搜档网
当前位置:搜档网 › Hypermesh2017.2有限元分析的前处理1D单元连接

Hypermesh2017.2有限元分析的前处理1D单元连接

ALTAIR HYPERWORKS2017.2

有限元分析前处理

1D 单元和连接

Trainer’s Name

Month XX, 2017

HMD Intro, 2017.2第5章: 1D 单元和焊点

5) 1D 单元和焊点

?1D Meshing

(1D单元)

?HyperBeam

(梁截面)

?Connectors

(焊点)

HMD Intro, 2017.2 1D 单元

?1D 单元

HMD Intro, 2017.2示例

跟着示范做

(…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm)

? 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

HMD Intro, 2017.2 1D单元介绍

?1D单元是节点之间简单连接,允许精确模拟连接关系(例如螺栓)和类似的杆

状或杆状对象,这些对象在FEA模型中可以建模为简单的线

?可以从以下面板创建1D单元:

?目前支持的1D单元包括: bar2s, bar3s, rigid links, rbe3s, plots, rigids,

rods, springs, welds, gaps and joints.

?显示单元可以在以下面板中创建: Edit Element,

Line Mesh, Elem Offset, Edges, or Features panel.

?RIGID 刚性连接用于传递从主节点到从节点的运动.

?Rigids面板允许创建rigid 和rigid link 单元.

?RBE3 刚性连接用来传递分布载荷.不会引入额外刚度

?RBE3是内插约束单元,其中从属节点的运动被定义为一组独立节点的运动的加权平均

?RBE3通常用于在所选独立节点之间分配施加在从属节点上的负载。

1D MESHING -SPRINGS

?SPRING 弹簧单元是在需要弹簧连接的模型的两个节点之间的空间中创建的单元。弹簧单元存储属性和自由度( DOF )。

?

弹簧单元通过线性刚度定义?可能使用的属性: PELAS, PBUSH ?

一般使用: 具有线弹性行为的结构

Prop ID Damping Stiffness Rupture Stress

1D MESHING -ROD

?ROD 杆元素是在需要杆特性的模型的两个节点之间的空间中创建的单元。这两个节点基于连接它们的杆单元的特性彼此相关。杆单元具有属性指针。

?它们有属性定义和轴向应力及引用材料?

属性卡片是

PROD

Prop ID

Bar Section

Material ID Non Structural

Mass

1D MESHING -BAR/BEAM

?BEAM/BAR 具有包括横截面和材料定义的特性的非刚性连接.

?杆/梁1D 单元能够模拟具有惯性、中性轴通过截面剪切中心(梁不需要)的结构,它们模拟轴向应力、扭转、弯曲。?常用:螺栓模拟

Prop ID

Bar Section

Material ID

Non Structural Mass

Inertia Y Inertia Z

Polar Inertia

To retrieve sections created in HyperBeam

?CWELD 焊接或紧固件元件连接。定义连接两个曲面片或点的焊缝或紧固件。它可以描述以下各项之间的连接:

?材料MID 、直径D 和长度用于计算连接在6个方向上的刚度。MID 只能参考MAT1批量数据条目。长度是GA 到GB 的距离。

point and a surface

patch

two surface patches

two shell vertex grid points

?CWELD →单元卡片

?CWELD →属性卡片

Elem ID Prop ID

如何定义连接。

gridID 表示连接是用节点标识号( GA 和GB )定义的。

ELEMID 表示连接是用壳元素标识号SHIDA 和SHIDB 定义的。ALIGN 表示连接是在两个壳顶点网格点之间定义的。

Prop ID

Diameter of the connector

Material ID

HMD Intro, 2017.2

1D 单元–单元检查

?1D Check Elements 面板 Mesh > Check > Elements > Check Elements > 1-d

?“检查单元”面板允许您验证单元的基本质量,并验证这些单元的几何质量。

?使用1D子面板检查1D单元中的自由端,确定一组1D单元是否形成循环,或者检查刚性单元是否存在导致双重依赖的条件

.

