搜档网
当前位置:搜档网 › 3知识讲解_任意角的三角函数_基础

3知识讲解_任意角的三角函数_基础

3知识讲解_任意角的三角函数_基础
3知识讲解_任意角的三角函数_基础

任意角的三角函数

【学习目标】

1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号.

2.理解单位圆、正弦线、余弦线、正切线的概念及意义.

3.会应用三角函数的定义解决相关问题。

【要点梳理】

要点一:三角函数定义

设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:

(1)y 叫做α的正弦,记做sin α,即sin y α=;

(2)x 叫做α的余弦,记做cos α,即cos x α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α=

≠. 要点诠释:

三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.

我们只需计算点到原点的距离r =

那么sin α=

,cos α=,tan y x

α=。 要点二:三角函数在各象限的符号

三角函数在各象限的符号:

正切、余切

余弦、正割

正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦。 要点诠释:

口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正。

要点三:诱导公式一

终边相同的角的同一三角函数的值相等

sin(2)sin k απα+?=,其中k Z ∈

cos(2)cos k απα+?=,其中k Z ∈

tan(2)tan k απα+?=,其中k Z ∈

要点诠释:

该组公式说明了终边相同的角的同一三角函数的值相等这个结论。要注意在三角函数中,角和三角函

数值的对应关系是多值对应关系,即给定一个角,它的三角函数值是唯一确定的(除不存在的情况);反之,给定一个三角函数值,有无穷多个角和它对应.

要点四:单位圆中的三角函数线

圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边(或其反向延长线)相交于点T (或T '),则有向线段0M 、0N 、AT(或AT ')分别叫作α的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段.

要点诠释:

三条有向线段的位置:

正弦线为α的终边与单位圆的交点到x 轴的垂直线段;

余弦线在x 轴上;

正切线在过单位圆与x 轴的正方向的交点的切线上;

三条有向线段中两条在单位圆内,一条在单位圆外.

【典型例题】

类型一:三角函数的定义

例1.已知角α的终边经过点P (-4a ,3a )(a ≠0),求sin α,cos α,tan α的值。

【思路点拨】先根据点P (-4a ,3a )求出OP 的长;再分a >0,a <0两种情况结合任意角的三角函数的定义即可求出结论 【答案】35,45-,34-或35-,45,34

-

【解析】 5||r a ==。

若a >0,则r=5a ,α是第二象限角,则

33sin 55

y a r a α=

==, 44cos 55

x a r a α-===-, 33tan 44

y a x a α===--, 若a <0,则r=-5a ,α是第四象限角,则

3sin 5α=-,4cos 5α=,3tan 4α=-。 【总结升华】 本题主要考查三角函数的定义和分类讨论的思想。三角函数值的大小与点在角的终边上的位置无关,只与角的大小有关。要善于利用三角函数的定义及三角函数的符号规律解题。

举一反三:

【变式1】已知角α的终边在直线y =上,求sin α,cos α,tan α的值。

【答案】1221,22

--

【解析】因为角α的终边在直线y =上,

所以可设()(0)P a a ≠为角α终边上任意一点。

则2||r a ==(a ≠0)

。 若a >0,则α为第一象限角,r=2a ,所以

sin α==, 1cos 22a a α=

=,

tan α==。

若a <0,则α为第三象限角,r=-2a ,所以sin 22a α=

=--,1cos 22a a α=-=-,

tan a

α==。 类型二:三角函数的符号

例2.判断下列各三角函数值的符号

(1)17tan 6π??- ???

;(2)tan120°·sin269°;(3)tan191°-cos191°。 【答案】(1)正(2)正(3)正

【解析】(1)因为177466πππ-=-+,且76

π是第三象限角,所以176π-是第三象限角。所以17tan 06π??-> ???

。 (2)∵120°是第二象限的角,∴tan120°<0。

∵269°是第三象限的角,∴sin269°<0。

∴tan120°·sin269°>0。

(3)∵191°是第三象限的角,

∴tan191°>0,cos191°<0,∴tan191°―cos191°>0。

举一反三:

【高清课堂:任意角的三角函数385947 例3】

【变式1】确定下列各三角函数值的符号.

(1)sin532?;(2)23cos 12π

;(3)11tan 3π-?? ???

;(4)sin3.1; (5)tan 7; (6)sin(cos )cos(sin )θθ,其中θ是第二象限角.

