搜档网
当前位置:搜档网 › 数值计算三种算法比较

数值计算三种算法比较

数值计算三种算法比较
数值计算三种算法比较

有限元法,有限差分法和有限体积法的区别作者:闫霞

1.FDM 1.1概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。1.2差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。1.3构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2.FEM 2.1概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。2.2原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;(3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法

是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。2.3基本原理与解题步骤对于有限元方法,其基本思路和解题步骤可归纳为:(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的

数值计算方法求解,可求得各节点的函数值。

3.有限体积法有限体积法(FiniteVolumeMethod)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

4.比较分析有限差分法(FDM):直观,理论成熟,精度可眩但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。使用FDM的好处在于易于编程,易于并行。有限元方法(FEM):适合处理复杂区域,精度可眩缺憾在于内存和计算量巨大。并行不如FDM和FVM直观。不过FEM的并行是当前和将来应用的一个不错的方向。有限容积法:适于流体计算,可以应用于不规则网格,适于并行。但是精度基本上只能是二阶了。FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。有限容积法和有限差分法最本质的区别

是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。当然二者有联系,有时导出的形式一样,但是概念上是不一样的。至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。目前有限容积在精度方面与有限元法有些差距。有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。

有限元法,有限差分法和有限体积法的区别(转载)

mtjs

有限差分方法

(FDM)

是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法

求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以

Taylor

数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从

建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数

问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差

的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还

以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式

的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长

一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表

式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,

其中前两种格式为一阶计算精度,

后两种格式为二阶计算精度。

通过对时间和空间这几

不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限

个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分

方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,

借助于变分原理或加权余量法,

将微分方程离散求解。

采用不同的权函数和插值函数形式,

便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢

用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互

连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,

整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以

看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分

法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插

值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量

法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格

和多边形

网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同

的组合

同样构成不同的有限元计算格式。对于权函数,伽辽金

(Galerkin)

法是将权函数取

为逼近函数中的基函数

最小二乘法是令权函数等于余量本身,

而内积的极小值则为对代

求系数的平方误差最小;在配置法中,先在计算域

内选取

N

个配置点。令近似解在选定

N

个配置点上严格满足微分方程,即在配置点上令方程余量为

。插值函数一般由不同

次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式

插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,

称为拉格朗日

(Lagrange)

多项式插值;另一种不仅要求插值多项式本身,还要求它的导数

值在插值点取已知值,称为哈密特

(Hermite)

多项式插值。单元坐标有笛卡尔直角坐标系和

无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义

取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有

限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形

和四边形电源单元,常采用的插值函数为有

Lagrange

插值直角坐标系中的线性插值函数

及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

对于有限元方法,其基本思路和解题步骤可归纳为

:

(1)

建立积分方程,

根据变分原理或方程余量与权函数正交化原理,

建立与微分方程初边值

问题等价的积分表达式,这是有限元法的出发点。

(2)

区域单元剖分,

根据求解区域的形状及实际问题的物理特点,

将区域剖分为若干相互连

接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较

大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐

标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3)

确定单元基函数,

根据单元中节点数目及对近似解精度的要求,

选择满足一定插值条

的插值函数作为单元基函数。

有限元方法中的基函数是在单元中选取的,

由于各单元

具有

规则的几何形状,在选取基函数时可遵循一定的法则。

(4)

单元分析:

将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;

再将

似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数

(

即单元中各节点

参数值

)

的代数方程组,称为单元有限元方程。

(5)

总体合成:

在得出单元有限元方程之后,

将区域中所有单元有限元方程按一定法则进

累加,形成总体有限元方程。

(6)

边界条件的处理:一般边界条件有三种形式,分为本质边界条件(

狄里克雷边界条件

)

自然边界条件

(

黎曼边界条件

)

、混合边界条件

(

柯西边界条件

)

。对于自然边界条件,

一般

在积分表达式中可自动得到满足。

对于本质边界条件和混合边界条件,

需按一定法

则对总

体有限元方程进行修正满足。

(7)

解有限元方程:

根据边界条件修正的总体有限元方程组,

是含所有待定未知量的封闭

程组,采用适当的数值计算方法求解,可求得各节点的函数值。

有限体积法(

Finite Volume Method

)又称为控制体积法。其基本思路是:将计算区

域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分

方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的

数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段

的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域

法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区

域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,

是因变量在有限大小的控制体积中的守恒原理,

如同微分方程表示因变量在无限小的控

制体积中的守恒原理一样。

限体积法得出的离散方程,

要求因变量的积分守恒对任意一组

控制体积都得到满足,

对整个计算区域,

自然也得到满足。

这是有限体积法吸引人的优点。

有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而

有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积

法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化

规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值

在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体

积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类

似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘

掉插值函数;如果需要的话,可以对微分方程

中不同的项采取不同的插值函数。

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共 有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==3.1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限) 的和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数

4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从 x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|< 为止,此时取 x*≈(x k+x k-1)/2作为近似根。 2.二分法 设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0, f(b)>0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。 3.比例法 一般地,设 [a k,b k]为有根区间,过(a k, f(a k))、 (b k, f(b k))作直线,与x轴交于一 点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法:

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

《计算流体力学》结课作业解读

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

数值计算方法试题及答案

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式 ) 2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在 ( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2110)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n Λ是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设 1326)(247+++=x x x x f 和节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 和=?07f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞=0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。

8、给定方程组?? ?=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且 20<<ω时,SOR 迭代法收敛。 9、解初值问题00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设 ?? ??? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 二、选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+)() 1(收敛的充要条件是 ( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数 ) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , 3、有下列数表

河南科技大学数值分析(计算方法)期末试卷1及参考答案

7 ,2]= ,2]=8

-- 参考答案 一.填空 1. 舍入误差 2. 115,1,0 3. (1)(1)011() () ()()() ().(()())(1)! (1)! n n n n f f R x x x x x x x orR x w x n n ξξ+++=---=++ 4. 1 5. 22 11()()()2()()2k k k k k k k k k k k k x f x f x x x x orx x x f x f x x ++--=-=-''-- 6. 有 7. 1 8. 112121 2213k k k k x x x x ++?=-??=-?? 二.计算 1.解:构造差商表:

-- 所以, 22()2H x x x =+ 证明:设2()()()R x f x H x =- 22 2(0)(0),(0)(0),(1)(1)f H f H f H ''=== (0)(0)(1)0R R R '∴=== 所以,可设2()()(1)R x k x x x =- 构造函数:22()()()()(1)t f t H t k x t t ?= --- 显然()(0)(0)(1)0x ????'==== 因为函数()t ?在所给的插值区间至少有4个根且函数()t ?'''存在, 所以函数()t ?'''在所给的插值区间至少有1个根,即存在一点ξ,满足: ()0?ξ'''= 又 ()()3!()t f t k x ?''''''=- () ()()3!()0()3! f f k x k x ξ?ξξ'''''''''∴=-=?=

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

数值分析计算方法

《计算方法》实验内容 一.实验一:用两种不同的顺序计算 644834.110000 1 2 ≈∑=-n n ,分析其误差的变化。 1.实验目的:通过正序反序两种不同的顺序求和,比较不同算法的误差;了解在 计算机中大数吃小数的现象,以后尽量避免;体会单精度和双精度数据的差别。 2.算法描述:累加和s=0; 正序求和: 对于n=1,2,3,......,10000 s+=1.0/(n*n); 反序求和: 对于n=10000,9999,9998,.....,1 s+=1.0/(n*n); 3.源程序: #双精度型# #includec void main() { double s=0; int n; for(n=1;n<=10000;n++) s+=1.0/(n*n); printf("正序求和结果是:%lf\n",s); s=0; for(n=10000;n>=1;n--) s+=1.0/(n*n); printf("反序求和结果是:%lf\n",s); } #单精度型# #include void main() { float s=0; int n; for(n=1;n<=10000;n++) s+=1.0/(n*n); printf("正序求和结果是:%f\n",s); s=0; for(n=10000;n>=1;n--) s+=1.0/(n*n); printf("反序求和结果是:%f\n",s); }

4.运行结果: 双精度型运行结果: 单精度型运行结果: 5.对算法的理解与分析:舍入误差在计算机中会引起熟知的不稳定,算法不同,肯结果也会不同,因此选取稳定的算法很重要。选取双精度型数据正反序求和时结果一致,但选用单精度型数据时,求和结果不一致,明显正序求和结果有误差,所以第一个算法较为稳定可靠。 二.实验二: 1、拉格朗日插值 按下列数据 x i -3.0 -1.0 1.0 2.0 3.0 y i 1.0 1.5 2.0 2.0 1.0 作二次插值,并求x 1=-2,x 2 =0,x 3 =2.75时的函数近似值 2牛顿插值 按下列数据 x i 0.30 0.42 0.50 0.58 0.66 0.72 y i 1.04403 1.08462 1.11803 1.15603 1.19817 1.23223 作五次插值,并求x 1=0.46,x 2 =0.55,x 3 =0.60时的函数近似值. 1.实验目的:通过拉格朗日插值和牛顿插值的实例,了解两种求解方法,并分析各自的优缺点。 2.算法描述: 3.源程序: 拉格朗日插值: #include #define k 2 void main() {

计算流体力学中有限差分法、有限体积法和有限元法的区别

有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶

中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;(3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 b) 数学家祖冲之取 113355 作为π的近似值. c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。 2) 简述下名词: a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字) c) 算法数值稳定性 (不超过60字) 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 4) 计算球体积3 34r V π= 时,为使其相对误差不超过 0.3% ,求半径r 的相对 误差的允许范围。 5) 计算下式 341 8 )1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P )( 时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式? 6) 递推公式 ?????=-==- ,2,1,1102 10n y y y n n 如果取 * 041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到 10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ? 二. 插值问题: 1) 设函数 )(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为 54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式 )(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数

