搜档网
当前位置:搜档网 › 关于土的目力鉴别

关于土的目力鉴别

关于土的目力鉴别
关于土的目力鉴别

土的野外鉴别和描述

土的野外鉴别和描述 (1)碎石类土的描述 碎石类土应描述碎屑物的成分、指出碎屑是由那类岩石组成的;碎屑物的大小,其一般直径和最大直径如何,并估计其含量之百分比;碎屑物的形状,其形状可分为圆形、亚圆形或棱角形;碎屑的坚固程度。 当碎石类土有充填物时,应措述充填物的成分,并确定充填物的土类和估计其含量的百分比。如果没有充填物时,应研究其孔隙的大小,颗粒间的接触是否稳定等现象。 碎石土还应描述其密实度,密实度是反映土颗粒排列的紧密程度,越是紧密的土,其强度大,结构稳定,压缩性小:紧密度小,则工程性质就相应要差。一般碎石土的密实度分为密实、中密、稍密等三种,其野外鉴别方法见表4-4。 碎石土密实度野外鉴别方法表4-4

注:1.骨架颗粒系指各碎石土相应的粒径颗粒: 2.密实度按表列各项要求综合确定。 (2)砂土的描述 砂类土按其颗粒的粗细和其干湿程度可分为砾砂、粗砂、中砂、细砂和粉砂。其特征见表4-5。 砂土的野外鉴别方法表4-5

砂类土应描述其粒径和含量的百分比;颗粒的主要矿物成分及有机质和包含物,当含大量有机质时,土呈黑色,含量不多时呈灰色;含多量氧化铁时,土呈红色,含少量时呈黄色或橙黄色;含SiO2、CaCO3及Al(OH)3和高岭土时,土常呈白色或浅色。 (3)粘性土的描述 粘性土的野外鉴别可按其湿润时状态、人手捏的感觉、粘着程度和能否搓条的粗细,将粘性土分为粘土、亚粘土和亚砂土(见表4-7)。 粘性土的野外鉴别方法表4-7

粘性土应描述其颜色、状态、湿度和包含物。在描述颜色时、应注意其副色,一般记录时应将副色写在前面,主色写在后面,例如“黄褐色”。表示以褐色为主,以黄色为副。粘性土的状态是指其在含有一定量的水份时,所表现出来的粘稠稀薄不同的物理状态,它说明了土的软硬程度,反映土的天然结构受破坏后,土粒之间的联结强度以及抵抗外力所引起的上粒移动的能力。土的状态可分为坚硬、硬塑、可塑、软塑、流塑等。野外测定土的状态时,可采用重为76g、尖端为30?的金属圆锥的下沉深度来确定,其判断标准见表4-8。 土的状态野外判定标准表4-8

进口货物的固体废物属性鉴别程序

附件 进口货物的固体废物属性鉴别程序 1总则 1.1目的 为规范进口货物的固体废物属性鉴别工作,依据《中华人民共和国固体废物污染环境防治法》《固体废物进口管理办法》等相关规定,制定本程序。 1.2适用范围 本程序适用于进口物质、物品的固体废物属性鉴别,及相关部门对鉴别机构的管理。 1.3固体废物属性鉴别工作依据 (1)《中华人民共和国固体废物污染环境防治法》; (2)《中华人民共和国进出口商品检验法》; (3)《固体废物进口管理办法》; (4)《进口废物管理目录》; (5)《固体废物鉴别标准通则》(GB34330); (6)《中华人民共和国进出口税则》; (7)《国家危险废物名录》。 1.4术语和定义 (1)固体废物属性鉴别 是指判断进口物质、物品是否属于固体废物以及判断其所属固

体废物类别的活动。 (2)鉴别机构 是指接受海关、生态环境主管部门等的委托,从事固体废物属性鉴别的机构。 (3)委托方 是指向鉴别机构提出鉴别申请的机构或单位。 (4)委托鉴别 是指由委托方向鉴别机构申请进行固体废物属性鉴别的行为。 (5)复检鉴别 是指对已经出具鉴别结论的同一批进口货物再次进行固体废物属性鉴别的活动。 (6)样品 是指从整批进口货物中抽取,并能完整、真实地展示和反映货物属性特征的少量实物。 2固体废物属性鉴别工作程序 固体废物属性鉴别工作程序主要包括鉴别委托和受理、鉴别、复检、分歧或异议处理等。 2.1鉴别委托与受理 (1)委托鉴别时,委托方应向鉴别机构提交以下材料: ①委托鉴别申请函(需说明鉴别原因); ②鉴别货物产生来源信息; ③申请复检鉴别时应提交自我申明以及已进行的检验或鉴别材料; ④鉴别机构要求的其他必要信息。 (2)鉴别机构同意受理委托,应告知委托方所需鉴别工作费用

