搜档网
当前位置:搜档网 › 反三角函数及最简三角方程.docx

反三角函数及最简三角方程.docx

反三角函数及最简三角方程.docx
反三角函数及最简三角方程.docx

标准实用

反三角函数及最简三角方程

一、知识回顾:

1、反三角函数:

概念:把正弦函数y sin x , x,时的反函数,成为反正弦函数,记作

22

y arcsin x .

y sin x( x R) ,不存在反函数.

含义: arcsin x 表示一个角;角,;sin x .

22

反余弦、反正切函数同理,性质如下表.

名称函数式定义域值域奇偶性单调性

反正弦函数y arcsin x1,1 增,

2奇函数增函数

2

y arccosx arccos( x)arccosx

反余弦函数1,1 减0,减函数

非奇非偶

反正切函数y arctanx R增,

2奇函数增函数

2

y arc cot x arc cot( x)arc cot x

反余切函数R减0,减函数

非奇非偶

其中:

().符号

arcsin x 可以理解为-,

]

上的一个角弧度,也可以理解为

1[

2

() 2

区间[-

]

上的一个实数;同样符号

arccos

x 可以理解为

[0

,π 上的一个角2

]

2

(弧度 ),也可以理解为区间 [0 ,π]上的一个实数;

(2). y =arcsin x 等价于 sin y=x, y∈ [-,], y= arccos x 等价于 cos y

22

=x, x ∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;

(3).恒等式 sin(arcsin x)=x, x∈ [- 1, 1] , cos(arccos x)=x, x∈ [-1, 1], tan(arctanx)=x,x ∈ R

arcsin(sin x) = x, x ∈ [ -,], arccos(cos x) = x, x ∈ [0,

22

π],arctan(tanx)=x, x∈(-,)的运用的条件;

22

(4).恒等式 arcsin x+arccos x=, arctan x+arccot x=的应用。

22

2、最简单的三角方程

方程方程的解集

a1x | x2k arcsin a, k Z

sin x a

a1x | x k 1 k arcsin a, k Z

a1x | x2k arccos a, k Z

cos x a

a1x | x2k arccos a, k Z

tan x a x | x k arctana, k Z

cot x a x | x k arc cot a, k Z

其中:

(1 ).含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三

角方程是否有解,如果有解,求出三角方程的解集;

(2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的

基础上,熟练地写出最简单的三角方程的解;

( 3).要熟悉同名三角函数相等时角度之间的关系在解三角方程中的作用;

如:若 sin sin,则 sin k( 1)k;若 cos cos,则2k;

若 tan tan,则 a k;若 cot cot,则 a k;

(4).会用数形结合的思想和函数思想进行含有参数的三角方程的解的情

况和讨论。

二、典型例题:

例 1.

例 2.

22

-

2

-O O

222

-

2

(A )( B)

11

-

2

-O O

222

-1

(C)(D )

例 3.

例 4. 使 arcsinx arccosx 成立的 x 的取值范围是 ()例 5.

例 6.求值: (1) sin 2arcsin3(2) tan 1

arccos

1

523

分析:

问题的关键是能认清三角式的含义及运算次序,利用换元思想转化为三角求值。

例7. 画出下列函数的图像( 1 )y arcsin(sin x)( 2 )y sin(arccos x), x [ 1,1]

例 8. 已知 cos27 ,(0, ), sin 5 ,( ,3

) 求(用反三角函数

252132

表示)分析:可求的某一三角函数值,再根据的范围,利用反三角

函数表示角。

例 9. 已知函数 f (x) arccos( x2x)

( 1)求函数的定义域、值域和单调区间;(2 )解不等式: f ( x) f (2 x1)

例 10. 写出下列三角方程的解集

(1) sin( x)2

;(2) 2cos3 x 1 0 ;(3) cot x3

82

例 11. 求方程 tan(3)3 在

0,2上的解集 .

x4

例 12. 解方程2sin2x 3 cos x 10

例 13. 解方程① 3sin x2cos x0② 2sin 2 x 3sin x cos x2cos 2 x0

例 14. 解方程: (1) 3 sin 2x cos2x 1(2) 5sin3 x 12cos3x 6.5思考:引入辅助角,化为最简单的三角方程

例 15. 解方程2sin2x3cos x0 .

