搜档网
当前位置:搜档网 › 网络分析仪培训(广州科欣)

网络分析仪培训(广州科欣)

网络分析仪测试基本概念

?测试对象:各种元器件及器件组成的系统?正确理解关于器件(系统)相关性能指标

要求和定义

?掌握网络分析仪的正确操作和应用的方法广州科欣分销产品演示-2005

网络分析的基本概念

q网络——对实际物理电路和元件进行的数学抽象主要研究外部特性

q网络分析——在感兴趣的频率范围内通过线性激励-响应测试确定元件的幅频特性和相频特性的过程

q网络分析仪——通过正弦扫频测量获得线性网络的传递函数以及阻抗函数的仪器

–网络分析概述

–微波网络S参数

广州科欣分销产品演示-2005

网络分析概述

?线性网络与非线性网络

–线性网络系统仅改变输入信号的幅度和或相位不会产生新的频率信号

–非线性网络系统改变输入信号的频率

或产生其他频率成分

网络分析总是假定被分析网络是线性的因而可以基于正弦扫频法进行频率特性的定量分析非线性网络通常使用频谱仪进行测量

广州科欣分销产品演示-2005

网络分析系统

网络分析仪是通过测定网络的反射参数和传输参数从而对网络中元器件特性的全部参数进行全面描述的测量仪器用于实现对线性网络的频率特性测量

网络分析仪能够完成反射传输两种基本测量从而确定几乎所有的网络特性S参数是其中最基本的特性

?标量网络分析仪只测量线性系统的幅度信息

?矢量网络分析仪可同时进行幅度传输特性和相位特性测量

广州科欣分销产品演示-2005

微波网络S参数

微波网络常用散射参数S参数表示任何网络都可用多个S参数表征其端口特性对n端口网络需要n2个S参数

b2

b1

S22

S

11

S12

S21

a2

a1

2

1DUT

S 11S

21

S

12

S

22

表示双端口网络的四个S

参数即散射参量,全面反映一个器件(系统)的特性,包括反射和传输特性.两个方面的指标中都包含了幅度和相位的信息.

广州科欣分销产品演示-2005

广州科欣分销产品演示-2005

S 参数的物理意义

01221011112

2

, ===

=a a a b S a b S 021********

1

, ===

=a a a b S a b S S 11:端口2匹配时端口1的反射系数S 21:端口2匹配时的正向传输系数

S 22:端口1匹配时端口2的反射系数S 12:端口1匹配时的反向传输系数

b 2

b 1

S 22

S 11

S 12S 21a 2

a 1

2

1

DUT

b 1 b 2: 端口1 2上的所有出射波a 1 a 2: 端口1 2上的入射波

信号在器件中的传播

入射信号

DUT

传输信号

反射信号

当射频信号输入到某个器件上时,会产生相应的反射和传输,每个器件在工作状态下,其传输和反射信号的大小和相位都是不同的,而反射和传输的特性决定器件对信号的处理作用.

广州科欣分销产品演示-2005

广州科欣分销产品演示-2005

满足波形不失真线性系统的条件

输入

输出

频率

幅度

频率

相位

?系统频率带宽内幅频特性为常量?幅度频率特性在工作频率范围

内要保持恒定

?系统频率带宽内相频特性为线性

?相位频率特性在工作频率范围内要保持线性DUT

广州科欣分销产品演示-2005

完整器件的指标描述

DUT

输入R

反射A

输出B

Reflected Incident =A R

反射特性Transmitted Incident =B R

传输特性VSWR

S 参数S11 S22

反射

系数阻抗

反射

增益

S 参数S12 S21系数

相位率

系统组成基本原理

信号源DUT

理反射(A)

传输(B)

参考(R)

定向耦合器

?信号源向被测网络提供入射信号或激励

?定向耦合器: 专门负责提取输入端反射信号

?采集及量化: 将搜集的传输(B)或反射信号(A)与参考信号(R)进

行比较

?显示及处理:对比较的结果进行处理,显示被测网络的频率特性曲线

广州科欣分销产品演示-2005

阻抗匹配的概念

?全匹配:输入阻抗

100?

负载阻抗

100?

DUT

100?100?

当负载阻抗与器件的特性阻抗相同时,传输线上只有正向传输信号,输出到负载上的信号功率达到最大.

?全反射:

当器件的输出端开路或者短路时,所有输入信号功率被反射到入射端造成全反射.发生全反射时,输入端同时存在正向输入信号和同功率的反射信号,两个信号在输入端上矢量相加,形成驻波.

?部分反射:

80?

当负载阻抗与器件输出端阻抗不同时,输入信号的一部分被反射,

反射信号和输入信号在输入端上矢量相加,引起波形包络起伏变化

广州科欣分销产品演示-2005

网络分析仪的测量误差

系统误差

是由于仪表内部测试装置不理想而引起的它是可预示和可

重复出现的可在测试过程中通过校准来消除

随机误差

它是不可预示的因为它以随机形式出现,会随时间变化,因此不能通过校准来消除.随机误差的主要来源为:仪表内部噪声

(如激励源相位噪声,采样噪声,中频接收本底噪声),开关动作噪

声等.