【答案】(1)正(2)正(3)正(4)正(5)正(6)负

【变式2】(2015秋 甘肃定西月考)已知sin θ<0,tan θ>0.

(1)求θ角的集合;

(2)求

2

θ终边所在象限; (3)试判断sin cos tan 222

θθθ的符号. 【答案】(1)3{|2,2,}2

k k k Z πθπππ++∈;(2)略;(3)略 【解析】(1)∵sin θ<0,

∴θ为第三、四象限角或在y 轴的负半轴上,

∵tan θ>0,

∴θ为第一、三象限角,

∴θ为第三象限角,即θ角的集合为:3{|2,2,}2

k k k Z πθπππ++∈. (2)由(1)可得:3(,)224

k k θππππ∈++,k ∈Z 当k 是偶数时,2

θ在第二象限, 当k 是奇数时,2

θ在第四象限. (3)∵3(,)224

k k θππππ∈++, ∴当k 是偶数时,2

θ在第二象限, 则tan 02θ<,sin 02θ>,cos 02θ<.可得:sin cos tan 0222

θθθ>, 当k 是奇数是,2

θ在第四象限, 则tan 02θ<,sin 02θ<,cos 02θ>,可得:sin cos tan 0222

θθθ>, 综上,sin cos tan 0222θθθ>. 类型三:诱导公式一的应用

例3.(1)2515cos tan 34ππ??+- ???

(2)sin810°+tan765°+tan1125°+cos360°。

【思路点拨】首先把任意角的正弦、余弦、正切的函数分别化为0°到360°角的同一三角函数值,然后再求值。

【答案】(1)32

(2)4 【解析】(1)原式cos 8tan 434ππππ?

???=++-+ ? ?????13cos tan 13422ππ=+=+=。 (2)原式= sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(0°+360°)

=sin90°+tan45°+tan45°+cos0°=4。

【总结升华】 在弧度制下,与角α终边相同的角为2k πα+,k ∈Z ,在角度制下终边相同的角为k ·360°+α,k ∈Z 。利用公式化简或求值时要熟记特殊角的函数值。

举一反三:

【变式1】计算:

(1)1315cos sin 34ππ??+- ??? (2)sin1170°+tan405°+cos720°。

【答案】(1)

122+(2)3 【解析】

(1)原式cos 4sin 434ππππ?

???=++-+ ? ????

?1212cos sin 34222ππ+=+=+=。 (2)原式= sin(3×360°+90°)+tan(360°+45°) +cos(0°+2×360°)

=sin90°+tan45°+cos0°=3。

类型四:三角函数线的应用

例4.(1)在单位圆中画出适合下列条件的角α的终边。

①2sin 3α=;②3cos 5

α=-;③tan α=2; (2)比较sin1155°与sin (―1654°)的大小。

【答案】(1)略(2)>

【解析】(1)①作直线23

y =交单位圆于P 、Q 两点,则OP 与OQ 为角α的终边,如下图①。 ②作直线35

x =-交单位圆于M 、N 两点,则OM 与ON 为角α的终边。如下图②。

③在直线x=1上截取AT=2,其中点A 的坐标为(1,0),设直线OT 与单位圆交于C 、D 两点,则OC 与OD 为角α的终边。如下图③。

(2)先化成0° ~360°间的角的三角函数。

sin1155°=sin(3×360°+75°)=sin75°,

sin(-1654°)=sin(-5×360°+146°)=sin146°。

在单位圆中,分别作出sin75°和sin145°的正弦线M 2P 2,M 1P 1(如图)。

因为M 1P 1<M 2P 2,所以sin1155°>sin (-1654°)。

【总结升华】 (1)三角函数线可以用来求出满足形如()f m α=的三角函数的角α的终边,这是解三角不等式及求三角函数定义域时常用到的。

(2)第(2)题主要考查公式一及单位圆中三角函数的应用,首先利用公式将1155°和1654°分别变化到0°~360°的角,然后在同一单位圆中作出它们的三角函数线,利用三角函数线即可比较出大小。

举一反三:

【变式1】求证:当0,2πα??∈ ???时,sin α<α<tan α。 【证明】如图,设角α的终边与单位圆相交于点P ,单位圆与x 轴正半轴的交点为A ,过点A 作圆的切线交OP 的延长线于点T ,过点P 作PM ⊥OA 于点M ,连接AP ,则:

在Rt △POM 中,sin α=MP ;

在Rt △AOT 中,tan α=AT 。

又根据弧度制的定义,有AP l OP αα=?=。

易知S △POA <S 扇形POA <S △AOT ,

111222

AP OA MP l OA OA AT ?

