搜档网
当前位置:搜档网 › 图像颜色特征提取原理

图像颜色特征提取原理

图像颜色特征提取原理
图像颜色特征提取原理

一、颜色特征

1 颜色空间

1.1 RGB 颜色空间

是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、

G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。

1.2 HIS 颜色空间

是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。

1.3 HSV 颜色模型

HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。

已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为:

S =(M A X - M IN)/M A X

H = 60*(G- B)/(M A X - M IN) R = M A X

120+ 60*(B – R)/(M A X - M IN) G= M A X

240+ 60*(R – G)/(M A X - M IN) B = M A X

V = M A X

2 颜色特征提取算法

2.1 一般直方图法

颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下:

H(k)= n k/N (k=0,1,…,L-1) (1)

其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。

由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。

2.2 全局累加直方图法

全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

到的颜色数。在全局累加直方图中,相邻颜色在频数上是相关的。相比一般直方图,它的存储量和计算量有很小的增加,但是它消除了一般直方图中常见的零值以及一般直方图量化过细过粗检索效果都会下降的缺陷。

2.3 局部累加直方图法

把色度沿分布轴分成若干个局部区间的方法称为局部累加直方图法。它的基本原理是:色度轴上各种颜色的分布是连续过渡的,各颜色区之间不存在截然不同的界限。先采用 60°为区间的长度,将 H 轴分成 6 个不重叠的局部区间[60k,60(k+1)],k=0,1,…,5,计算出每个局部区间的累加直方图,再改变区间划分为[30+60k,(30+60(k+1))mod 360],k=0,1,…,5,并计算出这时每个局部区间的累加直方图,最后将这两次计算的累加直方图逐项相加取平均,作为最终的特征直方图用于检索。

2.4 颜色参量的统计特征法

由于直方图法在颜色的表达中没有考虑到人眼的视觉感受,忽略颜色参量含义及其对图像像素间关系,为弥补直方图法的不足,提取颜色特征,对颜色参量进行分析、统计、处理,在应用中表现出好的效果。RGB 和 HIS 颜色空间在颜色参量的统计特征中具有重要的作用。在实际的图像处理中,RGB 颜色系统的 r,g,b 值计算公式如下:

r=R/(R+G+B),g=G /(R+G+B),b=B/(R+G+B) (3)

从上面的公式(3)可以推断出 RGB 颜色系统的 r,g,b 只是比值与光照强度变化无关。由 RGB 向 HIS 空间进行转换,可以得到 HIS 值,转换方法如下:

Max=max(R,G,B),Min=min(R,G,B) (4)

I=0.229R+0.587G+0.114B (5)

其中,R,G,B,S,I ∈[0,1],H ∈[0,360]。

从公式(7)可以看出,HIS 颜色空间的优势在于其本身的颜色参量间相关性差,尤其参量 I 和参量 H、S 之间,具有对外界环境的惰性特征,我们可以只对 S 和 H 进行分析来消除光照对采样图像的影响。另一方面,HSI 颜色空间与人眼的视觉特性比较接近颜色参量较好的表达了人眼视

觉的特点。

2.5颜色的一阶矩 ( mean ) μi和二阶矩 (variance)σi

2.6基于小波的分块图像颜色特征提取

基于分块的 HSI分量低频能量的颜色特征提取方法,即首先根据人眼对图像中心区域关注程度较高的特点对图像进行区域分块,然后对每一块 HSI分量的小波分解低频子带的颜色特征进行提取,并通过对不同区域分块颜色特征的加权获得图像的颜色特征

2.6.1图像的分块加权策略

根据 HVS特性,一幅图像的中心区域通常更会引起人眼的注意,这样为了突出图像中心区域特征的重要性,我们首先对图像进行非均匀分块 (参见图 1) ,设图像的大小为 M × N,其中标注为 1的区域大小为 ( 2M /3) ×( 2N /3) ,标注为 2~5的区域其大小为 (M /6) ×(N /6) ,标注为 6、 7区域的大小为(M /6) ×( 2N /3) ,标注为 8、 9区域的大小为 ( 2M /3) ×(N /6) .对每一分块图像的颜色特征采用类似标准正态分布函数φ( x) = e -x ^2/2 ( x≥0)作为权值对其加权处理 (参见图 2) ,其中轴表示图像中的象素点距离图像块中心点的距离,原点对应原图像中心点, 1对应图像顶点距离中心点的距离, φ( x)为对应点 x的特征权值.这样,对图像中不同块的颜色特征采用不同的加权特征处理,对于原图像中心区域块的特征,其权值较大一些,而对图像边缘区域块的权值相对要小一些,突出了图像中心区域颜色特征的作用.