漂移误差

是仪表在校准后测试装置的性能漂移.漂移误差主要是由于温

度变化造成,可通过进一步校准来消除.

广州科欣分销产品演示-2005

广州科欣分销产品演示-2005

反射参数测试误差分析

A 接收机信号=被测件反射信号+误差信号

DUT

R

B

A

反射信号

方向性误差

串扰

源失配

负载失配

频率响应误差 ?反射跟踪误差?传输跟踪误差

广州科欣分销产品演示-2005

反射参数测试误差分析2

A 接收机信号=被测件反射信号+误差信号

DUT

R

B

A

反射信号

方向性误差

串扰

源失配

负载失配

频率响应误差: 网络分析仪在扫频状态下工作,无论是仪表内部设备还是外接

的测试线缆,在工作频带范围内其特性都会存在变化,这些与频率变化相关的测试误差称为“频响误差”,也叫“跟踪误差”.

方向性误差:由于定向耦合器有限方向性造成的误差为方向性误差.方向性误差

信号会叠加在真实的反射信号上,造成测试误差.

广州科欣分销产品演示-2005

反射参数测试误差分析3

A 接收机信号=被测件反射信号+误差信号

DUT

R

B

A

反射信号

方向性误差

串扰

源失配

负载失配

源失配误差:在反射指标测试中

反射信号通过传输路径返回仪器端口 仪表

端口阻抗与传输线间会存在失配 该失配会造成信号二次入射 最后在传输路径中的信号多次入射 相应又形成多次反射 这项误差称为源失配误差

负载失配误差:被测件输出的传输信号也会由于接收端阻抗失配造成反射

信号会通过被测件的反向传输而叠加在真实反射信号上 从而形成负载失配误差

广州科欣分销产品演示-2005

反射参数测试误差分析4

A 接收机信号=被测件反射信号+误差信号

DUT

R

B

A

反射信号

方向性误差

串扰

源失配

负载失配

串扰误差:在网络分析仪内部R

A B 接收机分别代表测试的输入 反射 传

输信号 但这些接收机之间会存在信号串扰 对被测件会造成一定的测量误差 上例中 正向测试会存在共6项误差 反向测试也存在对称的6项误差 所以二端口器件测试中共存在12项误差 仪表的二端口校准也称为12项误差校准

广州科欣分销产品演示-2005

校准的基本分类

校准过程就是通过测试标准件,测试系统误差的过程.根据校准消除误差项目的不同,网络分析仪校准分为频响校准和矢量校准.

频响校准:只测试一个标准件(SHORT),校准过程较简单.但只确定

频响误差一项误差.频响校准的过程相当于测试归一化过程,既先将测试结果存入存储器中得到参考线,然后用被测件测试结果与其比较,这样可消除参考线中系统误差的影响.

矢量校准:要求网络分

析仪具有幅度和相位测试能力.是通过已知

标准件的测试来得到仪表误差项的过程.它要求测试多个标准件(OPEN,SHORT,LOAD),从而消除更多误差项.

广州科欣分销产品演示-2005

校准的概念

?是消除网络分析仪误差的过程.

?校准的思路是通过对标准件的测试得到网络分析仪系统误差项的

具体数值,然后通过计算对被测件测试结果进行修正处理,消除其中误差成份,得到被测件真实值.?反射测试:

存在3项系统误差(方向性,源失配, 负载失配).反射频响误差?传输测试:

传输频响误差,串扰误差,源失配, 负载失配.?可自定义校准件(校准件定义必须和实际校准件相符.

OPEN

OPEN SHORT

SHORT LOAD

LOAD

开路校准的问题

金属传输延伸线

中心介质竿

金属传输延伸线

金属传输延伸线

中心介质竿

金属传输延伸线

校准过程中会使用开路校准(OPEN),它包含金属传输延伸线和中心介质竿.

使用专门开路件是因为在测试线端面,虽然满足直流开路,但对于射频和微波信号,存在中心导体到周围屏蔽层的辐射,这种现象等效为电容特性.所以测试线端面不接任何负载,只能满足直流开路.