Free end node for rigids

Ring sequence of rigids

At least 2 dependent

nodes are shared

Find free nodes

HMD Intro, 2017.2自己做

练习5a (手册125页):

1D Meshing

文件名和路径:

…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm

目标(Step 1-2-3):

?载入模型并设置用户模板为OptiStruct

?创建RBE2单元

?创建RBE3单元

?保存模型

HMD Intro, 2017.2 1D 单元-HYPERBEAM

HyperBeam

? 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

HMD Intro, 2017.2 1D 单元-HYPERBEAM

?“HyperBeam” 工具>Properties > HyperBeam

?HyperBeam面板可以创建梁截面,可以将模型

的复杂部分简化成简单的梁单元

?在模型浏览器(Model Browser)的HyperBeam

View ( )中有大量的创建和编辑功能

HMD Intro, 2017.2示例

跟着示范做

HyperBeam

(…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm)

1.在模型浏览器查看: HyperBeam视图

2.在HyperBeam视图中创建, 编辑, 删除

?Beamsection集合

?标准截面[求解器库]

?通用截面

?壳和实心截面[在HB中草绘]

3.壳截面编辑器和方向编辑器

4.输出CSV文件

5.截面视图控制

?缩放, 自由区域缩放, 平移,最佳视图

?HM模式鼠标

6.顶点/参数控制器

?为空心或实心截面添加/删除顶点

?删除空心或实心边线

?屏幕上直接编辑文本

?将顶点捕捉至节点位置[空心和实心截面]?通过拖动改变厚度

?标准截面可以拖动参数

?空心截面自动连接

7.壳或实心截面草绘

?交互界面简单

?自动创建

8.预览被引用和未被引用的梁截面

可以创建新的截面并将其用于创建属性:

1) SHELL SECTION壳截面: 用线或单元定义截面

2) SOLID SECTION实心截面: 用线,面或者单元定义截面

3) STANDARD SECTION标准: 预先定义好的截面

4) GENERIC SECTION通用截面: 参数控制的新截面

5) EDIT SECTION编辑截面: 改变截面属性

6) REVIEW UTILS: 选择方向放置截面

螺栓连接的有限元分析(汇编)

1 概述 螺栓是机载设备设计中常用的联接件之一。其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图1所示组合装配体,底部约束。两圆筒连接法兰通过8颗螺栓固定。端面受联合载荷作用。

基于有限元法和极限平衡法的边坡稳定性分析

目录 摘要 (1) 1引言 (1) 2 简要介绍有限元和极限平衡方法 (1) 3影响边坡稳定性的因素 (2) 3.1水位下降速度的影响 (2) 3.2 不排水粘性土对边坡失稳的影响 (5) 3.3 裂缝位置的影响 (9) 4 总结和结论 (12)

基于有限元法和极限平衡法的边坡稳定性分析 摘要:相较于有限元分析法,极限平衡法是一种常用的更为简单的边坡稳定性分析方法。这两种方法都可用于分析均质和不均质的边坡,同时考虑了水位骤降,饱和粘土和存在张力裂缝的条件。使用PLAXIS8.0(有限元法)和SAS-MCT4.0(极限平衡方法)进行了分析,并对两种方法获得的临界滑动面的安全系数和位置进行了比较。 关键词:边坡稳定;极限平衡法;有限元法;PLAXIS;SAS-MCT 1.引言 近年来,计算方法,软件设计和高速低耗硬件领域都得到快速发展,特别是相关的边坡稳定性分析的极限平衡法和有限元方法。但是,使用极限平衡方法来分析边坡,可能会在定位临界滑动面(取决于地质)时出现几个计算困难和前后数值不一致,因此要建立一个安全系数。尽管极限平衡法存在这些固有的局限性,但由于其简单,它仍然是最常用的方法。然而,由于个人电脑变得更容易获得,有限元方法已越来越多地应用于边坡稳定性分析。有限元法的优势之一是,不需要假设临界破坏面的形状或位置。此外,该方法可以很容易地用于计算压力,位移,路堤空隙压力,渗水引起的故障,以及监测渐进破坏。 邓肯(1996年)介绍了一个综合观点,用极限平衡和有限元两种方法对边坡进行分析。他比较了实地测量和有限元分析的结果,并且发现一种倾向,即计算变形大于实测变形。Yu 等人(1998年)比较了极限平衡法和严格的上、下界限法对于简单土质边坡的稳定性分析的结果,同时,他们也将采用毕肖普法和利用塑性力学上、下限原理的界限法得到的结果进行了比较。Kim等人(1999年)同时使用极限平衡法和极限分析法对边坡进行分析,发现对于均质土边坡,得自两种方法的结果大体是一致的,但是对于非均质土边坡还需要进行进一步分析工作。Zaki(1999年)认为有限元相对于极限平衡法更显优势。Lane和Griffiths (2000年) 提出一个看法,用有限元方法在水位骤降条件下评价边坡的稳定性,应绘制出适用于实际结构的操作图表。Rocscience有限公司(2001年)提出了一个文件,概述了有限元分析方法的能力,并通过与各种极限平衡方法的结果比较,提出了有限元方法更为实用。Kim等人(2002年)用上、下界限法和极限平衡法分析了几处非均质土体且几何不规则边坡的剖面。这两种方法给出了类似有限元分析法产生的安全系数,临界滑动面位置。 2.简要介绍有限元和极限平衡方法 有限元法(FEM)是一个应用于科学和工程中,求解微分方程和边值问题的数值方法。进一步的细节,读者可参考Clough和Woodward(1967年),Strang和Fix(1973年),Hughes(1987年),Zienkiewicz和Taylor(1989年)所做的研究工作。 PLAXIS 8版(Brinkgreve 2002年)是一个有限元软件包,应用于岩土工程二维的变形和 折稳定性分析。该程序可以分析自然成型或人为制造的斜坡问题。安全系数的确定使用c