2.6.2基于小波变换的颜色特征

在进行图像检索时,为了准确提取表征原始图像的颜色信息,所选择的颜色空间应尽可能符

合 HVS对色彩的感知特性,这里采用HSI作为颜色空间.对于一幅图像,在图像的小波多尺度表示方法中,图像的主要信息都集中在低频子带中,包括图像的颜色、形状等多种特征;而图像的细节信息主要集中在中高频部分. 此种颜色特征从低频子带中提取,从而大大节省了图像颜色特征的计算时间.对图像每一分块的 H、 S、 I分量进行一级小波分解,分别提取其低频子带的平均能量作为颜色特征,具体计算公式如下:

2.6.3 图像颜色特征的提取算法

Step 1 . 对于图像的第 k ( k = 1, 2, …, 9)个分块,分别对H、S、I分量进行一级小波分解,得到第 k 块的颜色特征向量:

F(k)= ( E kH, E kS , E kI) , k = 1, 2, …, 9

Step 2 .综合各分块的特征向量,获得整幅图像的颜色特征向量: F = ( f(1), f(2), …, f(9))

Step 3 .设图像的中心坐标 (即中间 1块的中心坐标 )为( x0 , y0 ) ,计算第 k块的中心坐标 ( x k , y k)与图像中心坐标的距离:

2.6.4 相似度计算

像 p和 q的综合加权颜色特征向量,那么两幅图像的相似度距离为:

二、纹理特征

1.纹理定义

1)在邻近的像素点之间存在着亮度层次上的有意义的变化,正是由于这些变化图像中才展现出各种各样的纹理. 2)纹理是图像区域的一个属性,一个像素点的纹理是没有意义的.因此,纹理涉及到上下文,与一个空间邻居关系内的像素的灰度值有关,换句话说,纹理跟图像像素灰度值的空间分布有关.这个空间关系的大小取决于纹理的类型,或者定义纹理的基元的大小.

3)纹理是一个在某种空间尺度大于图像分辨率下的同质(homogeneous)属性一些研究人员以人的视觉系统来描述纹理:纹理没有始终如一的亮度,但仍然可以被人像同质区域那样所观察到.

4)图像纹理在不同尺度和不同分辨率下都能被感知.例如,考虑一幅砖墙所表示的纹理.在一个粗糙的分辨率下,所观察到的纹理是由墙上个体的砖块所形成,而砖块内部的细节会丢失;在一个高的分辨率下,仅有少量的砖块在视野范围以内,观察到的纹理会显示出砖块的细节.在不同的距离和不同的视觉注意程度下,纹理区域都会给出不同的解释.在一个正常注意力和标准距离下,它给出了用来表征特定纹理的宏观规则性的概念.当近距离非常仔细地观察时,可以注意到一些同质区域和边,它们有时候会构成纹理素(texels)最后,纹理是依赖于尺度的.当一个区域内基元对象的数目足够大时才会被感知为纹理.如果仅有少量的基元数目,那么会被观察为一组可数的对象而不是一幅纹理图像.

2.纹理分析应用

纹理分析主要有四个研究方向:纹理分类、纹理分割、纹理检索以及纹理形状抽取.纹理分类的研究问题是从一个给定纹理类别中识别出给定纹理区域(纹理图像).相对于纹理分类中一个均一纹理区域的类别可以通过从该区域中计算出的纹理特征所确定,纹理分割关注自动确定一幅纹理图像中不同纹理区域的边界,.纹理检索是研究关于利用纹理相似度进行图像检索。

3.纹理特征提取

方法大致归为四大类:统计分析方法,几何特征方法,信号处理方法及关键点方法。其中统计分析方法、几何特征方法和信号处理方法在纹理分析中因为提出较早,所以影响很大。关键点方法产生较晚,但是由于纹理特征的鲁棒性,有很大的发展空间