(1)11sin 2

θ-≤≤; (2)sin θ<cos θ. 【思路点拨】(1)首先在[0,2π]范围内找到三角函数线为-1,

12的角度,然后再由终边相同角写出集合.

(2)首先在[0,2π]范围内找到三角函数线为OM >BM 的θ的角度,然后再由终边相同角定出集合.

【解析】如图所示:在直角坐标系中,作出单位圆,把角θ的顶放到原点,角的始边放到x 轴的正半轴上.

设θ的终边与单位圆的交点为B ,单位圆和x 轴的正半轴的交点为A ,再作BM ⊥x 轴,M 为垂足,则有BM =sin θ,OM =cos θ,OA =1.

(1)在单位圆中11sin 2θ-≤≤

时,在[0,2π]的角度是06πθ≤≤,或526πθπ≤≤, 所以θ取值范围为:226k k ππθπ≤≤+,或222k k πθππ≤≤+,k ∈Z .

(2)在单位圆中sin θ<cos θ时,在[0,2π]的角度是

524πθπ<≤,或04πθ≤<, 所以θ取值范围为:52224k k ππθππ+<≤+,或224

k ππθπ≤<+,k ∈Z . 【总结升华】利用单位圆中三角函数线,可以非常直观方便地求出形如()f m α≥或()f m α≤的三角函数的角的范围,起到“以形助数”的作用.

类型五:三角函数定义域的求法

例6.求函数sin 1tan y x x =+-的定义域。 【思路点拨】要使式子有意义,则必须使被开方数大于等于零,然后再解三角不等式。 【答案】

【解析】 由题意得sin 0tan 1()2

x x x n n Z ππ??≥?≤???≠+∈?。

由图可知:

sin x ≥0时,角x 的终边落在图中横线阴影部分;

tan x ≤1时,角x 的终边落中图中竖线阴影部分。

从终边落在双重阴影部分的角中排除使2()2x n n Z ππ=

+∈的角即为所求。

∴该函数的定义域为: 22,22,42x n x n n Z x n x n n Z πππππππ????≤≤+∈+≤≤+∈????????

。 【总结升华】(1)在求三角函数定义域时,一般应转化为不等式(组),利用数轴或三角函数线解三角不等式是最常用的方法,因此必须牢固掌握三角函数的画法及意义。(2)不可忽略正切函数自身的定义域|,2x x k k Z ππ?

?≠+∈????

。 举一反三:

【变式1】求函数sin cos tan x x y x +=

的定义域: 【答案】|,2k x x k Z π?

?≠∈????

【解析】 要使函数有意义,需tan x ≠0,

∴2x k ππ≠+

(k ∈Z )且x ≠k π(k ∈Z ) ∴2

k x π≠(k ∈Z )。 ∴函数的定义域为|,2k x x k Z π?

?≠

∈????。

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

任意角的三角函数一

. 1.2.1 任意角的三角函数(一)2015.12 【预习案】 目标: 1.初步掌握任意角三角函数(正弦、余弦、正切)的定义; 2.初步从任意角三角函数定义认识函数值的符号。 1、初中时在直角三角形中如何定义一个锐角的正弦、余弦、正切? 特别地,r =1时,sin= ___ ,cos= ___ ,tan= _____ (). 5、任意角的三角函数在各个象限的符号有什么规律? 7、终边相同的角有什么关系?他们的三角函数有什么关系? 8、三角函数在坐标轴上的取值情况 角 0 90180270360 弧度数 sin cos tan

【课堂案】 例1、已知角的终边经过点P(-3,4),求角的正弦,余弦和正切值. 强化1: 已知角的终边经过点P(12,-5),求角的正弦,余弦和正切值. 强化2:已知角的终边经过点P(6m,-8m),其中m0,求角的三角函数值. 强化3:已知角的终边在直线y = 3x上,求角的三角函数值。 例 2.确定下列三角函数值的符号. (1) cos 250(2)sin(- ) (3) tan(-672) (4)tan3 强化:1.若角的终边过点(-3,-2)则( ) A.sin tan0 B. cos tan0 C.sin cos0 D.sin cos0 强化:2. 若sin0,tan0则是第象限角? 反之成立吗?