而对高频信号,只相当于电容特性,

广州科欣分销产品演示-2005

广州科欣分销产品演示-2005

不同校准方法总结

1. 频响校准

2. 1-PORT 单端校准

3. 2-PORT

双端校准

THRU

OPEN OPEN SHORT SHORT LOAD

LOAD OPEN OPEN SHORT SHORT LOAD

LOAD OPEN OPEN SHORT SHORT LOAD

LOAD DUT

DUT

?反射测试

?消除测试端口所有误差?方便

?消除频率响应误差

?不要求高精度?传输测试=直通?反射测试=短路

?多次校准,复杂,高精度

?消除测试端口所有误差

矢量网络分析仪基础知识和S参数测量

矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 。因为只有一个口,总是接在最后又称 1.单端口网络习惯上又叫负载Z L 终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 2单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S )更方便些。 11 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。 2匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 2传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

2两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回 损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即 S 11、S 21、S 12、S 22。这里仅简单的(但不严格)带上一笔。 S 11与网络输出端接上匹配负载后的输入反射系数Г相当。注意:它是网络 的失配,不是负载的失配。负载不好测出的Γ,要经过修正才能得到S 11 。 S 21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传 输系数T 或插损,对放大器即增益。 上述两项是最常用的。 S 12即网络输出端对输入端的影响,对不可逆器件常称隔离度。 S 22即由输出端向网络看的网络本身引入的反射系数。 中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能 力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。 1.2 传输线 传输射频信号的线缆泛称传输线。常用的有两种:双线与同轴线,频率更高则会用到 微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。 2特性阻抗Z 0 它是一种由结构尺寸决定的电参数,对于同轴线: 式中εr 为相对介电系数,D 为同轴线外导体内径,d 为内导体外径。 2反射系数、返回损失、驻波比 这三个参数采用了不同术语来描述匹 配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电

ZVB4矢量网络分析仪操作指导书

文件编号: 文件版本: A ZVB矢量网络分析仪操作指导书 V 1.0 拟制 _____________ 日期_______________ 审核 _____________ 日期_______________ 会审 _____________ 日期_______________ 批准 _____________ 日期______________ 生效日期:2006.10

操作规范: 使用者要爱护仪器,确保文明使用。 1、开机前确保稳压电源及仪器地线的正确连接。 2、 使用中要求必须佩戴防静电手镯。 3、 使用中不得接触仪器接头内芯(含连接电缆) 4、 使用时不允许工作台有较大振动。 5、 使用中不能随意切断电源,造成不正常关机。不能频繁开关机。 6、 使用射频电缆时不要用力大,确保电缆保持较大的弧度。用毕电缆接头上加接头盖。 7、 旋接接头时,要旋接头的螺套 ,尽量确保内芯不旋转。 8、 尽量协调、少用校准件。校准件用毕必须加盖放回器件盒。 9、 转接件用毕应加盖后放回盒中。 10、 停用时必须关机,关闭稳压电源。方可打扫卫生。 11、 无源器件调试必须佩戴干净的手套。 ______________________________________________________________________________

概述:1、本说明书主要为无源器件调试而做,涵盖了无源器件调试所需的矢量网络分析仪基本能,关于矢量网络分析仪的其它更进一步的使用,请参照仪器所附的使用说明书。 2、本说明书仅以ZVB4矢量网络分析仪为例,对其它型号矢量网络分析仪,操作步骤基本相 同,只是按键和菜单稍有差别。 3、仪器使用的一般要求仪器操作使用规范。 4、带方框的键如MEAS键为仪器面板上的按键,方框内带单引号的键为软菜单(soft menu), 即屏幕右侧所示菜单所对应的键,如‘dB Mag’。 5、本仪器几乎所有操作都可以通过鼠标进行。

实验一 认识网络分析仪及其基本操作

实验一认识网络分析仪及其基本操作 PB11210156 韦俞鸿23系 一.实验目的 1.了解网络分析仪基本测试原理; 2.熟悉网络分析仪的按键,显示界面及其基本操作; 3.直观了解终端负载为Open,Short,Load(50 欧姆)的传输线特性。 二.实验要求 1.严格按照实验操作规范进行操作,注意安全,不要损坏仪器; 2.按照本文档提供的操作步骤完成实验,得到最后结果,并以实验报告的形式提交。 三.实验结果及分析 (1).基本测量设置及显示调整 第一次操作图像结果: 分析:实验步骤是基于测量的设置和显示调整。如图所示,我们设置了数据格式为对数幅度格式,故纵轴单位为dB,纵轴显示8格,每格范围0.1dB/div,且设置第六格为参考,即零坐标轴。横坐标频率范围为100k~1.001GHz,扫描点数为101,可在数据包里查看到相应的101个频率及对应数据。测量结果Marker1:200MHz->-0.1841dB;Marker2: 650MHz->-0.4059dB;Marker3: 100kHz->0.0111dB。由于测量值为S22,S22=(Z out-Z0)/(Z out+Z0),所以随着Z out的改变,S22的幅值也会发生改变。而Z out的变化可能是由于电路本身的影响,故所测量的结果会出现一定的误差。

(2).终端接Open,Short,Load (50欧姆)的传输线特性 结果(Open): 分析:如图所示,三个图分别为开路情况下900M~1GHz的S11的幅度对数图,相位图,及Smith圆图。由S11=(Z in-Z0)/(Z in+Z0),可看出,S11的幅度是递减的,相位在970M 之后发生变化,随着频率的变化,则Smith圆图为从Marker1处沿着等r线顺时针旋转。由于Z L即使是没接负载,也无法做到无穷大,故1点不能达到理想的开路线处。 结果(Short):