3.1统计分析方法

统计分析纹理描述方法是常用的纹理分析方法,也是纹理研究最多最早的一类方法.统计分析方法通过统计图像的空间频率、边界频率以及空间灰度依赖关系等来分析纹理一般来讲,纹理的细致和粗糙程度与空间频率有关.细致的纹理具有高的空间频率,例如布匹的纹理是非常细致的纹理,其基元较小,因而空间频率较高;低的空间频率常常与粗糙的纹理相关,比如大理石纹理一般是粗糙的纹理,其基元较大,具有低的空间频率.因此,我们可以通过度量空间频率来描述纹理.除了空间频率以外,每单位面积边界数也是度量纹理的细致和粗糙程度的另外一种统计方法.边界频率越高说明纹理越精细,相反,低的边界频率与粗糙的纹理息息相关.此外,统计分析方法还从描述空间灰度依赖关系的角度出发来分析和描述图像纹理.常用的统计纹理分析方法有,自相关函数(Autocorrelation Features ) 边界频率(Edge Frequency),空间灰度依赖矩阵(the Spatial Grey Level Dependence Matrix, SGLDM) 等.相对于结构分析方法,统计分析方法并不刻意去精确描述纹理的结构.从统计学的角度来看,纹理图像是一些复杂的模式,可以通过获得的统计特征集来描述这些模式.

3.1.1自相关函数

自相关函数(Autocorrelation Features } ACF) 就是一种常用的空间频率纹理描述方法.在这个方法中,纹理的空间组织用评价基元间线性空间关系的相关系数来描述.自相关函数是用来度量在给定一个位移下的纹理与原来位置的纹理的相似程度.如果在给定方向下,自相关值下降的越快,那么移动后的纹理与原来的纹理就越不相关,也就是移动后的纹理与原来的纹理越不相似,这说明纹理的基元就很小;反之,如果自相关值下降的越慢,那么移动后的纹理与原来的纹理就越相关,也就是移动后的纹理与原来的纹理越相似·,纹理的基元就越大.如果纹理基元较大,当距离增加时,自相关函数的值就会缓慢的减小,然而如果纹理由小基元构成,它就会很快的减小.如果纹理的基元具有周期性,那么自相关函数就会随着距离而周期地变化.图像函数的自相关函数可定义如下:

自相关函数纹理分析方法通过计算图像纹理的自相关系数来描述纹理,纹理的自相关系数的变化趋势反映了纹理的粗细程度,然而,对于同样粗糙(细致)但完全不同的两种纹理,它们的自相关系数很可能比较相近,很难将这两种纹理区分开来.

3.1.2边界频率

与自相关函数方法中用空间频率来区分纹理的粗细不同,边界频率(Edge Frequency) 认为纹理可以用每单位面积内边界来区分纹理.粗糙的纹理由于局部领域内的灰度相似,并没有太大的变化,因而每单位面积内的边界数会较小;细致的纹理由于局部邻域内的灰度变化较快,所以每单位面积内的边界数会较大.对于定义在一个邻域N内的一

幅纹理图像f和每一个距离d,边界频率可以计算出一个依赖于距离d的纹理描述函数E:

图像区域的边界频率在一定程度上反映了该区域内纹理的粗细程度,边界频率函数就是从这种思路出发来描述纹理的,这种纹理分析方法的缺点是虽然边界频率能部分反映纹理的微结构信息,但这种描述是粗略的,缺乏微结构形状方面的信息描述.另外,公式(2)中的边界频率函数对图像的大小非常敏感,一个改进的办法是用图像的大小去归一化该边界频率函数.

3.1.3 基于一阶直方图的统计方法

灰度直方图简明总结了图像中的统计信息,其形状提供了一些图像信息,例如,窄带分布的直方图表明低对比度的图像.一阶直方图统计方法是最简单的纹理特征提取方法,利用图像的直方图提取诸如均值、方差、能量以及熵等特征来描述纹理.如果用p(i), i=1,2,… ,G,来表示图像的一阶直方图,则相关的纹理特征有:

3.1.4 空间灰度依赖矩阵

虽然一阶直方图纹理特征非常简单,并且易于计算,然而,这类方法描述纹理特征能力很差,并没有充分利用图像的纹理信息.通过大量的视觉感觉实验发现具有相同二阶统计量的一对纹理如果不仔细审视人眼是不能把它们区分开来,这一发现可以用图4给出的例子得到验证.图4(a)中的图像由一对具有相同二阶统计量的纹理区域所构成.如果不仔细观察,人眼

很难将图像中的不同纹理区域区分开来.