目标检测与识别

采用视频图像的运动目标检测与识别 相关调研 目标检测是计算机视觉的一个重要组成部分,在军事及工业等领域有着重要的应用前景。运动目标的检测方法主要有光流法,差值法。光流法的计算量很大,实时性和应用性较差。而图像差值法比较简单,实时性较好,是目前应用最广泛,最成功的运动目标检测的方法。图像差值法可分为两类,一类是用序列图像的每一帧与一个固定的静止的参考帧做图像差分,但自然场景不是静止不变的,因而必须不断的更新背景。另一类是用序列图像的两帧进行差分,这种方法无法检测出两帧图像中重合的部分,只能检测出目标的一部分信息。在绝大多数视频监控图像应用中,每一个像素都可以用一个或多个高斯模型近似,因此,高斯背景模型是绝大多数目标检测方法常用的基本模型。 智能视频服务器是飞瑞斯在多年视频分析技术优势的基础上,推出的一系列具有智能视频分析功能的DVS 视频编码设备。智能视频服务器基于DSP、ARM等核心平台,完成前端标准的H.264高压缩率编码,同时完成智能分析功能。 智能视频服务器的最大的创新点在于,这一系列DVS不仅仅提供视频监控的功能,能通过飞瑞斯核心的智能视频分析技术,来感知视频场景内的环境、人和物,并挖掘其中的人(物)行为、状态、身份信息、数量、轨迹等更深层次的元数据信息。 智能视频服务器赋予了视频监控系统智慧的大脑,从此视频监控不仅仅是能看得到,而且还能自己思考,提供更为智能的应用。

https://www.sodocs.net/doc/1715684484.html,/products_20_26.html?bdclkid=BztEJhpzcR34JE_Ft948PGoNuxuK0gsc zre7HPa3EhvUMBqk3J

岩土工程勘察中野外编录及野外鉴别心得体会

岩土工程勘察中野外编录及野外鉴别心得体会 体会心得 1. 心得 2. 野外编录中描述内容 3. 土的光泽反应,摇震反应,干强度和韧性的目力鉴别 4. 一般性土的野外鉴别 5. 岩石风化程度的野外鉴别 6. 钻探编录注意事项 7. 取水样注意事项 8. 表格清晰说明补充 心得 1.标贯的锤子反弹可以判断土层的密实度,软的松散的土不会反弹,硬的岩石会。 2,.泥浆的颜色可以判断土层的类别(含砂较多者)泥浆中会有颗粒出现(例如粉质粘土与花岗岩残积土)需结合岩土芯区别。 3.钻杆的跳动可初步判断土层的类别(密实度) 4.钻杆下入土层是否有塌孔的产生,进而判断碎石土砂土的密实度。基岩会出现掉块现象。 5.钻杆同一档转动速度的快慢可判断土层的黏性,密实度,是否出现糊状。 密实度可从以下方面判断a标贯(碎石动力触探)b钻进快慢c钻杆的

跳动d塌孔(松散类容易塌孔,反正密实的不易塌) 6.湿度的判段a地下水位b手拍是否有析水现象c用白纸吸水看是否透纸。 7.标贯锤没达到63.5+-0.5可用排水法验算 8标贯锤高度用钢尺测量 9.钻机在钻探前,必须检查是否摆稳,否则会使孔倾斜。 10.标贯的锤击速率保持在15-30击/min 11.分层做标贯,动探,层厚时标贯,动探试验一般每隔1-2m进行一次,测试深度超过 15cm时,试验间距可为2-3m 12.地下水位以下的砂层进行标贯试验时,为了避免产生流沙或塌孔现象使N值失真,孔内应采用泥浆护壁或下套管。 13.标贯锤遇到塌孔无法打到实地土层情况怎么处理? 14.标贯锤遇到坚硬的残积土等无法先预进入土层15cm时怎么处理? 一.野外编录中描述内容: 1. 土的描述 1 粘土(粉质粘土):颜色,状态,包含物,光泽反应,摇震反应,干强度,韧性,土层结构等。 2 砂土:颜色,矿物组成,颗粒级配,颗粒形状,粘粒含量,湿度,密实度等。 3 粉土:颜色,包含物,湿度,密实度,摇震反应,光泽反应,干强度,