16.解方程:

tan(

x x

) 2cot

x

4

) tan(

4

例 17. 已知方程sin x 3 cos x a 0 在区间0,2上有且只有两个不同的解,求实数 a 的取值范围。

[ 说明 ] 对于两个相等的同名三角函数所组成的三角方程,可直接利用以下关系得

到方程的解.

( 1)sin sin,则2k或2k, k Z ;

( 2)cos cos,则2k或2k, k Z ;

(3 )tan tan,则k,k Z .

三、同步练习:

反三角函数

1.arctan(tan 3

)的值是() 5

A.3

B. 2

C.

2

D.

3

5555 2.下列关系式中正确的是()

5

5 sin

arcsin

A. arc cos cos

B. 3

4

4

3

C. arc cos cos

cos arc cos

D. arc tan( 2) arc cot( 1 )

4

4

2

3.函数 f ( x) arcsin(tan x) 的定义域是

( )

A.

,

B. k

,k k

Z

4

4

4 4

C. k

,( k 1)

4

k Z

D. 2k

, 2k k Z

4

4

4

4.在

1, 3

上和函数 y

x 相同的函数是

(

)

2

A. y arccos(cos x)

B. y arcsin(sin x)

C. y

sin(arcsin x)

D. y cos(arccos x)

函数 y arctan x

的反函数是

.

5.

2

6.求 y

sin x 在 ,

3

上的反函数 .

2

2

7.比较 arccos

5

与 arc cot(

1

) 的大小 .

4

2

8.研究函数 y

arccos x x 2 的定义域、值域及单调性 .

9.计算 : cos arccos 4

arccos5 513

10.求下列函数的定义域和值域:

(1) y= arccos 1

; (2) y=arcsin(-x2+x); (3) y=arccot(2x-1), x

11. 求函数 y=(arccos x)2- 3arccos x 的最值及相应的x 的值。

简单的三角方程

1.解下列方程 .

(1) tan2x1(2) sin5 x sin3 x

2.方程 sin2 x= sinx 在区间 (0, 2 π)内的解的个数是.

3.(1)方程 tan3 x=tg x 的解集是.

(2)方程 sin x+ cos x=2

在区间 [0, 4 π] 上的所有的解的和是. 2

4.解方程sin2x 2 3sin x cos x cos2 x0 .

3

参考答案:

典型例题 :例 1.分析与解:例 2.分析与解:

例 3.分析与解:

例 4. 分析与解:

该题研究不等关系,故需利用函数的单调性进行转化,又因为求x的取值范围,故需把 x 从反三角函数式中分离出来,为此只需对arcsinx ,arccosx 同时取某一三角函数即可,不妨选用正弦函数。

例 5. 分析与解:这是三角函数的反三角运算,其方法是把角化到相应的反三角函数的值域内。

例6. 解:

例 7. (1) 函数是以 2为周期的周期函数

当 x [, ] 时,arcsin(sin x)x

22

标准实用

当 x

[ , 3

x 其图像是折线,如图所示:

] 时, arcsin(sin x)

2 2

(2) ∵ arccos x [ 0, ] y

∴y

1 cos

2 (arccosx)1 x 2 ( x

1)

其图像为单位圆的上半圆(包括端点)如图所示:

例 8.

解:∵(0, ) ∴sin

1 cos2

3

,cos

4

2

2

5

5

x

又∵

( , 3

) ∴cos 1 sin 2

12

2

13

sin( )

sin

cos cos sin

3 12

4 5

56

(

)

(

)

65

5

13

5

13

(0, ), sin

3

2

∴0

5

2

4

2

又∵sin

5 , ( ,3

),∴ arcsin

5

13 2

13

又∵0 5 ∴ 5

3

arcsin

4

2

13

4

从而

arcsin 56

65

讲评:由题设

(0, ), (

,3

),得

( ,2

) 由计算 sin(

)

56

2 2

65

arcsin 56

2

arcsin

56

,但 , 是确定的角,因而

65

65

的值也是唯一确定的。 所以必须确定

所在的象限,在以上的解法中,由 ,

的范围,再根据

sin , cos 的值,进一步得到

(0, ),

( 5 ) 从而确定

,

4

4

( , 3

) ,故得出正确的答案:

arcsin

56

2

65

例 9.