图4.具有相同二阶统计量的纹理对.每幅图像的上下两部分是由不同的纹理基元所构成. (a)人眼如果不仔细观察很难区分出两个区域. (b)人眼可以立即区分出两个不同的区域. 实验结果表明二阶统计量在纹理描述方面非常有用,常用的统计方法是二阶统计方法,其中最著名的二阶统计方法是空间灰度依赖矩阵(the Spatial Grey Level Dependence Matrix, SGLDM)(也称共生矩阵,Cooccurrence Matrix) 该方法通过统计满足特定位移关系和特定灰度值的像素点对发生的概率来构造矩阵,这

些矩阵是对称的,是邻近像素之间的角度函数以及邻近像素之间的距离的函数. 以450为间隔的四个空间灰度依赖矩阵分别定义为:

图5给出了一个空间灰度依赖矩阵计算过程的例子.图5(a)为一幅大小为4x4具有4个灰度级的图像,灰度范围为0一3.图5(b)显示空间灰度依赖矩阵的一般形式.例如,在距离为1的水平矩阵PH的(2,1)位置上的元素是水平相邻的两个灰度值为2和1的次数的总数.在图5(c)到图5(f)中,我们计算出了四个距离为1的灰度空间依赖矩阵.

Haralick 定义了14个能从空间灰度依赖矩阵上计算出的二阶统计函数,其中P(i,j)表示图像中(i,j)位置的灰度值,w是图像的宽度,这些统计函数为:

(1)能量(Energy, or Uniformity, or Angular Second Moment)

(2)对比度(Contrast, or Momentum)

(3)相关性(Correlation)

(4)方差(Variance, or Sum of squares)

(5)逆差矩(Inverse Difference Moment)

(6)和平均(Sum Average)

(7)和方差(Sum Variance)

(8)和熵(Sum Entropy)

(9)熵(Entropy)

(10)差方差(Difference Variance) variance of p x-y

(11)差熵(Difference Entropy)

(12)相关性信息度量(Information Measure of Correlation)

HXY-HXY1/max{HX, HY}其中HX和HY是p x和p y的熵

(13)另一个相关性信息度量(Another Information Measure of Correlation)

(14)最大相关性系数(Maximal Correlation Coefficient)

在这14个纹理特征中,并不是每一个纹理特征都非常有效果,有些特征计算复杂度高。通过实验,Conners和Harlow 建议用能量(Energy),熵(Entropy)相关性(Correlation),逆差距(Inverse Different Moment)和对比度(Contrast)等五个特征来描述纹理就能达到非常好的效果.

特征选择与特征提取

模式类别的可分性判据 在讨论特征选择和特征压缩之前,我们先要确定一个选择和提取的原则。对一个原始特征来说,特征选择的方案很多,从N 维特征种 选择出M 个特征共有()!!! M N N C M N M = -中选法,其中哪一种方案最佳, 则需要有一个原则来进行指导。同样,特征的压缩实际上是要找到M 个N 元函数,N 元函数的数量是不可数的,这也要有一个原则来指导找出M 个最佳的N 元函数。 我们进行特征选择和特征提取的最终目的还是要进行识别,因此应该是以对识别最有利原则,这样的原则我们称为是类别的可分性判据。用这样的可分性判据可以度量当前特征维数下类别样本的可分性。可分性越大,对识别越有利,可分性越小,对识别越不利。 人们对的特征的可分性判据研究很多,然而到目前为止还没有取得一个完全满意的结果,没有哪一个判据能够完全度量出类别的可分性。下面介绍几种常用的判据,我们需要根据实际问题,从中选择出一种。 一般来说,我们希望可分性判据满足以下几个条件: 1. 与识别的错误率由直接的联系,当判据取最大值时,识别的错误率最小; 2. 当特征独立时有可加性,即: ()()121 ,,,N ij N ij k k J x x x J x ==∑