RCS理论之于目标识别

RCS理论之于目标识别 RCS对于观测方向非常敏感,同一目标在微小的观测方向改变下就可能引起RCS 的极大变化。因此对于目标识别的任务来说是间距的。但可以考虑建立目标的RCS库,保存目标在不同观测角(方位角,俯仰角,偏航角),不同的极化方式,不同的频率下的不同RCS。RCS可以用dBm2 表示,也可以用m2表示,参见《雷达目标特征信号》P321。 可惜的是这样的数据库实在是太大了,不但建库需要的存储量惊人,而且用于目标识别的时间也将因此不可想象。如何用较少的数据量而尽可能完备地表示目标的RCS呢? 因为复杂目标RCS是随观测角和入射频率以及极化迅速改变的,如果入射频率固定,极化也固定,则对于机动目标,观测角是不断改变的,我们要的就是RCS 的起伏特征,利用RCS的起伏来区分不同的目标。因为这种起伏是变化很快的,初步设想通过遗传算法来进行目标的自动分类效果会更好。(在分类之前对目标的RCS进行特征提取,如起伏范围—最大截面积和最小截面积,变化快慢等)。 进行目标识别的一种思想是希望目标特征具有姿态不变性,那样就可以一个目标对应于一个特征。而利用RCS进行目标识别,RCS本身不具有姿态不变性,并且是剧烈变化,但这一变化的特征正又能够从另一个方面反映事物的本质。 RCS既可以通过计算机计算,也可以通过实验测定。 利用缩比模型测RCS,同时要改变频率,按照同样的比例进行变换。 在X波段,汽车的RCS通常比飞机和船只要大,而且截面积随测量频率上升而增大(测量频率上限为60GHz时得到的结论,是否总是增大?)

雷达方程为:

用的原因:观察雷达方程,当用代入方程时,发现RCS和波长平方的比值可以做为一个整体,而其他因子为发射和接收功率以及 距离。因此可以把做为一个整体作图。起到了归一化的作用(RCS是和雷达工作频率有关的)。

ASTM土的工程分类执行标准统一的土分类体系

Designation: D 2487-00 土的工程分类执行标准(统一的土分类体系) 1. 范围 1.1 该操作描述基于实验室测定的粒径特征、液限和塑性指数用于工程目的分类矿物和有机金属矿物土的体系,当需要精确分类土时,这些将会用到。 1.2 该体系的组符号是基于实验室在土试样通过3-in.(75-mm)筛部分试样上的测试完成的数据(见规范E11)。 1.3 作为一种分类体系,该标准仅限于自然生成的土。 1.4 该标准仅应用于定性。 1.5 该标准是统一的土分类体系的ASTM版本。分类表的理论是由 A. Casagrande在上世纪四十年代初发展的飞机场分类体系。当几个美国政府机构在1952年采用改进后的飞机场体系版本,它就成为众所周知的统一的土分类体系。 1.6该标准试验方法没有包含所有的安全问题,即便要,也应联系实际需要。

在试验前确定合适的安全、健康守则和决定其规章制度适用的局限性是试验者的责任。 1.7 该操作提供一套用于完成一种或是更多特殊操作的说明。该文件不能取代培训或是经验,应结合职业判断使用。不是所有的该操作都能用于所有的环境。该ASTM标准不是想代表或是取代标准观察,对于一给定的专业,必须判断其适当性,也不是不考虑一个工程的许多的特殊方面就采用该文件。在标题中“标准”一词仅仅意味着文件已经通过了ASTM多数人赞同通过程序的批准。 2. 参考文件 3. 术语

3.1 定义-除非以下列出的,所有定义均参照术语D 653。 3.1.1 粘土-通过No.200(75-mm)美国标准筛的土,能被制成在一定范围的含水率存在塑性(像灰泥样的性质),当空干时存在相当的强度。对于分类,粘土是细颗粒土,或者土中的细粒部分,其塑性指数等于或大于4,在塑性指数对液限的曲线上落在或在“A ”线以上。 3.1.2 砾石-岩石粒子通过美国标准筛3-in.(75-mm)筛,保留在No.4( 4.75-mm)筛上部分,按以下细分: 粗砾-通过3-in.(75-mm)筛,保留在43-in.(19-mm)筛上部分。 细砾-通过43-in.(19-mm)筛,保留在No.4(4.75-mm)筛上部分。 3.1.3 有机粘土-带有足够有机物成分能影响土性质的粘土。对于分类,有机粘土是一种土,应归类为粘土,除非它在烘干后的液限值小于烘干前液限值的75%。 3.1.4 有机粉土-带有足够有机成分能影响土性质的粉土。对于分类,有机粉土是一种土,应归类为粉土,除非它在烘干后的液限值小于烘干前液限值的75%。 3.1.5 泥炭-一种含有各分解阶段植物组织的土,通常带有机物气味,棕黑色-黑色,像海绵似的结构,质地为纤维的-无定型的。 3.1.6 砂-岩石粒子通过美国标准筛No.4( 4.75-mm)筛,保留在No.200(75-mm)筛上部分,按以下细分: 粗砂-通过No.4(4.75-mm)筛,保留在No.10(2.00-mm)筛上部分。 中砂-通过No.10(2.00-mm)筛,保留在No.40(425-m μ)筛上部分。 细砂-通过No.40(425-m μ)筛,保留在No.200(75-m μ)筛上部分。 3.1.7 粉土-能通过美国标准筛No.200(75-m μ)筛,没有塑性或是非常轻微的塑性,当空干时表现出很小或没有强度的土。对于分类,粉土是细粒土,或者土中的细粒部分,其塑性指数小于4或如果在塑性指数曲线对液限的曲线里落在