强化:3.设是三角形的一个内角,则sin,cos, tan, tan中,哪些可以取负值?

强化2、 2cos +tan(- 7 )+cos 2 13 +sin 3 2 4 6 2 巩固案】 1、角 的终边上有一点P (a ,a ) , a 0,则sin 的值是( ) 2、已知角 的终边经过点 p (—1, 3 ),则sin + cos 的值是( ) 已知角 的终边上一点P (- 3,m ),且sin = 2m ,求cos 的值. 5、若cos 0,tan 0则在( ) 6、若sin cos 0 ,则 在( ) A. 第一、四象限 B. 第一、三象限 7、下列命题中,正确命题的个数是( ) (1)终边相同的角的同名三角函数的值相同 (3)若sin 0则 是第一、二象限的角 (2)终边不同的角的同名三角函数的值不等 4)若 是第二象限的角,且 p (x,y )是其终边 A.第一象限 B.第一、二象限 C.第三象限 D. 第四象限 上一点,则 cos = -x 例 3、求值: (1) sin1485 (2)cos 9 强化 1、(1)cos1140 (2)tan 19 (3)sin(-1050) (4)tan(-31) 3、 已知角的终边经过点 P ( x ,1),且 cos = 25 5 则x 的值是( 4、 C. 第一、二象限 D. 第二、四象限

任意角的三角函数知识点复习

任意角的三角函数 任意点到原点的距离公式:d = x 2+y 2 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐 标为(,)x y ,它与原点的距离为(0)r r ==>,那么 sin y r α= ;cos x r α=;tan y x α=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。 求解三角函数值 一般角:利用三角函数的定义 特殊角:先化为0至360度之间的角 ) Z (tan )2tan()Z (cos )2cos() Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 例1已知角α的终边经过点(2,3)P -,求α的三角函数值。 练:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。 例2.求下列三角函数的值: (1)9cos 4π (2)11tan()6 π - ,

练: .____________tan600o 的值是 D 3.D 3.C 3 3 .B 33.A -- 例3.确定下列三角函数值的符号: (1)cos 250 ; (2)sin()4π-; (3)tan(672)- ; (4)11tan 3 π . 练: 确定下列三角函数值的符号 (1)cos250?; (2)sin()4 π -; (3)tan(672)?-; (4)tan 3π. 例4 若θ是第二象限角,则( ) A.sin 2 θ >0 B.cos 2 θ <0 C.tan 2 θ >0 D.cot 2 θ<0 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交 与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .

《任意角的三角函数一》 教案苏教版

数学:1.2.1《任意角的三角函数(一)》教案(苏教版必修4) 第 3 课时:§1.2.1 任意角的三角函数(一) 【三维目标】: 一、知识与技能 1.掌握任意角的正弦、余弦、正切的定义; 2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。 3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法 1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神; 2.在学习过程中通过相互讨论培养学生的团结协作精神; 3.通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 三、情感、态度与价值观 1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式; 2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;

3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 【教学重点与难点】: 重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。 难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法: 2. 教学用具:多媒体、实物投影仪. 3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 用与用坐标均可表示圆周上点,那么,这两种表示有什么内在的联系?确切地说, ● 用怎样的数学模型刻画与之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的? 在平面直角坐标系中,设的终边上任意一点的坐标是,它与原点的距离是。当为锐角时,过作轴,垂足为,在中,,,

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

巩固练习_任意角的三角函数_基础

【巩固练习】 1.角θ的终边经过点12? ? ? ??? ,那么tan θ的值为( ) A .12 B .- C . D .2.若角0420的终边上有一点()a ,4-,则a 的值是( ) A .34 B .34- C .34± D .3 3.下列三角函数值结果为正的是( ) A .cos100° B .sin700° C .2tan 3π??- ??? D .9sin 4π??- ??? 4.化简0sin 390的值是( ) A . 12B .12-C .5.若42π π θ<<,则下列不等式成立的是( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C .sin θ>tan θ>cos θ D .tan θ>sin θ>cos θ 6.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .4 8.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.5sin90°+2cos0°―3sin270°+10cos180°=________。 10.若α为第二象限角,则|sin |cos sin |cos | αααα-=________。 11.已知角α的终边经过点(230,2cos30)P sin -o o ,则cos α=。 12.已知角α的终边在直线2y x =上,则sin α=。

必修四任意角的三角函数(一)(附答案)

任意角的三角函数(一) [学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等. 知识点一 三角函数的概念 1.利用单位圆定义任意角的三角函数 如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: (1)y 叫做α的正弦,记作sin α, 即sin α=y ; (2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x 叫做α的正切,记作tan α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数. 2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x . 思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗? 答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号 口诀概括为:一全正、二正弦、三正切、四余弦(如图). 思考 三角函数在各象限的符号由什么决定? 答案 三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r 总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.