数值分析(计算方法)总结

第一章 绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 ε(x )=|x ?x ?|是x ?的绝对误差,e =x ??x是x ?的误差,ε(x )=|x ?x ?|≤ε,ε为x ?的绝对误差限(或误差限) e r =e x = x ??x x 为x ? 的相对误差,当|e r |较小时,令 e r =e x ?= x ??x x ? 相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |= |x ??x ||x ?| ≤ε |x ?|=εr 绝对误差有量纲,而相对误差无量纲 若近似值x ?的绝对误差限为某一位上的半个单位,且该位直到x ?的第一位非零数字共有n 位,则称近似值 x ?有n 位有效数字,或说 x ?精确到该位。 例:设x=π=3.1415926…那么x ?=3,ε1(x )=0.1415926…≤0.5×100,则x ?有效数字为1位,即个位上的3,或说 x ?精确到个位。 科学计数法:记x ?=±0.a 1a 2?a n ×10m (其中a 1≠0),若|x ?x ?|≤0.5×10m ?n ,则x ?有n 位有效数字,精确到10m ?n 。 由有效数字求相对误差限:设近似值x ?=±0.a 1a 2?a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为1 2a 1 ×101?n 由相对误差限求有效数字:设近似值x ?=±0.a 1a 2?a n ×10m (a 1≠0)的相对误差限为为 1 2(a 1 +1) ×101?n 则它有n 位有效数字 令x ?、y ?是x、y 的近似值,且|x ??x |≤η(x )、|y ??y |≤η(y ) 1. x+y 近似值为x ?+y ?,且η(x +y )=η(x )+η(y)和的误差(限)等于误差(限)的 和 2. x-y 近似值为x ??y ?,且η(x +y )=η(x )+η(y) 3. xy 近似值为x ?y ?,η(xy )≈|x ?|?η(y )+|y ?|?η(x ) 4. η(x y )≈ |x ?|?η(y )+|y ?|?η(x ) |y ?|2 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根 1.逐步搜索法 设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从 x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|< 为止,此时取x *≈(x k +x k -1)/2作为近似根。 2.二分法 设f (x )的有根区间为[a ,b ]= [a 0,b 0], f (a )<0, f (b )>0.将[a 0,b 0]对分,中点x 0= ((a 0+b 0)/2),计算f (x 0)。对于给定精度ε,即 b ?a 2 k <ε,可得所需步数k,k > [ln (b ?a )?ln (ε) ln2

计算流体力学常用数值方法简介_李志印

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1) (1n n n n n x f x f x x x '--- =+ 6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序 主子式均不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表

流体力学的研究方法

流体力学的研究方法 摘要:首先结合参考文献介绍了流体力学的一般研究方法(实验、理论分析和数值)。并从宏观上说明了思维方式对流体力学研究的重要性。最后结合其它学科的发展趋势提出了自己的一种不成熟新的流体力学研究方法(统计分析法)。 关键词:理论分析方法实验方法数值方法基础研究哲学思想实践统计学流体子概率 流体力学是研究流体平衡和运动规律的一门学科,是力学的一个重要分支。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程中,如水利工程、动力工程、航空工程、化学工程、机械工程等诸多领域流体力学都起着十分重要的作用。 流体力学的研究对象包括液体和气体,它们统称为流体。流体力学主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。我们在工程流体力学中主要是研究流体中大量分子的宏观平均运动规律,而忽略对其具体分子运动的研究。 目前,解决流体力学问题的方法有实验、理论分析和数值方法等三种。 理论分析方法 理论分析的一般过程是:建立力学模型,用物理学基本定律推导流体力学数学方程,用数学方法求解方程,检验和解释求解结果。理论分析结果能揭示流动的内在规律,具有普遍适用性,但分析范围有限。 实验方法 实验研究的一般过程是:在相似理论的指导下建立模拟实验系统,用流体测量技术测量流动参数,处理和分析实验数据。 典型的流体力学实验有:风洞实验、水洞实验、水池实验等。测量技术有:热线、激光测速;粒子图像、迹线测速;高速摄影;全息照相;压力密度测量等。现代测量技术在计算机、光学和图像技术配合下,在提高空间分辨率和实时测量方面已取得长足进步。 实验结果能反映工程中的实际流动规律,发现新现象,检验理论结果等,但结果的普适性较差。 数值方法 数值研究的一般过程是:对流体力学数学方程作简化和数值离散化,编制程序作数值计算,将计算结果与实验结果比较。 常用的方法有:有限差分法、有限元法、有限体积法、边界元法、谱分析法等。计算的内容包括:飞机、汽车、河道、桥梁、涡轮机等流场计算;湍流、流动稳定性、非线性流动等数值模拟。大型工程计算软件已成为研究工程流动问题的有力武器。数值方法的优点是能计算理论分析方法无法求解的数学方程,比实验方法省时省钱,但毕竟是一种近似解方法,适用范围受数学模型的正确性和计算机的性能所限制。 三种方法各有优缺点,我们应取长补短,互为补充。流体力学力学的研究不仅需要深厚的理论基础,而且需要很强的动手能力。学习流体力学应注意理论与实践结合,理论分析、实验研究和数值计算并重。

相关主题