利用幅度比特征进行有源假目标鉴别

收稿日期:2016-09-22 网络出版时间:2017-04-13基金项目:国家自然科学基金资助项目(61671361,61601343,61301285,61301281)作者简介:赵珊珊(1989-),女,西安电子科技大学博士研究生,E -mail :zhaoshanshan025@https://www.sodocs.net/doc/1715684484.html,.网络出版地址:htt p ://https://www.sodocs.net/doc/1715684484.html, /kcms /detail /61.1076.TN.20170413.0959.018.html doi:10.3969/j . issn.1001-2400.2017.05.009利用幅度比特征进行有源假目标鉴别 赵珊珊,张林让,刘 楠,张 娟,周 宇 (西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071) 摘要:针对现有信号级协同抗干扰方法无法实现恒虚警鉴别的问题,提出了一种新的单脉冲回波数据下 基于目标幅度比特征差异的有源假目标鉴别方法,通过对目标在各接收站中幅度比的随机分布进行理论 分析,可在保证预设假目标误判概率的情况下,利用多维空间门限检测方法进行真假目标鉴别.仿真结果 验证了这种方法的可行性和有效性.关键词:多站雷达;欺骗式干扰;幅度比特征;有源假目标鉴别 中图分类号:TN973 文献标识码:A 文章编号:1001-2400(2017)05-0051-07 Active false -tar g et discrimination method based on the am p litude ratio feature Z HAO Shanshan,Z HANG Linran g ,LIU Nan,Z HANG J uan,Z HOU Yu (National Ke y Lab.of Radar Si g nal Processin g ,Xidian Univ.,Xi an 710071,China ) Abstract: Coo p eration in multi p le - radar has become an im p ortant trend in radar dece p tion electronic counter -countermeasure.To solve the p roblem that the existin g si g nal fusion -based methods cannot achieve a constant false alarm rate,this p a p er p ro p oses a novel tar g et discrimination method based on the difference in am p litude ratio feature.B y the anal y sis of the random distribution of tar g et am p litude ratio,multi p le -dimensional test threshold is a pp lied to discriminate the detected tar g ets under a p reset false alarm p robabilit y .Simulation results verif y the feasibilit y and effectiveness of the p ro p osed method. Ke y Words: multi p le - radar s y stem;dece p tion j ammin g ;am p litude ratio feature;active false tar g ets discrimination 欺骗式干扰通过对雷达发射信号进行延迟调制转发,在其附近产生多个有源假目标,以迷惑和扰乱雷达 对真实目标的检测和跟踪,达到掩护真实目标的作战目的[1].转发式干扰是实施欺骗干扰的重要干扰样式[2],利用数字射频存储器(Di g ital Radio Fre q uenc y Memor y ,DRFM )对截获的雷达发射信号进行快速存储二调制和转发,可用于实施密集假目标干扰,快速产生大批有源假目标.对于没有分辨能力的雷达,将以假 当真,这将严重消耗雷达系统资源,甚至造成雷达检测二跟踪和识别等处理系统的过载.因此,对有源假目标的鉴别是欺骗式干扰对抗中亟待解决的重要问题,对提高雷达在复杂电磁干扰环境下的目标探测和跟踪能力具有重要意义.针对欺骗式干扰,单部雷达可通过频率捷变二发射信号优化[3]二极化特性差异[4]二运动学信息[5]和数字射 频存储器量化误差[6]对有源假目标进行鉴别.然而,单部雷达视角单一,抗干扰能力有限.多站雷达协同是提 高雷达抗干扰能力的重要发展趋势.多站雷达由几个空间上分开的发射站二接收站和发射-接收站组成,各传感器中目标信息在融合中心进行联合处理[7],在协同抗干扰方面优于传统单站雷达系统.根据其融合结构不同,可以将协同抗干扰方法分为数据级协同抗干扰和信号级协同抗干扰两大类.数据级协同抗欺骗式干扰主 2017年10月 第44卷 第5期 西安电子科技大学学报(自然科学版)JOURNAL OF XIDIAN UNIVERSITY Oct.2017Vol.44 No.5万方数据