任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

3知识讲解_任意角的三角函数_基础

任意角的三角函数 【学习目标】 1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号. 2.理解单位圆、正弦线、余弦线、正切线的概念及意义. 3.会应用三角函数的定义解决相关问题。 【要点梳理】 要点一:三角函数定义 设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α= ≠. 要点诠释: 三角函数的值与点P 在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离r = 那么sin α= ,cos α=,tan y x α=。 要点二:三角函数在各象限的符号 三角函数在各象限的符号: 正切、余切 余弦、正割 正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦。 要点诠释: 口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正。 要点三:诱导公式一 终边相同的角的同一三角函数的值相等 sin(2)sin k απα+?=,其中k Z ∈ cos(2)cos k απα+?=,其中k Z ∈ tan(2)tan k απα+?=,其中k Z ∈ 要点诠释: 该组公式说明了终边相同的角的同一三角函数的值相等这个结论。要注意在三角函数中,角和三角函

数值的对应关系是多值对应关系,即给定一个角,它的三角函数值是唯一确定的(除不存在的情况);反之,给定一个三角函数值,有无穷多个角和它对应. 要点四:单位圆中的三角函数线 圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边(或其反向延长线)相交于点T (或T '),则有向线段0M 、0N 、AT(或AT ')分别叫作α的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段. 要点诠释: 三条有向线段的位置: 正弦线为α的终边与单位圆的交点到x 轴的垂直线段; 余弦线在x 轴上; 正切线在过单位圆与x 轴的正方向的交点的切线上; 三条有向线段中两条在单位圆内,一条在单位圆外. 【典型例题】 类型一:三角函数的定义 例1.已知角α的终边经过点P (-4a ,3a )(a ≠0),求sin α,cos α,tan α的值。 【思路点拨】先根据点P (-4a ,3a )求出OP 的长;再分a >0,a <0两种情况结合任意角的三角函数的定义即可求出结论 【答案】35,45-,34-或35-,45,34 - 【解析】 5||r a ==。 若a >0,则r=5a ,α是第二象限角,则 33sin 55 y a r a α= ==, 44cos 55 x a r a α-===-, 33tan 44 y a x a α===--, 若a <0,则r=-5a ,α是第四象限角,则 3sin 5α=-,4cos 5α=,3tan 4α=-。 【总结升华】 本题主要考查三角函数的定义和分类讨论的思想。三角函数值的大小与点在角的终边上的位置无关,只与角的大小有关。要善于利用三角函数的定义及三角函数的符号规律解题。 举一反三: 【变式1】已知角α的终边在直线y =上,求sin α,cos α,tan α的值。 【答案】1221,22 --

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习 一、选择题 1.下列选项中与-80°终边相同的角为( ) A. 100° B. 260° C. 280° D. 380° 2.在平面直角坐标系中,角 3πα+ 的终边经过点P (1,2),则sin α=( ) 3.若5sin 13α=- ,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125 - 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A. π3 B. π6 C. -π3 D. -π6 5.已知角α的终边经过点(sin 48,cos48)P ??,则 sin(12)α?-=( ) A. 12 C. 12- D. 6.若12cos 13x = ,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-512 7.若函数 ()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f π π-= B. )3()3(ππf f <- C. )3()3(π πf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( ) A .sin 0>θ B .cos 0<θ C .tan 0>θ D .sin tan 0>θθ 9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .3 D .4 10.已知tan 2α ,其中α为三角形内角,则cos α=() A. 5 - D.

二、填空题 11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______. 12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1 3,则 sin β=_________. 14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度. 15.弧长为3π,圆心角为135°的扇形,其面积为____. 三、解答题 16.已知角α的终边经过点P (54,5 3-). (1)求 sin α的值. (2) 17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个 同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的 半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为 9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最 大值?