ij J 是第i 类和第j 类的可分性判据,ij J 越大,两类的可分程度 越大,()12,,,N x x x 为N 维特征; 3. 应具有某种距离的特点: 0ij J >,当i j ≠时; 0 ij J =,当i j =时; ij ji J J =; 4. 单调性,加入新的特征后,判据不减小: ()()12121,,,,,,,ij N ij N N J x x x J x x x x +≤ 。 但是遗憾的是现在所经常使用的各种判据很难满足上述全部条件,只能满足一个或几个条件。 基于矩阵形式的可分性判据 1. 类内散度矩阵 设有M 个类别,1,,M ΩΩ ,i Ω类样本集()()(){}12,,,i i i i N X X X ,i Ω类 的散度矩阵定义为: () ()() ( )()() ( ) 1 1i N T i i i i i w k k k i S N == --∑X m X m 总的类内散度矩阵为: ()() ()() () ()() () () 1 1 1 1 i N M M T i i i i i w i w i k k i i k i S P S P N ==== Ω= Ω--∑∑∑X m X m 2. 类间散度矩阵 第i 个类别和第j 个类别之间的散度矩阵定义为: () () () ( )() () ( ) T ij i j i j B S =--m m m m 总的类间散度矩阵可以定义为:

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

图像特征提取综述

图像特征提取的定位是计算机视觉和图像处理里的一个概念,表征图像的特性。输入是一张图像(二维的数据矩阵),输出是一个值、一个向量、一个分布、一个函数或者是信号。提取特征的方法千差万别,下面是图像特征的一些特性: 边缘 边缘是两个区域边界的像素集合,本质上是图像像素的子集,能将区域分开。边缘形状是任意的,实践中定义为大的梯度的像素点的集合,同时为了平滑,还需要一些算法进行处理。角 顾名思义,有个突然较大的弧度。早起算法是在边缘检测的基础上,分析边缘的走向,如果突然转向则被认为是角。后来的算法不再需要边缘检测,直接计算图像梯度的高度曲率(合情合理)。但会出现没有角的地方也检测到角的存在。 区域 区域性的结构,很多区域检测用来检测角。区域检测可以看作是图像缩小后的角检测。 脊 长形的物体,例如道路、血管。脊可以看成是代表对称轴的一维曲线,每个脊像素都有脊宽度,从灰梯度图像中提取要比边缘、角和区域都难。 特征提取 检测到特征后提取出来,表示成特征描述或者特征向量。 常用的图像特征:颜色特征、 纹理特征 形状特征 空间关系特征。 1.颜色特征 1.1特点:颜色特征是全局特征,对区域的方向、大小不敏感,但是不能很好捕捉局部特征。 优点:不受旋转和平移变化的影响,如果归一化不受尺度变化的影响。 缺点:不能表达颜色空间分布的信息。 1.2特征提取与匹配方法 (1)颜色直方图 适用于难以自动分割的图像,最常用的颜色空间:RGB和HSV。 匹配方法:直方图相交法(相交即交集)、距离法、中心距法、参考颜色表法、累加颜色直方图法。 对颜色特征的表达方式有许多种,我们采用直方图进行特征描述。常见的直方图有两种:统计直方图,累积直方图。我们将分别实验两种直方图在图像聚类和检索中的性能。 统计直方图 为利用图像的特征描述图像,可借助特征的统计直方图。图像特征的统计直方图实际是一个1-D的离散函数,即: 上式中k代表图像的特征取值,L是特征可取值个数,是图像中具有特征值为k的像素的个数,N是图像像素的总数,一个示例如下图:其中有8个直方条,对应图像中的8种灰度像素在总像素中的比例。