T形接头承载能力有限元分析

T形接头承载能力有限元分析 四川神坤装备股份有限公司王大春龙林 摘要:本文采用有限元方法,分析了角焊缝焊接接头的承载能力。结果发现:接头受正拉力时,角焊缝接头的承载能力与焊角尺寸成正比;在接头受压力时,装配间隙对接头承受压力载荷有一点的影响;接头角焊缝的形状对其破断面位置和承载能力有较大的影响。 1 引言 液压支架是大形煤矿综采设备的主要设备,约占综采设备总投资的70﹪,主要由高强度钢板焊接而成,角焊缝T形接头是其结构中最普遍的接头形式,约占总焊缝的90﹪。T形接头的角焊缝形式十分复杂,焊缝中应力分布极不均匀,其破断面位置及其承载能力与焊缝形状和外载荷的作用方向有很大关系。角焊缝的强度测试目前尚无统一的标准,强度试验也比较困难。目前工程上比较通用的计算方法是采用国际焊接学会推荐的角焊缝折合应力公式,该公式假设了破断面与底板成45°角,而实际破断面的位置与接头载荷方向和焊缝的应力状态有很大的关系,与假设的破断面位置会有很大差异。为了更准确的计算复杂角焊缝的强度和应力分布,本文采用大型通用有限元分析软件对T形接头角焊缝的破断面位置和承载能力进行了分析,为优化焊接结构的设计和焊缝的选择提供借鉴。 2 有限元模型 有限元模型对分析结果的准确性和计算速度有很大作用。 2.1 材料模型 由于角焊缝接头结构复杂,应力分布极不均匀,不易通过试验获得材料本构关系。本文材料性能采用对接接头的拉伸性能来获得,见表1,本文不考虑焊缝与母材的材料不均匀性,接头母材为Q690,焊丝为80kg级高强钢专用焊丝。 表1 材料真应力与真塑性应变 本文材料模型包括了接头颈缩前的本构关系,颈缩后不考虑材料硬化性能(即此后应变

基于ansys的连杆机构的有限元分析

目录 摘要 ............................................................................................ 错误!未定义书签。Abstract (2) 第一章分析方法和研究对象 ........................................... 错误!未定义书签。 1.1 有限单元法的概述....................................................... 错误!未定义书签。 1.1.1 有限单元法的历史 (4) 1.1.2 有限单元法的基本概念 (4) 1.2 ANSYS软件简介 (4) 1.2.1 ANSYS主要应用领域 (4) 1.2.2 ANSYS操作界面 (5) 1.2.3 ANSYS的主要功能 (6) 1.2.4 ANSYS主要特点 (7) 1.3 曲柄滑块机构简介 (7) 1.3.1 曲柄滑块定义 (8) 1.3.2 曲柄滑块机构特性应用以及分类 (8) 第二章曲柄滑块机构的求解 (10) 2.1 曲柄滑块机构的问题描述 (10) 2.2 曲柄滑块机构问题的图解法 (10) 2.2.1 图解法准备工作 (11) 2.2.2 图解法操作步骤 (11) 第三章有限元瞬态动力学概述 (14) 3.1 有限元瞬态动力学定义 (14) 3.2 瞬态动力学问题求解方法........................................... 错误!未定义书签。 3.2.1 完全法 (14) 3.2.2 模态分析法 (14) 3.2.2 缩减法 (15) 3.1 有限元结构静力学分析基本概念 (15) 3.1 有限元结构静力学分析步骤 (16) 第四章曲柄滑块的有限元瞬态动力学分析 (17) 4.1 曲柄滑块机构瞬态简要概述 (17) 4.2曲柄滑块有限元瞬态动力学分析步骤 (18)

螺栓连接的有限元分析

1 概述螺栓是机载设备设计中常用的联接件之一。其具有结构简单, 拆装方便,调整容易等优点, 被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节( 如应力集中、应力分布) 等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件 MSC.Patran/MSC.Nastran 提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent) ,另外一个节点为主节点(Independent) 。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1, 使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图 1 所示组合装配体,底部约束。两圆筒连接法兰通过8 颗螺栓固定。端面受联合载荷作用。