任意角的三角函数一

【预习案】 目标: 1.初步掌握任意角三角函数(正弦、余弦、正切)的定义; 2.初步从任意角三角函数定义认识函数值的符号。 1、 初中时在直角三角形中如何定义一个锐角的正弦、余弦、正切? 2、 写出下列特殊锐角的正弦,余弦和正切值 3、课本如何定义的任意角的三角函数? 4、三角函数定义:设α是一个任意角,在它的终边上任取一点P (y x ,),它与原点的距离 r = ,则 )._____( tan ____,cos ____,sin ===ααα 特别地,r =1时,)._____(tan ____,cos ____,sin ===ααα 5、任意角的三角函数在各个象限的符号有什么规律? 6、三角函数在各象限的符号 αsin αcos αtan 7、终边相同的角有什么关系?他们的三角函数有什么关系? 8、三角函数在坐标轴上的取值情况 y o x y o x y o x

【课堂案】 例1、已知角α的终边经过点P(4,3-),求角α的正弦,余弦和正切值. 强化1: 已知角α的终边经过点P(5,12-),求角α的正弦,余弦和正切值. 强化2:已知角θ的终边经过点P )8,6(m m -,其中0≠m ,求角θ的三角函数值. 强化3:已知角α的终边在直线x y 3=上,求角α的三角函数值。 例2.确定下列三角函数值的符号. (1) 250cos (2))4 sin(π - (3) )672tan( - (4)tan π3 强化:1.若角α的终边过点(-3,-2)则( ) A.0tan sin >αα B.0tan cos >αα C.0cos sin >αα D.0cos sin <αα 强化:2. 若0tan ,0sin ><θθ则θ是第 象限角? 反之成立吗? 强化:3.设α是三角形的一个内角,则2 tan ,tan ,cos ,sin α ααα中,哪些可以取负值?

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

知识讲解_任意角的三角函数_基础

任意角的三角函数 编稿:丁会敏 审稿:王静伟 【学习目标】 1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号. 2.理解单位圆、正弦线、余弦线、正切线的概念及意义. 3.会应用三角函数的定义解决相关问题. 【要点梳理】 要点一:三角函数定义 设α是一个任意角,它的终边与半径是r 的圆交于点(,)P x y , 则r =: (1) y r 做α的正弦,记做sin α,即sin y r α=; (2) x r 叫做α的余弦,记做cos α,即cos x r α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α=≠. 要点诠释: (1)三角函数的值与点P 在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离r = 那么sin α= ,cos α=,tan y x α=. (2)三角函数符号是一个整体,离开α的sin 、cos 、tan 等是没有意义的,它们表示的是一个比值,而不是sin 、cos 、tan 与α的积. 要点二:三角函数在各象限的符号 三角函数在各象限的符号: 正切、余切 余弦、正割 正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦. 要点诠释: 口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正. 要点三:单位圆中的三角函数线 圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边

任意角的三角函数及同角三角函数的基本关系式同步测试(含答案)

任意角的三角函数及同角三角函数的基本关系式同步测试 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知的正弦线与余弦线相等,且符号相同,那么的值 为() A. B. C. D. 2.若为第二象限角,那么的值() A.正值 B.负值C.零 D.不能确定 3.已知的值() A.-2 B.2 C. D.- 4.函数的值域是() A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1} 5.已知锐角终边上一点的坐标为(则= ()

A. B.3 C.3- D.-3 6.已知角的终边在函数的图象上,则的值为()A. B.- C.或- D. 7.若那么2的终边所在象限为() A.第一象限 B.第二象限 C.第三象 限 D.第四象限 8.、、的大小关系为() A. B. C. D. 9.已知是三角形的一个内角,且,那么这个三角形的形状 为() A.锐角三角形B.钝角三角形 C.不等腰的直角三角形 D.等腰直角三角形

10.若是第一象限角,则中能确定为正值有() A.0个 B.1个 C.2 个 D.2个以上 11.化简(是第三象限角)的值等于() A.0 B.- 1 C. 2 D.-2 12.已知,那么的值为() A. B.- C.或- D.以上全错 二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知则 . 14.函数的定义域是_________. 15.已知,则=______. 16.化简 .

三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知 求证:. 18.若, 求角的取值范围. 19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求 的值. 20.已知是恒等式. 求a、b、c 的值.