图像特征提取与分析复习资料

图像分割概念:图像分割就是把图像分成各特性的区域并提取出感兴趣目标的技术和过程。这些区域互相不交叉,每一个区域都满足特定区域的一致性。医学图像的特点:成像设备的局限性、组织的蠕动-----伪影和噪声局部体效应------组织边缘模糊病变组织---------病变边缘不明确不均匀的组织器官-------灰度不均匀模糊、不均匀、个体差异、复杂多样医学图像分割方法的特点1、分割算法一般面向具体的分割任务,没有通用的方法2、重视多种分割算法的有效结合3、需要利用医学中大量领域的知识4、交互式分割方法受到日益重视图像分割算法基于区域的分割方法基于边缘的分割方法基于数学形态学的分割方法灰度阈值法:灰度值域法是把图像的灰度分成不同的等级,然后用设置灰度阈值的方法确定有意义的区域或分割物体的边界. 令f(x,y)原始图像 阈值的选取:1直方图法(极小值点阈值) 2 最小误差阈值 3 迭代阈值分割 4 最大方差阈值分割边缘检测(Edge Detection):基本思想是先检测图像中的边缘点,再按照某种策略将边缘沿点连接成轮廓,从而构成分割区域。边缘:指图像局部亮度变化显著的部分. 边缘的检测方法:最简单的边缘检测方法是并行微分算子法。利用相邻区域的像素值不连续的性

质,采用一阶或二阶导数来检测边缘点。一阶导数求极值点,二阶导数求过零点。一阶梯度算子:Roberts交叉算子Sobel算子 Priwitt 算子二阶拉普拉斯算子:在此基础上LoG 算子 Canny算子 :推导了最优边缘检测算子区域生长(region growing) 基本思想:将具有相似性质的像素集合起来构成区域。具体步骤:先对每个需要分割的区域找一个种子象素作为生长的起点,然后将种子象素周围邻域中与种子象素具有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子象素所在的区域中。将这些新象素当作新的种子象素继续进行上面的过程,直到在没有满足条件的像素可被包括进来。这样一个区域就生长了。解决的问题:① 如何选择一组能正确代表所需区域的种子象素; ② 如何确定在生长过程中能将相邻象素包括近来的准则;③如何确定生长终止的条件或规则例如:每一步所接受的邻近点的灰度级与先前物体的平均灰度级相差小于2。起始第二步第三步558655865586 48974897 4897 228322832283 333333333333 分裂合并(splitting and merging) 基本思想:从整幅图像开始通过不断分裂得到各个区域.具体步骤:先把图像分成任意大小且不重叠的区域,然后再合并或分裂这些区域以满足

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

指纹图像预处理及特征提取算法的研究与实现

2012年1月 内蒙古科技与经济 Januar y 2012 第1期总第251期 Inner M o ngo lia Science T echnolo gy &Economy N o .1T o tal N o .251 指纹图像预处理及特征提取算法的研究与实现 X 张松宇1,杨文斌2 (1.内蒙古机电职业技术学院;2.内蒙古灵奕信息技术有限责任公司,内蒙古呼和浩特 010070) 摘 要:提出了一套完整的基于方向特性的指纹预处理算法,包括前景/背景分割、方向滤波、二值化、细化4部分。特征提取采用8邻域方法提取纹线中的两种细节特征——端点和分叉点。实验结果表明,指纹图像经过预处理算法后提取出了纹线,并且很好地保留了纹线的关键信息,对特征提取奠定了良好的基础。指纹图像经过特征提取后,准确有效地定位了两类特征点。 关键词:指纹;预处理;特征提取 中图分类号:T P391.41 文献标识码:A 文章编号:1007—6921(2012)01—0083—02 自动指纹识别技术大多是依靠指纹的细节特征提取实现指纹的匹配的。准确地提取细节特征是自动指纹识别系统获得高识别率的前提和基础。指纹的细节特征主要指脊线端点和分叉点。在实践中,由于手指本身的因素和采集条件的限制,采集到的指纹图像会不同程度地受到各种噪声的干扰。这种干扰最终会影响系统的识别率。因此,在提取指纹特征前必须对输入的指纹图进行预处理。预处理的目的是:去除原图像中的噪声,把它变成一幅清晰的二值点线细化图,以便于提取正确的细节特征。笔者提出了一套较完善的指纹预处理算法,包括图像分割、方向滤波增强、二值化、细化等步骤,并准确有效地提取出了指纹的细节特征点。1 预处理算法 1.1 规格化和图像分割 规格化的主要目的在于消除指纹采集过程中由于传感器自身的噪声以及因为手指压力不同而造成的灰度差异,将不同的指纹图像的对比度和灰度调整到一个固定的级别上。图像分割是把指纹前景区与背景区分开。前景区域中指纹脊和谷的灰度差是比较大的,因而其灰度统计特性中局部灰度方差是很大的,而对于图像背景区域,这一值是很小的。基于这一特性,我们可以利用图像的局部方差对指纹图像进行分割。规格化与图像分割后的指纹图像见图1。 1.2 方向图滤波 方向图是指纹图像的一种变换表示方式,即用纹线的方向来表示该纹线。方向图有点方向图和块方向图两种,点方向图表示指纹图像中每一像素点脊线的方向,而块方向图则表示指纹图像中每一块 脊线的大致方向。 图1 原始图像的规格化与分割 方向滤波器是一系列与像素点方向有关的滤波器模板,使用时根据方向特性,从中选择一个对应的滤波器进行滤波。笔者使用的方向滤波器有8个滤波器模板组成,滤波时,指纹图中每一点的灰度值由其周围48个点的灰度值及相应的模板系数共同决定(即灰度值与相应的模板系数相乘并把结果相加,然后赋给中心像素点,作为其灰度值)。方向滤波增强后的指纹图像见图2 。 图2 方向滤波后指纹图像 1.3 二值化和细化 二值化的目的是把灰度指纹图像变成0和1的二值图像。笔者采用局部自适应阈值法中的动态阈值法对图像二值化,它可以根据局部灰度值的变化情况调整阈值大小,实验证明该方法效果较好。 二值化后的图像脊线仍具有一定的宽度,为了提高获取特征点精度,需要把脊线细化成为一个像 ? 83?X 收稿日期:2011-11-28