野外编录土的鉴别方法与描述

野外编录常用 一、杂填土: 杂色,松散,上部为砼地坪,含较多的碎石。 二、粉土: (1)灰黄,很湿,稍密,含云母片,摇振反应迅速,无光泽,干强度低,韧性低。 (2 )浅灰色,含云母片,摇振反应中等,无泽反应,干强度低,韧性低。三、粉砂: (1)黄色,饱和状态,中密,含云母片,主要由石英等矿物组成。 (2)上部灰黄色,底部浅灰色,含云母片,饱和状态,密实。 (3)灰黄,含云母片,饱和,密实,主要成分由长石、石英、云母等组成,磨园度好、分选性好。 四、淤泥质粉质粘土: 灰色~灰黑色,流塑,含有机质;无摇振反应,稍有光泽,干强度中,韧性中,有腐味 五、粉质粘土:青灰色,软塑状,无摇振反应,切面稍有光泽,干强度中等,韧性中等。 六、粉质粘土: 灰黄~褐黄色,可塑,无摇振反应,切面有光泽,干强度中等,韧性中等。 七、粉质粘土 (1):灰黄~褐黄色,硬塑,含青灰色粘土团块无摇振反应,切面有光泽,干强度高,韧性高。 (2)褐黄色,硬塑,含白色高龄土条带用钙质结核,(核径为 0.3~2cm),无摇振反应,切面光滑,干强度高,韧性高。 八、粘土:灰黄色,可塑,无摇振反应、光滑,干强度高,韧性高,局部分布。 九、粘土:灰黄~褐黄色,硬塑,含少量的铁,锰质结核,可塑,无摇振反应,光滑,干强度高,韧性高。 十、强风化泥质粉砂岩:棕红色,风化强烈,取芯呈砂土状,手捏易碎,遇水易软化,节理裂隙较发育。

十一、中风化泥质粉砂岩:棕红色,取芯呈长柱状,锤击声哑、易碎,采取率92%,RQD81%。无裂隙,具水平节理,岩石等级Ⅴ类。 十二、中风化灰岩:灰~深灰色,隐晶质结构中厚层状构造,岩石结构致密坚硬,裂隙发育大部分闭合,由方解石充填,岩芯多呈短柱状,长柱,少量呈碎石块状,碎粒状,土状,长度20~40cm 局部溶蚀现像严重,岩芯表面呈峰窝状,溶径5~20mm,最大 50mm.采取率 92% RQD81%. 十三、粉质粘土夹粉土:灰黄~青灰色,可塑,含少量云母片,无摇振反应,稍有光泽,干强度中等,韧性中等。(一般情况下要分开描述)灰黄色,软~可塑,无摇振反应,稍有光滑,干强度中等,韧性中等。局部夹薄层粉土。浅灰色,可塑,粉粒含量高,无摇振反应,稍有光滑,干强度中等,韧性中等。局部夹30cm 厚薄层粉土,湿,中密~密实。 十四、粘土夹粉砂:灰黄色,褐黄色,可塑,含少量钙质结核核径为 3cm。夹薄层壮中密粉砂,具水平层理,无摇振反应,切面稍光滑,干强度高,韧性高。十五、碎石土:浅黄色,灰黄色,中密~密实,碎石含量 50%~70%棱角形,次棱角形,一般直径 20~40mm 最大粒径 120mm 成份以灰岩为主,少量为砂岩,由老黄土、新黄土,中粗砂,砾石充填。 十六、全风化粘土岩:褐灰色,黄褐色,棕红色。结构构造完全破坏岩芯呈土状,含风化碎屑,碎块,手捏易碎,遇水易分解。十七、强风化粘土岩:褐灰色,黄褐色。棕红色,结构构造大部分破坏,岩芯呈碎块状,节理裂隙较发育。八、页岩:灰黄色,薄层状,手捏易散,遇水易崩解。 野外记录要点: 1) 粉质粘土:一般描述颜色,状态,夹含物。土质结构特征(均质程度或夹层,互层夹薄层)。状态:流塑、软塑、可塑、硬塑、坚硬。夹含物:铁锰质斑状黑色结核及浅绿色高岭土成份局部地区夹碎石,砂石颗粒(粒径较小,并夹腐植物)2) 粉土:描述颜色,状态(稠度公路)湿度,夹含物,土层结构。切面光泽,韧性。摇振反应。状态同粉质粘土不可搓条,湿度同粉质粘土。夹含物:腐蚀物。摇振反应:取少量粉土搓成小球在手掌中摇晃,如有水溢出表示摇振反应较高,无水则低。 3) 残积土:颜色,状态,夹含物。状态:软塑、可塑、硬塑夹含物一般为夹铁

土的分类标准

土的分类标准 第一章总则 第1.0.1条为了统一工程用土的鉴别、定名和描述,便于对土的性状作定性评价,特制订本标准。 第1.0.2条本标准适用于各类工程用土;不适用于混凝土所用砂、石料和有机土。 注:工程用土指工程勘察、建筑物地基、堤坝填料和地基处理等所涉及的土类、 有机土指土料中大部分成分为有机物质的土。 第1.0.3条本标准是工程用土的通用分类标准。各行业的工程部门可根据各自的专门需要,编制专门分类标准。 第1.0.4条土的各项分类试验,应符合现行的国家标准《土工试验方法标准》的规定。 第二章一般规定 第2.0.1条工程用土的类别应根据下列土的指标确定: 一、土颗粒组成及其特征; 二、土的塑性指标:液限(ωL)、塑限(W p)和塑性指数(I p); 三、土中有机质存在情况。 第2.0.2条土的粒组应根据表2.0.2规定的土颗粒粒径范围划分。 2.0.2 粒组划分 表 第2.0.3条土颗粒组成特征应根据土的级配指标的不均匀系数(Cu)和曲率系数(Cc)确定,并应符合下列规定: 一、不均匀系数,应按下式计算:

式中d 60——在土的粒径分布曲线上的某粒径,小于该粒径的土粒质量为总土粒质量的60; d 10——在土的粒径分布曲线上的某粒径,小于该粒径的土粒质量为总土粒质量的10。 二、曲率系数,应按下式计算: 式中d 30——在土的粒径分布曲线上的某粒径,小于该粒径的土粒质量为总土粒质量的30。 第2.0.4条 细粒土应根据塑性图分类。塑性图的横坐标为土的液限(ωL ),纵坐标为塑性指数(I p )。本标准规定有两种塑性图,可根据下列所采用的液限标准进行选用: 一、当取质量为写76g 、锥角为30°的液限仪锥尖入土深度为17mm 对应的含水量为液限时,应按塑性图2.0.4-1分类。 图2.0.4-1 塑性图二、当取质量为76g 、锥角为30°的液限仪锥尖入土深度为10mm 对应的含水量为液限时,应按塑性图2.0.4-2 分类。 Ip w L

危险废物属性鉴别 固体废弃物鉴定

危废鉴定-危险废物属性鉴别 中国科学院广州化学研究所分析测试中心卿工---189--3394---6343 危险废物腐蚀性固体废物腐蚀性测定玻璃电极法GB/T15555.12-1995铜 危险废物鉴别标准浸出毒性鉴别火焰原子吸收光谱法 GB5085.3-2007/附录D 铜 危险废物鉴别标准浸出毒性鉴别电感耦合等离子体质谱法 GB5085.3-2007/附录B 固体废物镍和铜的测定火焰原子吸收分光光度法 HJ751-2015 危险废物铜 固体废物铍、镍、铜和钼的测定石墨炉原子吸收分光光度法 HJ752-2015 锌 危险废物鉴别标准浸出毒性鉴别火焰原子吸收光谱法 GB5085.3-2007/附录D 危险废物鉴别标准浸出毒性鉴别电感耦合等离子体质谱法 GB5085.3-2007/附录B 危险废物铅 危险废物鉴别标准浸出毒性鉴别火焰原子吸收光谱法 GB5085.3-2007/附录D 危险废物鉴别标准浸出毒性鉴别电感耦合等离子体质谱法 GB5085.3-2007/附录B 镉 危险废物鉴别标准浸出毒性鉴别火焰原子吸收光谱法 GB5085.3-2007/附录D 危险废物鉴别标准浸出毒性鉴别电感耦合等离子体质谱法 GB5085.3-2007/附录B

铬危险废物鉴别标准浸出毒性鉴别火焰原子吸收光谱法 GB5085.3-2007/附录D 危险废物鉴别标准浸出毒性鉴别电感耦合等离子体质谱法GB5085.3-2007/附录B 铬固体废物总铬的测定火焰原子吸收分光光度法HJ749-2015 固体废物总铬的测定石墨炉原子吸收分光光度法 HJ750-2015 六价铬固体废物六价铬的测定二苯碳酰二肼分光光度法GB/T15555.4-1995 危险废物镍危险废物鉴别标准浸出毒性鉴别火焰原子吸收光谱法 GB5085.3-2007/附录D 危险废物鉴别标准浸出毒性鉴别电感耦合等离子体质谱法GB5085.3-2007/附录B 固体废物镍和铜的测定火焰原子吸收分光光度法 HJ751-2015 固体废物铍、镍、铜和钼的测定石墨炉原子吸收分光光度法HJ752-2015 危险废物砷固体废物汞、砷、硒、铋、锑的测定微波消解/原子荧光法HJ702-2014 危险废物鉴别标准浸出毒性鉴别电感耦合等离子体质谱法GB5085.3-2007/附录B 注1:硝基苯类包括:硝基苯、间-二硝基苯、对二硝基苯、邻-硝基氯苯、间-硝基氯苯、对-硝基氯苯、2,4-二硝基甲苯、2,4,6-三硝基甲苯、2,4-二硝基氯苯。注2:苯系物包括:苯、甲苯、乙苯、邻-二甲苯、间-二甲苯、对-二甲苯、苯乙烯。注3:多氯联苯包括:PCB-1242、PCB-1248、PCB-1254、PCB-1260。注4:氯苯类包括:氯苯、1,4-二氯苯、1,2,4-三氯苯。