网络分析仪基本原理

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB 压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则 c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,如图1所示,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect 为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。 接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输在线的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。

AgilentEC网络分析仪测试方法修订稿

A g i l e n t E C网络分析 仪测试方法 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

Agilent E5071C网络分析仪测试方法-李S 买卖仪器没找到联系方式请搜索《欧诺谊-李海凤》进入查看联系方式,谢谢!? E5071C网络分析仪测试方法 一.面板上常使用按键功能大概介绍如下: Meas 打开后显示有:S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22里面测试。 Format 打开后显示有:Log Mag———SWR———-里面有很多测试功能,如上这两种是我们常用到的,Log Mag为回波损耗测试,SWR 为驻波比测试。 Display打开后显示有:Num of Traces (此功能可以打开多条测试线进行同时测试多项指标,每一条测试线可以跟据自己的需求选择相对应的指标,也就是说一个产品我们可以同时测试驻波比和插入损耗或者更多的指标) Allocate Traces (打开此功能里面有窗口显示选择,我们可以跟据自己的需求选择两个窗口以上的显示方式) Cal 此功能为仪器校准功能:我们常用到的是打开后在显示选择:Calibrate (校准端口选择,我们可以选择单端口校准,也可以选择双端口校准) Trace Prev 此功能为测试线的更换设置 Scale 此功能为测试放大的功能,打开后常用到的有:Scale/Div 10DB/Div 为每格测试10DB,我们可以跟据自己的产品更改每格测量的大小,方便我们看测试结果 Reference Value 这项功能可以改变测试线的高低,也是方便我们测试时能清楚的看到产品测试出来的波型。 Save/Recall 此功能为保存功能,我们可以把产品设置好的测试结果保存在这个里面进去以后按下此菜单Save State 我们可以保存到自己想保存的地方,如:保存在仪器里面请按 Recall State 里面会有相对应的01到08,我们也可以按SaveTrace Data 保存在外接的U盘里面,方便的把我们产品的测试结果给客户看。 ? 二.仪器测试的设置方法 1.频率设置:在仪器面板按键打开 Start 为开始频率,Stop 为终止频率。如我们要测量到,我们先按 Start 设置为,再按 Stop 设置为 2.传输与反射测试功能设置:在仪器面板按键打开Meas 打开后显示菜单里面会有 S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和

网络分析仪原理及使用

网络分析仪原理及使用 康飞---芬兰贝尔罗斯公司 2007年10月 一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数 (Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗 ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。 接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输线上的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。 同样,我们也可以从ρ值定义出回返损耗(R.L.),其意义是反射能量与入射能量的比值,其值愈大,代表反射回来的能量愈小。对于反射系数所衍生的相关纯量参数,我们将其整理成表1,基本上,它们之间是换算的过程,会因为产业及应用的不同而倾向于使用某一参数。 REMARK: 驻波系数又叫做驻波比,如果电缆线路上有反射波,它与行波相互作用就会产生驻波,这时线上某些点的电压振幅为最大值Vmax,某些点的电压振幅为最小值Vmin,最大振幅与最小振幅之比称为驻波系数.驻波系数越大,表示线路上反射波成分愈大, 也表示线路不均匀或线路终端失配较大.为控制电缆的不均匀性,要求一定长度的终端匹配的电缆在使用频段上的输入驻波系数S不超过 某一规定的数值.电缆中不均匀性的大小,也可用反射衰减来表示.反射系数的倒数的绝对值取对数,称为反射衰减.反射衰减愈大, 即反射系数愈小,也就是驻波比愈小,即表示内部不均匀性越小. 穿透特性 对于穿透的特性,一样有分为纯量与向量两种,对于向量系数而言,最重要的就是穿透系数,其中Vtrans为经过待测物后的穿透波、Vinc为入射波,而τ即为穿透系数的纯量大小,θ则表示入射与穿透波的相位差值。 对于纯量的定义上,以被动组件而言,最常使用的就是插入损失(I.L. Insertion Loss),亦即与上述的τ值是相关的参数,定义为。若为主动组件如放大器等,穿透的信号有放大的效应则为增益(Gain),此时定义为。

矢量网络分析仪的误差分析和处理

矢量网络分析仪的误差分析和处理 一、矢量网络分析仪的误差来源 矢量网络分析仪的测量的误差主要有漂移误差、随机误差、系统误差这三大种类。 1、漂移误差 漂移误差是由于进行校准之后仪器或测试系统性能发生变化所引起,主要由测试装置内部互连电缆的热膨胀特性以及微波变频器的变换稳定性引起,且可以通过重新校准来消除。校准维持精确的时间范围取决于在测试环境下测试系统所经受到的漂移速率。通常,提供稳定的环境温度便能将漂移减至最小。 2、随机误差 随机误差是不可预测的且不能通过误差予以消除,然而,有若干可以将其对测量精度的影响减至最小的方法,以下是随机误差的三个主要来源: (1)仪器噪声误差 噪声是分析仪元件中产生的不希望的电扰动。这些扰动包括:接收机的宽带本底噪声引起的低电平噪声;测试装置内部本振源的本底噪声和相位噪声引起的高电平噪声或迹线数据抖动。 可以通过采取以下一种或多种措施来减小噪声误差:提高馈至被测装置的源功率;减小中频带宽;应用多次测量扫描平均。