任意角的三角函数说课稿

任意角的三角函数说课稿 各位老师你们好!今天我要说的课题是《任意角的三角函数》。 一、说教材 1、地位和作用: 本节课是人教版数学(必修)4第一章三角函数的第一节任意角的三角函数第一课时。它是本章教学内容的基本概念, 也是学好全章内容的关键,对三角内容的整体学习至关重要,同时它又为平面向量、解析几何等内容的学习作必要的准备,也是今后高考的必考内容之一。 根据本教材的结构和内容分析,结合学生的认知特点和心理特征,我制定了如下的教学目标: 2、教学目标: 知识与技能方面: 掌握任意角的三角函数的定义,会求角α的各三角函数值;理解并掌握三角函数在各象限的符号及终边相同角的诱导公式,最后要理解三角函数的两域。 方法与过程上: 体验三角函数概念的产生、发展过程,通过对三角函数值的符号,诱导公式(一)的推导,提高学生分析、探究、解决问题的能力;领悟直角坐标系的工具功能,丰富数形结合的思想. 情感态度与价值观方面: 培养学生通过现象看本质的唯物主义观,培养学生实事求是的科学态度. 本着高一新课程标准,在吃透教材基础上,我确定了以下教学重难点: 3、重点、难点: 重点是正确理解任意角三角函数的定义及分别在各个象限的符号判断法,终边相同角的诱导公式(一) 难点是把三角函数理解为以实数为自变量的函数,以及单位圆的应用。 为了讲清教材的重难点,使学生能够达到既定的教学目标,在重点上有所掌握,难点上有所突破,我再从教法和学法上谈谈: 二、说教、学方法 一方面,我们都知道数学是集抽象与实践为一体的重要学科,因此在教学过程中,不仅要使学生“知其然”还要使学生“知其所以然”。考虑到学生的现状,我主要采取“温故知新,逐步拓展”的形式让学生真正参与到教学,在学习中,得到体验。通过复习锐角三角函数的定义结合前面角的概念的推广提出问题:如何修正三角函数的定义?进一步扩展所学内容,发展新知识,从而激起学生探求新知的欲望,调动学生参与学习的积极性。 教学中运用多媒体工具提高直观性增强趣味性,并注意用新课程理念处理传统教材,使学生在学习活动自主探索、动手实践、合作交流,教师发挥引导者、合作者的作用,引导学生主动参与、揭示本质、经历过程、收获成果。 根据本节课内容以及学生认知特点和我自己的教学风格,主要以“教师主导、学生主体”的原则,采用“启发、引导发现式”教学方法组织教学. 另一方面,人们常说:“现代的文盲不是不懂字的人,而是没有掌握学习方法的人”,因而,我在教学过程中特别重视学法的指导。让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:分析归纳

任意角的三角函数练习题及标准答案详解

任意角的三角函数练习题及答案详解

————————————————————————————————作者:————————————————————————————————日期:

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+ 6π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+ 2 3 π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7. 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E ∩F 是区间( )

任意角和弧度制及任意角的三角函数知识点与题型归纳

?高考明方向 1. 了解任意角的概念? 2■了解弧度制的概念,能进行弧度与角度的互化 3■理解任意角的三角函数(正弦、余弦、正切)的定义. ★备考知考情 1. 三角函数的定义与三角恒等变换等相结合, 考查三角函数求值问题. 2. 三角函数的定义与向量等知识相结合,考查三角函数定义的应用. 3■主要以选择题、填空题为主,属中低档题 一、知识梳理《名师一号》P47 知识点一角的概念⑴分类:按终边位置不同分为象限角和轴线角. ⑵终边相同的角:所有与角a终边相同的角,连同角a 在内,可构成一个集合S = { 3#a+ k 360°, k€ Z}. 《名师一号》P47 对点自测1、2 1、《名师一号》P48问题探究问题1、2 相等的角终边相同,终边相同的角也一定相等吗?相等 1

的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍. 角的表示形式是唯一的吗?角的集合的表示形式不是唯一的,女口:终边在y轴的负半轴上的角的集合可以表示为{x|x= k 360°- 90°, k € Z},也可以表示为{x|x= k 360°+ 270°, k€ Z}. (补充) 2、正角> 零角> 负角 3、下列概念应注意区分 小于90°的角;锐角;第一象限的角;0°?90°的角. 4、(1)终边落在坐标轴上的角 1)终边落在x轴非负半轴上的角 {x|x= 2k n k€ Z} 2)终边落在x轴非正半轴上的角 {x|x= 2k n k€ Z} 终边落在x轴上的角 {x|x= k n, k € Z} 3)终边落在y轴非负半轴上的角 {x|x= 2kk€ Z} 4)终边落在y轴非正半轴上的角 {x|x= 2k廿号,k€ Z} 2