解:(1 ) 由1

x 2 x 1 得

1

5 x 1

5 又

2

2

x

2

x ( x 1) 2

1 [ 1

,1]

2 4 4

∴ f ( x) 的定义域为 [

1

2 5 , 1 5 ] ,值域为 [0,

arccos 1

]

2

4

又∵x [ 1

5 , 1 ] 时, g ( x) x 2

x 单调递减, y arccosx 单调递减,从而 f (x)

2 2

递增

∴ f ( x) 的单调递增区间是 [ 1

5 , 1 ] ,同理 f (x) 的单调递减区间是 [ 1 , 1 25 ]

2 2

2 ( 2) f (x)

f (2x

1

)即 arccos(x

2

x) arccos[(2 x 1 ) 2 ( 2x

1

)]

2

1

2 2 即 arccos(x 2 x)

arccos(4x 2

)

4

1 x

2 x

1

∴ 1 4x 2

1 1 解不等式组得 1

x

1 ∴不等式的解集为 ( 1,1)

4

2

6

2 6

x 2 x 4x 2 1

4

例 10.

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

三角和反三角函数图像

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且x≠kπ+ 2 π ,k∈Z} {x|x∈R且x≠kπ,k∈Z}值域 [-1,1]x=2kπ+ 2 π 时y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ]上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函 数(k∈Z) 在(kπ- 2 π ,kπ+ 2 π )内都是增函数 (k∈Z) 在(kπ,kπ+π)内都是减函数 (k∈Z)

高中数学常用反三角函数公式

反三角函数公式 arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x = 2 arc tanx = cos (n arc cos x) = .

反三角函数图像与特征 反正弦曲线图像与特征反余弦曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心): ,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率 为1 拐点: ,该点切线斜率为-1 渐近线: 渐近线: .

名称 反正割曲线反余割曲线 方程 图像 顶点 渐近线 反三角函数的定义域与主值范围 函数主值记号定义域主值范围 反正弦若,则 反余弦若,则 反正切若,则 反余切若,则 反正割若,则 反余割若,则 式中n为任意整数. .

反三角函数的相互关系 arc sin x = arc cos x = arc tan x = arc cot x = sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x)) If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function .

三角和反三角函数图像

三角和反三角函数图像 The Standardization Office was revised on the afternoon of December 13, 2020

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ- 2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

三角及反三角函数

三角、反三角函数 一、考纲要求 1.理解任意角的概念、弧度的意义,能正确进行弧度和角度的互换。 2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。 3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。 4.能正确运用三角公式,进行简单三角函数式的化简,求值和恒等式的证明。 5.了解正弦函数、余弦函数,正切函数的图像和性质,会用“五点法”画正弦函数,余弦函数和函数y=Asin(wx+?)的简图,理解A 、w 、?的物理意义。 6.会由已知三角函数值求角,并会用符号arcsinx 、arccosx 、arcotx 表示。 7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决三角形的计算问题。 8.理解反三角函数的概念,能由反三角函数的图像得出反三角函数的性质,能运用反三角函数的定义、性质解决一些简单问题。 9.能够熟练地写出最简单的三角方程的解集。 二、知识结构 1.角的概念的推广: (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。其中射线OA 叫角α的始边,射线OB 叫角α的终边,O 叫角α的顶点。 (2)正角、零角、负角:由始边的旋转方向而定。 (3)象限角:由角的终边所在位置确定。 第一象限角:2k π<α<2k π+2 π ,k ∈Z 第二象限角:2k π+ 2 π <α<2k π+π,k ∈Z 第三象限角:2k π+π<α<2k π+2 3π ,k ∈Z 第四象限角:2k π+2 3π <α<2k π+2π,k ∈Z (4)终边相同的角:一般地,所有与α角终边相同的角,连同α角在内(而且只有这样的角),可以表示为k 2360°+α,k ∈Z 。 (5)特殊角的集合: 终边在坐标轴上的角的集合{α|α= 2 π k ,k ∈Z } 终边在一、三象限角平分线上角的集合{α|α=k π+4π ,k ∈Z } 终边在二、四象限角平分线上角的集合{α|α=k π-4π ,k ∈Z } 终边在四个象限角平分线上角的集合{α|α=k π-4 π ,k ∈Z } 2.弧度制: (1)定义:用“弧度”做单位来度量角的制度,叫做弧度制。 (2)角度与弧度的互化:

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

反三角函数公式(完整)

反三角函数 分类 反正弦 反余弦 余弦函数x y cos =在]0[π,上的反函数,叫做反余弦函数。记作x cos arc ,表示一个 余弦值为x 的角,该角的范围在]0[π,区间内。定义域]11[, - , 值域]0[π,。 反正切 反余切 余切函数y=cot x 在)0(π,上的反函数,叫做反余切函数。记作x arc cot ,表示一个余切值为x 的角,该角的范围在)0(π,区间内。定义域R ,值域)0(π,。

反正割 反余割 运算公式 余角关系 2 arccos sin arc π = +x x 2 cot tan arc π =+x arc x 2 csc ec a π = +x arc x rcs 负数关系 x x sin arc )sin(arc -=- x x rc arccos )cos(a -=-π x x tan arc )tan(arc -=- x rc x c cot a )(ot arc -=-π

x rc x sec a )(arcsec -=-π x arc x c sec )(sc arc -=- 倒数关系 x arc x csc )1 arcsin(= x arc x sec )1 arccos(= x arc x arc x cot 2cot )1arctan(-==π x x x arc arctan 23arctan )1cot(-=+=ππ x x arc arccos )1 sec(= x x arc arcsin )1 csc(= 三角函数关系

加减法公式 1. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+<<-+---=+>+>>-+--=+≤+≤-+-=+y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 2. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+><-----=->+<>----=-≤+≥---=-y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 3. ) 0() 11arccos(2arccos arccos ) 0() 11arccos(arccos arccos 2 2 22<+----=+≥+---=+y x x y xy y x y x x y xy y x π 4. ) () 11arccos(arccos arccos ) () 11arccos(arccos arccos 2 2 22y x x y xy y x y x x y xy y x <--+=-≥--+-=- 5. ) 1,0(1arctan arctan arctan ) 1,0(1arctan arctan arctan ) 1(1arctan arctan arctan ><-++-=+>>-++=+<-+=+xy x xy y x y x xy x xy y x y x xy xy y x y x ππ

三角函数和反三角函数图像性质知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑????2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

三角函数与反三角函数图像性质、知识点总结

三角函数 1.特殊锐角( 0°, 30°, 45°, 60°, 90°)的三角函数值 2.角度制与弧度制 设扇形的弧长为l ,圆心角为 a (rad ), 半径为 R,面积为 S 角a 的弧度数公式2π×(a /360 °) ①360°=2π rad 角度与弧度的换算②1°=π/180rad ③1 rad= 180°/π=57° 18′≈ 57.3 ° 弧长公式l a R 扇形的面积公式s1lR 2 3.诱导公式:(奇变偶不变,符号看象限)所谓 奇偶指是整数 k 的奇偶性( k· /2+ a) 所谓符号看象限是看原函数的象限(将a 看做锐角, k· /2+ a 之和所在象限)注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了 学习指导参考

4. 三角函数的图像和性质: (其中 k z ) ①: 三角 函数 函 数 图 象 定义域 值域 周期 奇偶性 单 调 性 对 称 y sin x R [-1,1] 2 奇 2k , 2k 2 2 2k , 2k 2 2 对称轴 : x k 2 y cosx R [-1,1] 2 偶 2k ,2 k 2k ,2 k 对称轴 : x k y tanx y cotx x k x k 2 R R 奇 非奇非偶 k , k k , k 2 2 对称中心: ( k 2 , 0) 性 对称中心 : ( k , 0) 对称中心 : ( k + 2 , 0) 零值点 x k x k 2 最 x k , y max 1 x 2k , y max 1 ; 2 值 x k , y min 1 y 2k , y min 1 x k x 2 k