(2)开关重复性误差 分析仪中使用了用来转换源衰减器设置的机械射频开关。有时,机械射频开关动作时,触点的闭合不同于其上次动作的闭合。在分析仪内部出现这种情况时,便会严重影响测量的精度。 在关键性测量期间,避免转换衰减器设置,可以减小开关重复性误差的影响。 (3)连接器重复性误差 连接器的磨损会改变电性能。可以通过实施良好的连接器维护方法来减小连接器的重复性误差。 3、系统误差 系统误差是由分析仪和测试装置中的不完善性所引起。系统误差是重复误差(因而可预测),且假定不随时间变化,可以在校准过程中加以确定,且可以在测量期间用数学方法减小。系统误差决不能完全消除,由于校准过程的局限性而总是存在某些残余误差,残余(测量校准后的)系统误差来自下列因素:校准标准的不完善性、连接器界面、互连电缆、仪表。 反射测量产生下列三项系统误差:方向性、源匹配、频率响应反射跟踪。 传输测量产生下列三项系统误差:隔离、负载匹配、频率响应传输跟踪。 下面分别介绍这六项系统误差,其中提到的通道A为反射接收机,通道B为传输接收机,通道R为参考接收机。 (1)方向性误差 所有网络分析仪都利用定向耦合器或电桥来进行反射测量。对理想的耦合器,只有来自被测件(DUT)的反射信号出现在通道A上。实际上,有少量入射信号经耦合器的正向路径泄漏并进入通道A(如

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1 DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器(DSP)从数字信号中提取被测网络的幅度信息和相位信息,通过比值运算求出被测网络的S参数,最后把测试结果以图形或数据的形式显示在液晶屏幕上。 ◆合成信号源:由3~6GHz YIG振荡器、3.8GHz介质振荡器、源模块组件、时钟参考和小数环组成。

网络分析仪使用说明书

TWTX (深圳)有限公司 矢量网络分析仪 使用说明书 文件编号 TW/QS-SC-02 版 次 V1.0 页 次 1/16 1 目的 本使用说明书为规范矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。 2 适用范围 本使用说明书适用于公司范围内的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。 3 主要职责 3.1 各部门设备使用者负责实施设备一级保养工作。 3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。 3.3 对新进员工有必要学习此文件时进行培训学习。 4 仪器操作注意事项 4.1 测试产品时,不能直接加电测试。 4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。 4.3 防止有大的直流电加入,网络仪最大能承受10V 的直流电。 4.4 防止过信号的输入。 4.4.1 网络分析仪的最大允许输入信号为20dBm 。 4.4.2 输入信号大于10dBm 时,应加相应的衰减器。 4.5 仪器使用前确保已接地。 5 仪器面板介绍 5.1 按键区域 1·ACTIVE CH/TRACE :活动通道区; 2·软驱; 3·RESPONSE :响应区; 4·NAVIGATION :导航区; 5·ENTRY :输入区; 6·STIMULVS :激励区; 7·MKR/ANALYIS :标定点/分析; 8·INSTRSTATE :设备状态区。 注:见“11 按键翻译”。 1 2 3 6 45 78 软菜US

网络分析仪使用说明书

矢量网络分析仪 使用说明书 版 次 V1.0 页 次 1/16 1 目的 本使用说明书为规矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。 2 适用围 本使用说明书适用于公司围的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。 3 主要职责 3.1 各部门设备使用者负责实施设备一级保养工作。 3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。 3.3 对新进员工有必要学习此文件时进行培训学习。 4 仪器操作注意事项 4.1 测试产品时,不能直接加电测试。 4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。 4.3 防止有大的直流电加入,网络仪最大能承受10V 的直流电。 4.4 防止过信号的输入。 4.4.1 网络分析仪的最大允许输入信号为20dBm 。 4.4.2 输入信号大于10dBm 时,应加相应的衰减器。 4.5 仪器使用前确保已接地。 5 仪器面板介绍 5.1 按键区域 1·ACTIVE CH/TRACE :活动通道区; 2·软驱; 3·RESPONSE :响应区; 4·NAVIGATION :导航区; 5·ENTRY :输入区; 6·STIMULVS :激励区; 7·MKR/ANALYIS :标定点/分析; 8·INSTRSTATE :设备状态区。 注:见“11 按键翻译”。 1 2 3 6 4 5 7 8 软菜单 USB 接口