(精心整理)任意角的三角函数一

目标: 1.初步掌握任意角三角函数(正弦、余弦、正切)的定义; 2.初步从任意角三角函数定义认识函数值的符号。 1、 初中时在直角三角形中如何定义一个锐角的正弦、余弦、正切? 2、 写出下列特殊锐角的正弦,余弦和正切值 3、课本如何定义的任意角的三角函数? 4、三角函数定义:设α是一个任意角,在它的终边上任取一点P (y x ,),它与原点的距离 r = ,则 )._____( tan ____,cos ____,sin ===ααα 特别地,r =1时,)._____(tan ____,cos ____,sin ===ααα 5、任意角的三角函数在各个象限的符号有什么规律? 6 、三角函数在各象限的符号 αsin αcos αtan 7、终边相同的角有什么关系?他们的三角函数有什么关系? 8 y o x y o x y o x

例1、已知角α的终边经过点P(4,3-),求角α的正弦,余弦和正切值. 强化1: 已知角α的终边经过点P(5,12-),求角α的正弦,余弦和正切值. 强化2:已知角θ的终边经过点P )8,6(m m -,其中0≠m ,求角θ的三角函数值. 强化3:已知角α的终边在直线x y 3=上,求角α的三角函数值。 例2.确定下列三角函数值的符号. (1) 250cos (2))4 sin(π - (3) )672tan( - (4)tan π3 强化:1.若角α的终边过点(-3,-2)则( ) A.0tan sin >αα B.0tan cos >αα C.0cos sin >αα D.0cos sin <αα 强化:2. 若0tan ,0sin ><θθ则θ是第 象限角? 反之成立吗? 强化:3.设α是三角形的一个内角,则2 tan ,tan ,cos ,sin α ααα中,哪些可以取负值? 例3、求值:

高一数学《任意角的三角函数》教案

任意角的三角函数 一、教学内容分析: 新知识的发生是可能的,自然的。 三、设计思想 五、教学重点和难点: 1.教学重点:任意角三角函数的定义. 2.教学难点:正弦、余弦、正切函数的定义域. 六、教学过程 第一部分——情景引入 问题1:如图是一个摩天轮,假设它的中心离地面的高度为o h ,它的直径为2R ,逆时针方向匀速转动,转动一周需要360秒,若现在你坐在座舱中,从初始位置OA 出发(如图1所示), 过了30秒后,你离地面的高度h 为多少?过了45秒呢?过了t 秒呢? 【设计意图】:高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解。 图1

第二部分——复习回顾锐角三角函数 让学生自主思考如何解决问题:“过了30秒后,你离地面的高度为多少?” 【分析】:作图如图2很容易知道:从起始位置OA 运动30秒后到达P 点位置,由题意知030=∠AOP ,作PH 垂直地面交OA 于M ,又知MH =o h ,所以本问题转变成求PH 再次转变为求PM 。 要求PM 就是回到初中所学的解直角三角形的问题即锐角的三角函数。 问题2:锐角α的正弦函数如何定义? 【学生自主探究】:学生很容易得到 R MP OP MP | |||||sin = = α?αsin ||R MP =?αsin ||0R h PH += ?h αsin 0R h += 所以学生很自然得到“过了30秒后,过了45秒,你离地面的高度h 为多少?” 00130sin R h h += 00245sin R h h += 【教师总结】:0t 在锐角的范围中,0 0sin t R h h += 第三部分——引入新课 问题3:请问t 的范围呢?随着时间的推移,你离地面的高度h 为多少?能不能猜想 00sin t R h h +=? 【分析】:若想做到这一点,就得把锐角的正弦推广到任意角的正弦。今天我们就要来学习任意角的三函数角函数。 问题4:大家根据第一象限角的正弦函数的定义,能否也给出第二象限角的定义呢? 【学生自主探究】:学生通过上面已知知识得到 | |||sin OP MP = αR y P = 学生定义好第二象限角后,让学生自己算出摩天 H 图2

相关主题