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

目标检测、跟踪与识别技术与现代战争

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。

土的野外鉴别与描述

在勘探过程中取得的土样,必须及时用肉眼鉴别,初步确定土的名称、颜色、状态、湿度。密度、含有物、工程地质特征等,作为划分土层,进行工程地质分析和评价的依据。 1.土的鉴别和定名 土的鉴别定名是描述工作的主要内容,正确的定名可以反映土的基本性质。但是,在自然界中,土的种类很多,光有一个简单定名,还往往不能全面地反映士的真正面目。如粘土,由于沉积年代不同,有的沉积年代较老,得到了充分的固结和具有较高的结构强度;而沉积年代较近的粘土,其固结度与结构强度均要差些。应在其定名前冠以沉积年代或成因,如第四纪更新世(Q3)沉积的粘性土则写成“Q3粘性土”。或冠以成因类型如“冲积粘性土”等。 土是第四纪以来天然堆积的或由生物化学作用而形式的,按其成因分为残积土、坡积土、洪积土、淤积土、冰积土和风积土等,其特征见第一章所述。 2.土的描述 土的描述主要内容是针对影响其工程性质的,反映土的组成、结构、构造和状态的主要特征的。因此,对于各种不同的土,描述的侧重点也有所不同。 (1)碎石类土的描述 碎石类土应描述碎屑物的成分、指出碎屑是由那类岩石组成的;碎屑物的大小,其一般直径和最大直径如何,并估计其含量之百分比;碎屑物的形状,其形状可分为圆形、亚圆形或棱角形;碎屑的坚固程度。 当碎石类土有充填物时,应措述充填物的成分,并确定充填物的土类和估计其含量的百分比。如果没有充填物时,应研究其孔隙的大小,颗粒间的接触是否稳定等现象。 碎石土还应描述其密实度,密实度是反映土颗粒排列的紧密程度,越是紧密的土,其强度大,结构稳定,压缩性小:紧密度小,则工程性质就相应要差。一般碎石土的密实度分为密实、中密、稍密等三种,其野外鉴别方法见表4-4。 碎石土密实度野外鉴别方法表4-4

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

土的分类和鉴定

粒组划分 00粒 组统 称 细粒粗粒巨粒 粒组 名称 黏粒粉粒砂粒细粒粗粒卵石粒漂石粒 粒组粒径d的范围/mm ≤ 0.05 0.05<d≤ 0.075 0.075<d≤ 2 砾粒60<d≤200 d>200 2<d ≤20 20<d≤ 60

巨粒土和含巨粒的土的分类 砾类土的分类 土类粒组含量土代号土名称 砾细粒含量< 5% 级配Cu≥5, Cc=1~3 GW 级配良好砾 级配不同时满 足上述要求 Gp 级配不良砾 含细粒土砾细粒含量5%~15%GF 含细粒土砾 细粒土质砾15%<细粒含 量 ≤50%细粒为黏土GC 粘土质砾细粒为黏土GM 粉土质砾 土类土代号土名称 巨粒土巨粒含量≥75%漂石粒> 50% B 漂石 漂石粒≤ 50% Cb 卵石 混合巨粒土50%<巨粒含量 <75% 漂石粒> 50% BSI 混合土漂石 漂石粒≤ 50% CbSI 混合土卵石 巨粒混合土15%≤巨粒含量 ≤50% 漂石> 卵石SIB漂石混合土 漂石≤卵石SICb卵石混合土

砂类土的分类 土类粒组含量土代号 砂细粒含量<5% 级配Cu≥5 Cc=1~3 SW 级配良好砂 级配不同时满 足上述要求 SP 级配不良砂 含细粒土 砂 细粒含量5%~15%SF 含细粒土砂 细粒土质砂15% <细粒含 量≤50% 细粒为黏土SC 黏土质砂 细粒为黏土SM 粉土质砂 细粒土的分类 土的塑性指标在塑性图中的位置 土代号土名称 塑性指数I P 液限w L I P ≥0.63(w L -20) 和I P ≥10 ≥40% CH 高液限粘土

<40% CL 低液限粘土 I P <0.63(w L -20)和I P <10 ≥40% MH 高液限粉土 <40% ML 低液限粉土 黄土,膨胀土和红黏土的分类 土的塑性指标在塑性图中的位置土代号土名称 塑性指数液限w L I P ≥0.73(w L -20) <40% CLY 低液限粘土(黄 土)