矢量网络分析仪使用说明书版次V1.0 页次2/16 5.2 1 2 3 4 5 Tr1 S11 SWR 1.000/Ref 1.0000 Tr2 S21 Logmag 10dB/Ref 0.00dB Tr3 S22 SWR 1.000/Ref 1.0000 1.表示通道编号; 2.表示通道类型; 3.表示通道的格式; 4.表示通道在显示屏上每格所表示的数值; 5.表示通道在显示屏上参考线所在的格子数值。 6 仪器的基本常用功能介绍 6.1 测量回波损耗(电压驻波比) 通道选择S11或S22,S11时,用电缆PORT1;S22时,用电缆PORT2。 测量单通道时,所测器件终端应加负载;测双通道时,器件输出与输入均应接电缆。器件为有源器件时,详见“4 仪器操作注意事项”。 6.2 测量插入损耗 通道选择S12(Port2接收Port1发射)或S21(Port1接收Port2发射)测量时,所测器件输出、输入应接电缆;测量有源器件时,S12、S21不能选错,其余详见“4 仪器操作注意事项”。 6.3 测量时延 所测器件端口接上仪器,通道选择视具体情况,仪器按键Format→GroupDelay,详见“4 仪器操作注意事项”。 6.4 测量史密斯圆图 通道选择S11或S22时,终端应加负载,所测端接电缆。双通道时,输出、输入应同时接电缆,仪器按键Format→Smith,详见“4 仪器操作注意事项”。 7 仪器校准按键介绍 7.1 手动校准(以下介绍了双通道的校准方法) 按Cal*键,选择Cal kit ,选择ⅹⅹⅹ(具体见校准件型号,一般仪器厂商有配置),再选择Calibrate,选择2-Port Cal(双通道校准),选择Reflection,再对应相应的通道及校准件进行校准(电缆接什么标准件并在仪器上具体按何键见按件翻译,这里用到的标准键有3种分别是,开路Open、短路Short和负载Load),结束后,选择Return返回

矢量网络分析的校准SOLT、TRL与Ecal

矢量网络分析的校准:SOLT、TRL与Ecal作者:Louisu 与以往的矢量网络分析仪(VNA)相比,现在的许多仪器提供了更多的校准方法供用户选择。更多的选择固然好,但同时也带来了更多的混乱。幸运的是,一些关键的比较点可以快速缩小选择范围,并确定最适当的校准技术。本文将讨论常用的网络分析仪校准技术及其相对精度,重点是可靠的测量实践和其他能够改善精度的因素。 校准类型 现在的网络分析仪都具有极强的处理能力和灵活性,针对特定应用的许多校准方法也随之涌现出来。例如,针对特定应用的校准类型有混频器/变频器校准(用于频率偏置器件)、噪声系数校准和夹具内测量等。下面以全面的1端口和2端口矢量校准为讨论的重点,并回顾网络分析仪中针对所有误差源的矢量校准方法。这些方法与那些不考虑所有误差项的方法(例如响应校准)相比,精确度要高得多。讨论校准精度时,将讨论范围限定为一些常用的校准类型,大多数现代校准方法来源于这些常用的校准类型。常用的校准技术有三种:SOLT(短路-开路-负载-直通)、TRL(直通-反射-线路)和ECal(电子校准)模块。在每一种校准技术中,通常又针对特定的测量要求(如宽带频率或晶圆上探测)分成不同的校准方法。表1中总结了这些常用的校准技术及其各自的主要优势。 网络分析仪中的系统误差 图1总结了典型网络分析仪中的系统误差来源。相位测量功能使得VNA能够精确地计算所有的误差来源。方向误差会影响反射测量的精度。隔离误差会影响发射测量的精度。源和负载误差与被测件和分析仪测量端口阻抗之间的失配有关。反射和发射跟踪误差与分析仪的参考接收机和测量接收机的频率响应差异有关。 探究SOLT校准 大多数网络分析仪用户最先熟悉的校准方法是SOLT。SOLT校准能够提供优异的精度和可重复性。这种校准方法要求使用短路、开路和负载标准校准件。如果被测件上有雌雄连