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.sodocs.net/doc/1c8288265.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

图像目标提取及特征计算

摘要 对图像进行研究和应用时,人们往往对图像中的某些部分感兴趣,这些部分常被称为目标或对象 目标或对象特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 本课设需要解决的问题是,利用阈值分割方法,对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。 关键词:阈值分割,边缘检测,像素点

1 绪论 目标的特征提取是图像处理和自动目标识别(ATR)中的一个重要的研究课题,是解决图像识别问题的难点和关键。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。

2 设计原理 2.1 常用的特征提取的方法 提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。 本课程设计是采用的第一种方法,即先对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。其中计算周长时,先需要对二值图像进行边缘检测,然后再统计其像素点。 2.2 阈值分割原理 图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像[1]。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域布局有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。 2.2.1 阈值分割思想和原理 阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

图像特征提取算法

Histograms of for Human Detection Navneet Dalal and Bill Triggs INRIA Rh?o ne-Alps,655avenue de l’Europe,Montbonnot38334,France {Navneet.Dalal,Bill.Triggs}@inrialpes.fr,http://lear.inrialpes.fr Abstract We study the question of feature sets for ob-ject recognition,adopting linear SVM based human detec-tion as a test case.After reviewing existing edge and gra-dient based descriptors,we show experimentally that grids of Histograms of Oriented Gradient(HOG)descriptors sig-ni?cantly outperform existing feature sets for human detec-tion.We study the in?uence of each stage of the computation on performance,concluding that?ne-scale gradients,?ne orientation binning,relatively coarse spatial binning,and high-quality local contrast normalization in overlapping de-scriptor blocks are all important for good results.The new approach gives near-perfect separation on the original MIT pedestrian database,so we introduce a more challenging dataset containing over1800annotated human images with a large range of pose variations and backgrounds. 1Introduction Detecting humans in images is a challenging task owing to their variable appearance and the wide range of poses that they can adopt.The?rst need is a robust feature set that allows the human form to be discriminated cleanly,even in cluttered backgrounds under dif?cult illumination.We study the issue of feature sets for human detection,showing that lo-cally normalized Histogram of Oriented Gradient(HOG)de-scriptors provide excellent performance relative to other ex-isting feature sets including wavelets[17,22].The proposed descriptors are reminiscent of edge orientation histograms [4,5],SIFT descriptors[12]and shape contexts[1],but they are computed on a dense grid of uniformly spaced cells and they use overlapping local contrast normalizations for im-proved performance.We make a detailed study of the effects of various implementation choices on detector performance, taking“pedestrian detection”(the detection of mostly visible people in more or less upright poses)as a test case.For sim-plicity and speed,we use linear SVM as a baseline classi?er throughout the study.The new detectors give essentially per-fect results on the MIT pedestrian test set[18,17],so we have created a more challenging set containing over1800pedes-trian images with a large range of poses and backgrounds. Ongoing work suggests that our feature set performs equally well for other shape-based object classes. We brie?y discuss previous work on human detection in §2,give an overview of our method§3,describe our data sets in§4and give a detailed description and experimental evaluation of each stage of the process in§5–6.The main conclusions are summarized in§7. 