三角和反三角函数图像性质总结

反三角函数的图像和性质 yx,arccos yx,arctanyx,arcsin ,1,1,1,1,,,,R 定义域 ,,,,,,,, ,,,,值域 [0,π] ,,,,2222,,,, 在上单调递增在上单调递减 ,1,1,1,1,,,,在R上单调递增单调性 无减区间无减区间无增区间 3奇偶性奇函数非奇非偶函数奇函数 32, 32,,21212,-1 图象 -22468-224682O11 -1,-1-,2-2 -22468-1 -1O2-2 -1 arcsin()arcsin,,,xxarccos()arccos,,,xx,arctan()arctan,,,xx 运算公x,,[1,1]x,,[1,1] xR,式1 运算公,,,, arccos(cos),[0,]xxx,,, arctan(tan),(,)xxx,,,arcsin(sin),[,]xxx,,,2222式2 运算公 sin(arcsin),[1,1]xxx,,,cos(arccos),[1,1]xxx,,,tan(arctan),xxxR,, 式3 , arctancotxarcx,,运算公,2 arcsinarccos,[1,1]xxx,,,,2式4 xR, 三角函数的图像和性质 4 yx,cosy,tanx yx,sin kZ,343 3222 1一个周11(((113,,2,,,期的图-22468,-22468(-4-2246823,,O,2,O2O--12-12-1-1-1 22像 -2-2 -2

-3,,,x|x,k,,k,Z ,定义域 R R ,,2,, [1,1],[1,1], 值域 R 奇偶性奇函数偶函数奇函数 , 2,2,周期 对 ,直线xk,kZ, ,,,称直线,无 xk,,kZ,2 轴对 称对 性称k,,(,0)k,,kZ, 点,kZ, 点(,0)k,(,0)点,kZ, ,22中 心 ,,,,,在上 [2,2]kk,,[2,22]kk,,,,,,,,,上在,上在(,)kk,,,,2222单调性 ,,3,在上,,[2,2]kk,,,,,[2,2]kk,,在上无减区间 22

反三角函数常见公式

反三角函数常见公式 李浩翔 .,)1()1()1()()()1()1(#.,0,,1),1(*)0(,2 3)1(),0(,2)1()0(,2 )1(#),0(,2)1(*arcsin )1csc(,arccos )1sec(sec )1arccos(csc )1arcsin(arccos )arccos(),()(,2 arccos )()2)((sec )sec()(arccos )arccos() (csc )csc()(arcsin )arcsin(2csc sec ,2,2arccos arcsin 是显然的第二个等号由余角关系第一个等号得证证明:是显然的第二个等号由余角关系第一个等号得证于是可直接取反函数>又则证明:令<><>,,余切的特殊性): 倒数关系(注意正切和则可得利用例:设”即可证明□构造“证明利用奇函数的性质即可负数关系: (易证)余角关系: πππππππππππ πππππππ-=?-=-=-?--=--=--=====-=+=-==--=-=-======-=-=-- =-=?? ???-=--=--=-?? ???-=--=--=-=+=+= +arcctgx x arctg x arctg arcctgx x arctg arcctgx x arcctg x arctg x arctg arcctgx y x ctgy x tgy x x arctg y x arcctgx arctgx x arcctg x arcctgx arctgx x arcctg x arctgx arcctgx x arctg x arctgx arcctgx x arctg x x arc x x arc x arc x x arc x x x x f x f x x f x f x arc x arc arcctgx x arcctg x x x arc x arc arctgx x arctg x x x arc x arc arcctgx arctgx x x

三角函数和反三角函数公式

一.三角函数公式 1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2(90度) - a) = cos(a) cos(π/2(90度) - a) = sin(a) sin(π/2 (90度)+ a) = cos(a) cos(π/2 (90度)+ a) = - sin(a) sin(π(180度)- a) = sin(a) cos(π(180度) - a) = - cos(a) sin(π(180度)+ a) = - sin(a) cos(π(180度)+ a) = - cos(a) 2.两角和与差的三角函数 sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b) tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式 sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式 sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)] cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)] sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)] 5.二倍角公式 sin(2a) = 2sin(a)cos(b) cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)