网络分析仪键位对照表

网络分析仪使用手册 ACTIVE CH/TRACE Block: Channel Prev:选择上一个通道 Channel Next:选择下一个通道 Trace Prev:选择上一个轨迹 Trace Next:选择下一个轨迹RESPONSE Block: Channel Max: 通道最大化 Trace Max: 轨迹最大化 Meas: 设置S参数 Format: 设置格式 Scale: 设置比例尺 Display: 设置显示参数 Avg: 波形平整 Cal: 校准 STIMULUS Block: Start: 设置频段起始位置 Stop: 设置频段截止位置 Center: 设置频段中心位置 Span: 设置频段范围 Sweep Setup: 扫描设置 Trigger: 触发 NAVIGATION Block:Enter: 确定 ENTRY Block: Entry off: 取消当前窗口 Back space: 退格键 Focus: 窗口切换键 +/-: 正负切换键 G/n, M/,k/m: 单位输入 INSTR STATE Block: Macro Setup: Macro Run: Macro Break: Save/Recall: 程序载入载出键 System: 系统功能键 Preset: 预设置键 MKR/ANALYSIS Block: Marker: 标记键 Marker Search: 标记设置键 Marker Fctn: 标记功能 Analysis: 分析 部分按键详细功能: ------------------------------------------------------------ System: (系统功能设定) Print: 将显示屏画面打印出来 Abort printing: 终止打印 Printer setup: 配置打印机 Invert image: 颠倒图象颜色 Dump screen image: 将显示屏画面保存到硬盘中 E5091A setup: 略 Misc setup: 混杂功能 Beeper: 发声控制 Beeper complete: 开/关提示音 Test beeper complete: 测试开/关提示音 Beep warning: 开/关警告音 Test beep warning: 测试开/关警告音 Return: 返回 GPIB setup: 略 Network setup: 略 Clock setup: 时钟设定 Set date and time: 设置日期和时间 Show clock: 开/关时间显示 Return: 返回 Key lock: 锁定功能 Front panel & keyboard lock: 锁定前端面板和键盘 Touch screen & mouse lock: 锁定触摸屏和鼠标 Return: 返回 Color setup: 颜色设定 Normal: 设置普通模式下的颜色设定 Data trace1: 对数据轨迹1进行颜色设定

矢量网络分析仪的使用——实验报告

矢量网络分析仪实验报告 一、实验容 单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。 a.设置测量参数 1)预设:preset OK 2)选择测试参数S11:Meas->S11; 3)设置数据显示格式为对数幅度格式:Format->LogMag; 4)设置频率围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“G”代表 GHz,“M”代表MHz,“k”代表kHz; 5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按 下大按钮); 6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off (隐藏设置窗)。 b.单端口校准与测量 1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal 母头校准件,M指male公头校准件); 2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到 Specify CLSs->Short->Set ALL->Short(m/f); 3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->Select Port->1(端口1 的校准,端口2也可如此操作); 4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Open,校准提示(嘀的响声)后完成Open校准件的 测量;得到的结果如Fig 1:单口Open校准件测量 5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Short,校准提示(嘀的响声)后完成Short校准件的 测量;得到的结果如Fig 2:单口Short校准件测量 6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连

网络分析仪使用说明书

TW/QS-SC-02 文件编号(深圳)有限公司TWTX V1.0 次版 矢量网络分析仪使用说明书1/16 次页 1 目的 本使用说明书为规范矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。 2 适用范围 本使用说明书适用于公司范围内的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。 3 主要职责 3.1 各部门设备使用者负责实施设备一级保养工作。 3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。 3.3 对新进员工有必要学习此文件时进行培训学习。 4 仪器操作注意事项 4.1 测试产品时,不能直接加电测试。 4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。 4.3 防止有大的直流电加入,网络仪最大能承受10V的直流电。 4.4 防止过信号的输入。 4.4.1 网络分析仪的最大允许输入信号为20dBm。 4.4.2 输入信号大于10dBm时,应加相应的衰减器。 4.5 仪器使用前确保已接地。 5 仪器面板介绍 5.1 按键区域 1·ACTIVE CH/TRACE:活动通道区;软菜单

2·软驱; 3·RESPONSE:响应区; 1 2 4·NAVIGATION:导航区; 5 4 3 5·ENTRY:输入区; 6·STIMULVS:激励区; 7·MKR/ANALYIS:标定点/分析; 6 7 8 8·INSTRSTATE:设备状态区。 注:见“11 按键翻译”。 USB接口 TW/QS-SC-02 文件编号 TWTX(深圳)有限公司V1.0 版次 矢量网络分析仪使用说明书2/16 页次5.2 显示区域 1 2 3 4 5 1.0000 000/Ref Tr1 S11 1SWR .0.00dB Tr2 Logmag S21 10dB/Ref 1.0000 000/Ref SWR 1S22 .Tr3 1.表示通道编号; 2.表示通道类型; 3.表示通道的格式; 4.表示通道在显示屏上每格所表示的数值; 5.表示通道在显示屏上参考线所在的格子数值。 6 仪器的基本常用功能介绍 6.1 测量回波损耗(电压驻波比) 通道选择S11或S22,S11时,用电缆PORT1;S22时,用电缆PORT2。 测量单通道时,所测器件终端应加负载;测双通道时,器件输出与输入均应接电缆。器件为有源器件时,详见“4 仪器操作注意事项”。

S参数定义,矢量网络分析仪基本知识和S参数测量

S参数定义、矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 1.单端口网络习惯上又叫负载Z L。因为只有一个口,总是接在最后又称终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 ?单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。?匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 ?传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

V2 ?两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即S11、S21、S12、S22。 S参数的基本定义: S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。 S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。 S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。 S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。 特点: 1、对于互易网络有S12=S21 2、对于对称网络有S11=S22 3、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上 4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。