2Previous Work There is an extensive literature on object detection,but here we mention just a few relevant papers on human detec-tion[18,17,22,16,20].See[6]for a survey.Papageorgiou et al[18]describe a pedestrian detector based on a polynomial SVM using recti?ed Haar wavelets as input descriptors,with a parts(subwindow)based variant in[17].Depoortere et al give an optimized version of this[2].Gavrila&Philomen [8]take a more direct approach,extracting edge images and matching them to a set of learned exemplars using chamfer distance.This has been used in a practical real-time pedes-trian detection system[7].Viola et al[22]build an ef?cient moving person detector,using AdaBoost to train a chain of progressively more complex region rejection rules based on Haar-like wavelets and space-time differences.Ronfard et al[19]build an articulated body detector by incorporating SVM based limb classi?ers over1st and2nd order Gaussian ?lters in a dynamic programming framework similar to those of Felzenszwalb&Huttenlocher[3]and Ioffe&Forsyth [9].Mikolajczyk et al[16]use combinations of orientation-position histograms with binary-thresholded gradient magni-tudes to build a parts based method containing detectors for faces,heads,and front and side pro?les of upper and lower body parts.In contrast,our detector uses a simpler archi-tecture with a single detection window,but appears to give signi?cantly higher performance on pedestrian images. 3Overview of the Method This section gives an overview of our feature extraction chain,which is summarized in?g.1.Implementation details are postponed until§6.The method is based on evaluating well-normalized local histograms of image gradient orienta-tions in a dense grid.Similar features have seen increasing use over the past decade[4,5,12,15].The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients or 1

颜色特征常用的特征提取与匹配方法

颜色直方图: 全局颜色直方图:反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率,Swain 和 Ballard最先提出了使用颜色直方图作为图像颜色特征的表示方法。他们还指出:颜色直方图相对于图像的以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,颜色直方图对于图像质量的变化(如模糊)也不甚敏感。颜色直方图的这种特性使得它比较适合于检索图像的全局颜色相似性的场合,即通过比较颜色直方图的差异来衡量两幅图像在颜色全局分布上的差异。 颜色直方图的主要性质有:直方图中的数值都是统计而来,描述了该图像中关于颜色的数量特征,可以反映图像颜色的统计分布和基本色调;直方图只包含了该图像中某一颜色值出现的频数,而丢失了某象素所在的空间位置信息;任一幅图像都能唯一的给出一幅与它对应的直方图,但不同的图像可能有相同的颜色分布,从而就具有相同的直方图,因此直方图与图像是一对多的关系;如将图像划分为若干个子区域,所有子区域的直方图之和等于全图直方图;一般情况下,由于图像上的背景和前景物体颜色分布明显不同,从而在直方图上会出现双峰特性,但背景和前景颜色较为接近的图像不具有这个特性。 累加直方图:当图像中的特征并不能取遍所有可取值时,统计直方图中会出现一些零值。这些零值的出现会对相似性度量的计算带来影响,从而使得相似性度量并不能正确反映图像之间的颜色差别。为解决这个问题,在全局直方图的基础上,Stricker和Orengo进一步提出了使用“累加颜色直方图”的概念。在累加直方图中,相邻颜色在频数上是相关的。相比一般直方图,虽然累加直方图的存储量和计算量有很小的增加,但是累加直方图消除了一般直方图中常见的零值,也克服了一般直方图量化过细过粗检索效果都会下降的缺陷。一般的颜色直方图由于颜色空间是三维的,具有相同的三通道独立分布,但其联合分布并不为一。这种不考虑联合分布的方法,会导致在结果集中不相似的图像数目增加。

相关主题