反三角函数的概念和性质

反三角函数的概念和性质 . 一.基础知识自测题: 1.函数y=arcsin x的定义域是 [-1, 1] ,值域是. 2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] . 3.函数y=arctg x的定义域是R,值域是. 4.函数y=arcctg x的定义域是R,值域是 (0, π) . 5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=. 7.若cos x=-, x∈(, π),则x=. 8.若sin x=-, x∈(-, 0),则x=. 9.若3ctg x+1=0, x∈(0, π),则x=. 二.基本要求: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y= arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- (C)sin[arcsin(-)]=-(D)arctg(tgπ)=π 解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

大学高数 函数与反三角函数图像

三角函数公式和图象总结 1.与角α终边相同的角,连同角α在内,都可以表示为S={β|β=α+k ×360,k ∈Z} 2.弧长公式:α?=r l 扇形面积公式lR S 21 = 其中l 是扇形弧长,R 是圆的半径。 3.三角函数定义: sin ,cos ,tan y x y r r x ααα===,其中P (,)x y 是α终边上一点,||r OP = 4.同角三角函数的两个基本关系式 22 sin sin cos 1 tan cos ααααα +== sin sin αsin β tan tan α

sin cos), a x b x x? +=+其中tan b a ?=,?所在的象限与点(,) a b所在的象限一 致。

12.①sin()(0)y A x b A ω?=++>、cos()(0)y A x b A ω?=++>的最小正周期为 || ω,最大值为A+b ,最小值为-A+b. ②tan()(0)y A x b A ω?=++>的最小正周期为|| π ω 13.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 14.余弦定理:2 2 2 2cos a b c bc A =+- bc a c b A 2cos 2 22-+= 15.S ⊿= 21a a h ?=21ab C sin =21bc A sin =2 1ac B sin =R abc 4=2R 2 A sin B sin C sin =))()((c p b p a p p ---(其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 反三角函数图像与反三角函数特征 反正弦曲线 反余弦曲线 拐点(同曲线对称中心):,该点切线斜率为1 拐点

三角函数所有公式

倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的 对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2 (a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2C os^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sin a(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2] cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasi

角、反三角函数图像及性质与三角公式

三角、反三角函数图像 (附:资料全部来自网络,仅对排版做了改动,以方便打印及翻阅,其中可能出现错误,阅者请自行注意。) 1.六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 2.三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x∈R 且x≠kπ+2 π ,k∈Z } {x |x∈R 且x≠kπ,k∈Z} 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ-2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数

单调性 在 [2kπ- 2 π ,2kπ+ 2 π ] 上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数 (k∈Z) 在[2kπ -π, 2kπ]上都是增 函数;在[2kπ, 2kπ+π]上都是 减函数(k∈Z) 在(kπ- 2 π , kπ+ 2 π )内都是 增函数(k∈Z) 在(kπ,kπ+π) 内都是减函数 (k∈Z) 3.反三角函数的图像和性质: arcsinx arccosx arctanx arccotx 名称反正弦函数反余弦函数反正切函数反余切函数 定义 y=sinx(x∈ 〔- 2 π , 2 π 〕的反 函数,叫做反正弦 函数,记作 x=arsiny y=cosx(x∈ 〔0,π〕)的反函 数,叫做反余弦 函数,记作 x=arccosy y=tanx(x∈(- 2 π , 2 π )的反函数,叫 做反正切函数,记作 x=arctany y=cotx(x∈(0, π))的反函数, 叫做反余切函 数,记作 x=arccoty 理解 arcsinx表示属于 [- 2 π , 2 π ] 且正弦值等于x的 角 arccosx表示属 于[0,π],且 余弦值等于x的 角 arctanx表示属于 (- 2 π , 2 π ),且正切 值等于x的角 arccotx表示属 于(0,π)且余切 值等于x的角 性 质 定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞) 值域[- 2 π , 2 π ][0,π](- 2 π , 2 π )(0,π)单调性 在〔-1,1〕上是增 函数 在[-1,1]上是 减函数 在(-∞,+∞)上是增 数 在(-∞,+∞)上 是减函数

相关主题