网络分析仪使用说明书.(DOC)

1 目的 本使用说明书为规范矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。 2 适用范围 本使用说明书适用于公司范围内的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。 3 主要职责 3.1 各部门设备使用者负责实施设备一级保养工作。 3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。 3.3 对新进员工有必要学习此文件时进行培训学习。 4 仪器操作注意事项 4.1 测试产品时,不能直接加电测试。 4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。 4.3 防止有大的直流电加入,网络仪最大能承受10V 的直流电。 4.4 防止过信号的输入。 4.4.1 网络分析仪的最大允许输入信号为20dBm 。 4.4.2 输入信号大于10dBm 时,应加相应的衰减器。 4.5 仪器使用前确保已接地。 5 仪器面板介绍 5.1 按键区域 1·ACTIVE CH/TRACE :活动通道区; 2·软驱; 3·RESPONSE :响应区; 4·NAVIGATION :导航区; 5·ENTRY :输入区; 6·STIMULVS :激励区; 7·MKR/ANALYIS :标定点/分析; 8·INSTRSTATE :设备状态区。 注:见“11 按键翻译”。 1 2 3 6 4 5 7 8 软菜单 USB 接口

矢量网络分析仪使用说明书版次V1.0 页次2/16 5.2 1 2 3 4 5 Tr1 S11 SWR 1.000/Ref 1.0000 Tr2 S21 Logmag 10dB/Ref 0.00dB Tr3 S22 SWR 1.000/Ref 1.0000 1.表示通道编号; 2.表示通道类型; 3.表示通道的格式; 4.表示通道在显示屏上每格所表示的数值; 5.表示通道在显示屏上参考线所在的格子数值。 6 仪器的基本常用功能介绍 6.1 测量回波损耗(电压驻波比) 通道选择S11或S22,S11时,用电缆PORT1;S22时,用电缆PORT2。 测量单通道时,所测器件终端应加负载;测双通道时,器件输出与输入均应接电缆。器件为有源器件时,详见“4 仪器操作注意事项”。 6.2 测量插入损耗 通道选择S12(Port2接收Port1发射)或S21(Port1接收Port2发射)测量时,所测器件输出、输入应接电缆;测量有源器件时,S12、S21不能选错,其余详见“4 仪器操作注意事项”。 6.3 测量时延 所测器件端口接上仪器,通道选择视具体情况,仪器按键Format→GroupDelay,详见“4 仪器操作注意事项”。 6.4 测量史密斯圆图 通道选择S11或S22时,终端应加负载,所测端接电缆。双通道时,输出、输入应同时接电缆,仪器按键Format→Smith,详见“4 仪器操作注意事项”。 7 仪器校准按键介绍 7.1 手动校准(以下介绍了双通道的校准方法) 按Cal*键,选择Cal kit ,选择ⅹⅹⅹ(具体见校准件型号,一般仪器厂商有配置),再选择Calibrate,选择2-Port Cal(双通道校准),选择Reflection,再对应相应的通道及校准件进行校准(电缆接什么标准件并在仪器上具体按何键见按件翻译,这里用到的标准键有3种分别是,开路Open、短路Short和负载Load),结束后,选择Return返回

(整理)几款网络分析仪的介绍

ENA射频网络分析仪 Agilent E5071C 9 KHz至8.5 GHz 详细说明: ?Agilent E5071C ENA系列网络分析仪 频率范围: 频率范围端口选件 E5071C 9KHz-4.5GHz 2/4 240/440 9KHz-8.5GHz 2/4 280/480 100KHz-4.5GHz 2/4 245/445 100KHz-8.5GHz 2/4 285/485 系统动态范围: 频率IF 带宽技术指标SPD 9 -300 kHz 300 kHz -10 MHz 10 MHz -6 GHz 6 -8.5 GHz IF 带宽=3 kHz 72 Db 82 dB 98 dB 92 dB 9 -300 kHz 300 kHz -10 MHz IF带宽=10 Hz 97 dB 107 dB 123 dB 117 dB 130dB

主要特性: ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 选件: E5071C—008 频率偏置模式 E5071C—010 时域分析能力 E5071C—790 测量向导助手软件 E5071C—1E5 高稳定度时基 E5071C—240 双端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—245 双端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—440 4端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—445 4端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—280 双端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—285 双端口测试仪100KHz-8.5GHz 带偏置T型接头 E5071C—480 4端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—485 4端口测试仪100KHz-8.5GHz 带偏置T型接头 附件: 校准件 HP85033D/E (3.5mm) 校准件HP85032B (N型) ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 ?提供频率选件:从9 kHz/100 kHz(带有偏置T型接头)到4.5 GHz/8.5 GHz E5071C网络分析仪具有广泛的频率范围和众多功能,在同类产品中具有最高的射频性能和最快的测试速度。它是制造工程师和研发工程师测量9 kHz至8.5 GHz射频元器件和电路的最佳工具。

相关主题