” Insert 确定 OK 关闭此子窗口完成添加操作标志如上图所示。 2、将刚才添加添加到控件列表框内的串口控件添加到基本框架内 点击控件列表框内的串口控件,此时光标变为“十”形,在基本框架内随意划取一矩 形区域,即可以添加串口控件,不需要修改此控件的大小及位置,因为程编译运行后此控件是看不到的,步骤结果如下图:

3、继续往基本框架内添加用于编辑发送数据的输入编辑框及输出编辑框,同理选择控件列表框内的“编辑框控件”,以相同的操作即可添加两个编辑窗口及一个按纽控件如下图所示: 这两个窗口需要修改大小及位置,因为程序运行后将会显示而串口通信控件则不显示,上图是运行后的效果。 4、对以上四个控件编程步骤如下: a 、右击串口通信控件 建立类向导 Member variables Control IDS 中选择IDC_MSCOMM1 add variable … Member variable name 中输入控件变量名m_ctrlComm (变量名可以随意选取,但程序中应与所取变量名一致) OK 确定

51单片机串口通信异常的调试一例

51单片机串口通信异常的调试一例 单片机与DSP在硬件结构和程序编写方面存在很多共同之处,所以最近几周试着用了一下51单片机开发板,希望进一步熟悉中断的概念、串口通信、I2C协议、存储扩展等常用的知识。 在进行串口通信的实验时,预期功能不能实现。实验的设计方案是:通过上位机给单片机发送一个16bit的字符串,单片机对字符串进行接收并立刻回显给上位机,接收并回显完毕后依次将这些字符(只能是0-9,a-f这几个字符,可以重复)在数码管上进行显示。 程序编写完成后,通过上位机发送字符串9876543210abcdef,单片机串口接收并回显9876543210abcde,然后数码管依次显示f9876543210abcde,数码管显示完成后,单片机串口回显的字符串中的e后面又多了一个f。 对实验现象进行分析不难发现,串口的接收和回显功能正常,但是存在2个问题:1.串口接收并回显和数码管显示的时序有点混乱;2.数码管的显示出现异常,本应该依次显示9876543210abcdef,实际上显示的却是f9876543210abcde。 对源代码进行分析发现,时序混乱的原因是中断响应及中断返回的执行时序出现问题,修改代码后问题1被解决。 问题2的解决思路:源代码中,通过串口接收到的字符串被存储在一个一维数组array[16]中,该数组有16个元素,每个元素都是unsigned char型。在源代码中,先注释掉数码管显示的那一段代码,然后添加串口打印代码,串口打印实现的功能是依次显示array[0]到array[15]这16个元素的值。编译通过后,将程序烧写到单片机。使用串口调试助手,以十六进制的形式观察array[0]到array[15]的取值,结果如下:

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

串口通讯协议

串口通讯协议 波特率9600,数据位8位,起始位1位,停止位2位,校验采用16位CRC校验,校验包括头部信息和数据。 帧定义: 主机发送事件数据定义

u16 const crc_table[256] = { 0x0000U, 0x1021U, 0x2042U, 0x3063U, 0x4084U, 0x50a5U, 0x60c6U, 0x70e7U, 0x8108U, 0x9129U, 0xa14aU, 0xb16bU, 0xc18cU, 0xd1adU, 0xe1ceU, 0xf1efU, 0x1231U, 0x0210U, 0x3273U, 0x2252U, 0x52b5U, 0x4294U, 0x72f7U, 0x62d6U, 0x9339U, 0x8318U, 0xb37bU, 0xa35aU, 0xd3bdU, 0xc39cU, 0xf3ffU, 0xe3deU, 0x2462U, 0x3443U, 0x0420U, 0x1401U, 0x64e6U, 0x74c7U, 0x44a4U, 0x5485U, 0xa56aU, 0xb54bU, 0x8528U, 0x9509U, 0xe5eeU, 0xf5cfU, 0xc5acU, 0xd58dU, 0x3653U, 0x2672U, 0x1611U, 0x0630U, 0x76d7U, 0x66f6U, 0x5695U, 0x46b4U, 0xb75bU, 0xa77aU, 0x9719U, 0x8738U, 0xf7dfU, 0xe7feU, 0xd79dU, 0xc7bcU, 0x48c4U, 0x58e5U, 0x6886U, 0x78a7U, 0x0840U, 0x1861U, 0x2802U, 0x3823U, 0xc9ccU, 0xd9edU, 0xe98eU, 0xf9afU, 0x8948U, 0x9969U, 0xa90aU, 0xb92bU, 0x5af5U, 0x4ad4U, 0x7ab7U, 0x6a96U, 0x1a71U, 0x0a50U, 0x3a33U, 0x2a12U, 0xdbfdU, 0xcbdcU, 0xfbbfU, 0xeb9eU, 0x9b79U, 0x8b58U, 0xbb3bU, 0xab1aU, 0x6ca6U, 0x7c87U, 0x4ce4U, 0x5cc5U, 0x2c22U, 0x3c03U, 0x0c60U, 0x1c41U, 0xedaeU, 0xfd8fU, 0xcdecU, 0xddcdU, 0xad2aU, 0xbd0bU, 0x8d68U, 0x9d49U, 0x7e97U, 0x6eb6U, 0x5ed5U, 0x4ef4U, 0x3e13U, 0x2e32U, 0x1e51U, 0x0e70U, 0xff9fU, 0xefbeU, 0xdfddU, 0xcffcU, 0xbf1bU, 0xaf3aU, 0x9f59U, 0x8f78U, 0x9188U, 0x81a9U, 0xb1caU, 0xa1ebU, 0xd10cU, 0xc12dU, 0xf14eU, 0xe16fU, 0x1080U, 0x00a1U, 0x30c2U, 0x20e3U, 0x5004U, 0x4025U, 0x7046U, 0x6067U, 0x83b9U, 0x9398U, 0xa3fbU, 0xb3daU, 0xc33dU, 0xd31cU, 0xe37fU, 0xf35eU, 0x02b1U, 0x1290U, 0x22f3U, 0x32d2U, 0x4235U, 0x5214U, 0x6277U, 0x7256U, 0xb5eaU, 0xa5cbU, 0x95a8U, 0x8589U, 0xf56eU, 0xe54fU, 0xd52cU, 0xc50dU, 0x34e2U, 0x24c3U, 0x14a0U, 0x0481U, 0x7466U, 0x6447U, 0x5424U, 0x4405U, 0xa7dbU, 0xb7faU, 0x8799U, 0x97b8U, 0xe75fU, 0xf77eU, 0xc71dU, 0xd73cU, 0x26d3U, 0x36f2U, 0x0691U, 0x16b0U, 0x6657U, 0x7676U, 0x4615U, 0x5634U, 0xd94cU, 0xc96dU, 0xf90eU, 0xe92fU, 0x99c8U, 0x89e9U, 0xb98aU, 0xa9abU, 0x5844U, 0x4865U, 0x7806U, 0x6827U, 0x18c0U, 0x08e1U, 0x3882U, 0x28a3U, 0xcb7dU, 0xdb5cU, 0xeb3fU, 0xfb1eU, 0x8bf9U, 0x9bd8U, 0xabbbU, 0xbb9aU, 0x4a75U, 0x5a54U, 0x6a37U, 0x7a16U, 0x0af1U, 0x1ad0U, 0x2ab3U, 0x3a92U, 0xfd2eU, 0xed0fU, 0xdd6cU, 0xcd4dU, 0xbdaaU, 0xad8bU, 0x9de8U, 0x8dc9U, 0x7c26U, 0x6c07U, 0x5c64U, 0x4c45U, 0x3ca2U, 0x2c83U, 0x1ce0U, 0x0cc1U, 0xef1fU, 0xff3eU, 0xcf5dU, 0xdf7cU, 0xaf9bU, 0xbfbaU, 0x8fd9U, 0x9ff8U, 0x6e17U, 0x7e36U, 0x4e55U, 0x5e74U, 0x2e93U, 0x3eb2U, 0x0ed1U, 0x1ef0U }; u16 crc16(u16 crc,const u8 *data, u32 len )len可以为u8,u16,u32 { while (len--) crc = crc_table[(crc >> 8 ^ *(data++)) & 0xffU] ^ (crc << 8); return crc; } 例:u8 *buf=”123456789”;

单片机串口通信的发送与接收(可编辑修改word版)

51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。 当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。无 论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。 看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。 接收数据时,基本上都是使用“中断方式”,这是正确合理的。 即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数, 收到了新数据。 发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来 等待发送完毕。 这时,处理不好的话,就可能带来问题。 看了一些网友编写的程序,发现有如下几条容易出错: 1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。 这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。 这种处理方法,就会遗漏收到的数据。 2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。 但是,却在中断函数中,将TI 清零! 这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。 3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收 中断的程序。 对此,做而论道发表自己常用的方法: 接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。 发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。 这样一来,收、发两者基本一致,编写程序也很规范、易懂。 更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。 实例: 求一个PC 与单片机串口通信的程序,要求如下: 1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。

WIN_API串口通信详细讲解带范例程序说明

WIN32 API串口通讯实例教程 第一节实现串口通讯的函数及串口编程简介 API函数不仅提供了打开和读写通讯端口的操作方法,还提供了名目繁多的函数以支持对串行通讯的各种操作。常用函数及作用下: 函数名作用 CreateFile 打开串口 GetCommState 检测串口设置 SetCommState 设置串口 BuilderCommDCB 用字符串中的值来填充设备控制块 GetCommTimeouts 检测通信超时设置 SetCommTimeouts 设置通信超时参数 SetCommMask 设定被监控事件 WaitCommEvent 等待被监控事件发生 WaitForMultipleObjects 等待多个被监测对象的结果 WriteFile 发送数据 ReadFile 接收数据 GetOverlappedResult 返回最后重叠(异步)操作结果 PurgeComm 清空串口缓冲区,退出所有相关操作 ClearCommError 更新串口状态结构体,并清除所有串口硬件错误 CloseHandle 关闭串行口 用Windows API 编写串口程序本身是有巨大优点的,因为控制能力会更强,效率也会更高。 API编写串口,过程一般是这样的: 1、创建串口句柄,用CreateFile; 2、对串口的参数进行设置,其中比较重要的是波特率(BaudRate),数据宽度(BytesBits),奇偶校验(Parity),停止位(StopBits),当然,重要的还有端口号(Port); 3、然后对串口进行相应的读写操作,这时候用到ReadFile和WriteFile函数; 4、读写结束后,要关闭串口句柄,用CloseFile。 下面依次讲述各个步骤的过程。

串口通讯—通信协议

串口通讯—串口通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,串口通信协议通常有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1、串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM 时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提出的串行通信接口基本任务的大部分工作,且都是可编程的。采用这些芯片作为串行通信接口电路的核心芯片,会使电路结构比较简单。

相关主题