土的分类与定名

土的分类与定名 一、概述 (一)土分类的目的与意义 土分类的目的在于通过分类来认识和识别土的种类,并针对不同类型的土进行研究和评价,以便更好地利用和改造土体,使其适应和满足工程建设需要。土分类是工程地质学中重要的基础理论课题,也是土力学的重要内容之一。其在科学研究领域和工程实际应用中都有很重要的意义。 1、对种类繁多、性质各异的土,按一定原则进行分门别类,以便更合理地选择研究内容和方法,针对不同工程建筑要求,对不同的土给予正确的评价,为合理利用和改造各类土提供客观实际的依据。因此,在各类工程勘察中,都应该把研究区域内的各种土进行分类,并反映在工程地质平面图和剖面图上,作为工程设计与施工的依据。 2、土分类也是国内外科技交流的需要。前面已经讲过的,在没有全国统一的土分类标准以前,国内各部门的土分类标准差异较大,其不利于学术交流,也不利于促进技术的发展。只有形成统一的土分类标准后,土工技术才有了广泛的技术交流与发展。 (二)土的分类方法 1、土分类的基本类型 按具体内容和适用范围,土分类可以概括为一般性分类、局部性分类和专门性分类三种基本类型。 (1)一般性分类,是对包括工程建筑中常遇到的各类土,考虑土的主要工程地质特征而进行的划分。这是一种比较全面的综合性分类,其有着重大的理论和实践意义,最常见的土分类就是这种分类,也称通用分类。 (2)局部性分类。仅根据一个或较少的几个专门指标,或者是仅对部分土进行分类,例如按粒度成分的分类,按塑性指数的分类及按压缩性指标的分类等。这种分类应用范围较窄,但划分明确具体,是一般性分类的补充和发展。 (3)专门性分类。根据某些工程部分的具体需要而进行的分类。它密切结合工程建筑类型,直接为工程设计与施工服务。如水利水电、地质、工业与民用建筑、交通等部门都有相应的土分类标准,并以规范形式颁布,在本部门统一执行。专门性分类是一般性分类在实际应用中的补充和发展。 2、土分类的序次

土的野外鉴别及描述

野外编录 土定名、分类、鉴别、描述等 第一章粘性土 粘性土分为粉质粘土和粘土 一、粉质粘土定义:塑性指数大于10且小于或等于17的土应定名为粉质粘土,肉眼观察,细土中有砂粒,干时不坚硬,用锤可打成细土粒,湿时有塑性有粘结力,能搓成φ0.5-2mm的土条,长度较小,用手搓、捻感觉有少量细颗粒,稍有粘滞感觉。 二、粘土定义:塑性指数大于17的土定为粘土,肉眼观察较细腻,一般无砂粒,干时很坚硬,用锤可打成碎块,湿时塑性粘性大,土团压成饼时,边部不裂,能搓成φ=0.5mm的土条,长度不少于手掌,用手搓捻有滑润感觉,当水分较大时,极为粘手,感觉不到有颗粒存在。 三、描述内容:颜色、状态、包含物、光泽反应、摇震反应、韧性、干强度、结构及层理特征 1、颜色:主色在后,次色在前。 2、状态: ①坚硬:干而坚硬,很难掰成块。 ②硬塑:用力捏先裂成块后显柔性,手捏感觉干,不易变形,手按无指印。 ③可塑:手捏似橡皮有柔性,手按有指印。 ④软塑:手捏很软,易变形,土块掰时似橡皮,用力不大就能按成坑。 ⑤流塑:土柱不能直立,自行变形。 3、包含物:贝壳、铁锰结核、高岭土姜结石等。 4、光泽反应:用取土力切开土块,视其光滑程度分为 ①切面粗造为无光泽。 ②切面略粗造(稍光滑)为稍有光泽。 ③切面光滑为有光泽。 5、摇震反应:试验对应将软塑-流动的小土块或土球,放在手掌中反复摇晃,并以另一手掌振击此手掌,土中自由水将渗出,球面呈现光泽。用手指捏土球,放松后水又被吸入,光泽消失,根据土球渗水和吸水反应快慢可区分为:

①立即渗水及吸水者为反应迅速。 ②渗水及吸水中等者为反应中等。 ③渗水和吸水慢及不渗,不吸者为反应慢或无反应。 4、韧性试验:将含水率略在于塑性的土块在手中揉捏均匀,然后在手掌中搓成直径3mm的土条,再揉成土团,根据再次搓条的可能性,可分为: ①能揉成土团,再搓成条,捏而不碎者为韧性高 ②可再揉成团,捏而不碎者为韧性中等 ③勉强或不能再揉成团,稍捏或不捏即碎者为韧性差 5、干强度:试验时将一小块土捏成小土团,风干后用手指捏碎,根据用力大小区分为 ①很难或用力才能捏碎或掰断者为干强度高 ②稍用力即可捏碎或掰断者为干强度中等 ③易于捏碎和捻成粉未者为干强度低 6、结构及层理特征:对同一土层中相间呈韵律沉积,当薄层与厚层的厚度比大于1/3时,宜定为“互层”;厚度比为1/10-1/3时,宜定为“夹层”;厚度比小于1/10的土层,且多次出现时,宜定为“夹薄层”。 7、对具有互层、夹层、夹薄层特征的土,尚应描述各层的厚度和层理特征。

相关主题