Hypermesh2017.2有限元分析的前处理1D单元连接

ALTAIR HYPERWORKS2017.2 有限元分析前处理 1D 单元和连接 Trainer’s Name Month XX, 2017

HMD Intro, 2017.2第5章: 1D 单元和焊点 5) 1D 单元和焊点 ?1D Meshing (1D单元) ?HyperBeam (梁截面) ?Connectors (焊点)

HMD Intro, 2017.2 1D 单元 ?1D 单元

HMD Intro, 2017.2示例 跟着示范做 (…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm)

? 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved. HMD Intro, 2017.2 1D单元介绍 ?1D单元是节点之间简单连接,允许精确模拟连接关系(例如螺栓)和类似的杆 状或杆状对象,这些对象在FEA模型中可以建模为简单的线 ?可以从以下面板创建1D单元: ?目前支持的1D单元包括: bar2s, bar3s, rigid links, rbe3s, plots, rigids, rods, springs, welds, gaps and joints. ?显示单元可以在以下面板中创建: Edit Element, Line Mesh, Elem Offset, Edges, or Features panel.

?RIGID 刚性连接用于传递从主节点到从节点的运动. ?Rigids面板允许创建rigid 和rigid link 单元.

过盈配合的有限元分析

过盈配合的有限元分析 工程力学系 张晨朝 20803001

过盈配合的有限元分析 摘要: 在工程应用中,利用接触有限元法建立了内轴与外套过盈配合的有限元力学模型来判断结构设计是否符合要求。针对内轴和外套的过盈配合状态,采用大型通用有限元ANSYS 软件对组合模具进行了有限元分析, 得出了内轴与外套在过盈配合状态下的应力分布规律及接触面压力分布状况, 找到了应力集中位置和大小。结论表明结构配合尺寸设计没有使结构产生变形, 该结构完全符合产品的设计要求。 关键词: 过盈配合; ANSYS Abstract: In the project application, in order to judge whether the structural design meets the requirement, the finite element and mechanical model of the interference joint between inside lining and outside wrap is established by used contact -finite- element methods. Aimed at condition of the interference joint between inside lining and outside wrap, we carry on the finite element analysis based on ANSYS and attain the stress distribution in interference joint; the pressure distribution in contact face and the location and the size of stress concentration. It is concluded that the structure interference joint size of combined die do not make the mold have distortion and the combined die completely meets the product design requirement. Key words: interference joint; ANSYS 1 引言 过盈配合[1]是机械工业中一种常见的零部件组装方式,齿轮、轴承以及火车车轮等与其装配轴之间的配合大多采用过盈配合。在工作外载荷作用下,能产生足够的摩擦力,以保证配合件之间不发生任何相对的滑动,同时接触应力又不过大,装配件能正常工作。因此,研究配合面之间的接触应力分布规律是十分重要的。机械设备中常用到轴与孔的配合[2],为保护机体(如机架、箱体等)在设备运转中不受磨损,通常压装轴套,由轴套与轴配合。设备运转[3]一定周期轴套磨损后更换轴套即可恢复轴孔原尺寸。轴套的外径与机体通常采用静配合,而轴套内径则与轴保持不同精度的动配合。在机械设计中一般都只标出轴套内外径的尺寸及公差,以此来保证装配后形成要求的配合。由于轴套与机体[4]采用过盈配合,其过盈量(D)形成轴套与机体的装配应力,在这种装配应力的作用下,轴套内径将产生一定的收缩量(△),显然,轴套的收缩量(△)与轴套压入机体时的过盈量(D)密切相关,也与轴套和机体的几何尺寸,即两者的壁厚系数及各自材料性能相关。由于轴套的内孔收缩改变了原来的尺寸,也就改变了内孔与轴的配合关系,以致达不到原来的设计要求,容易出现间隙过小,有时甚至试车温度升高而抱轴,严重时会出现轴孔小于轴而不能装配的现象。 2 轴套装配收缩量的理论计算 工程力学中, 一般将外径与内径之比值之大于1.1的圆筒视为厚壁圆筒, 其比值为壁厚系数。在机械零件中,前述机体件之比值分布在1.1~1.5,均属厚壁圆筒,轴套类零件之比值大致分布在1.05~1.35之间。据此,可将轴套压入机体形成的结构简化为两端开口的厚壁圆筒中过盈配合组合圆筒问题。 将铜套镶入座孔在机械装配中经常遇到。过盈配合的铜套直接按图纸加工镶入座孔时,铜套对座孔为过盈配合,常温下压入或打入,内孔就收缩,改变了原来间隙配合的性质,只能重新铰孔或镗孔,才能达到孔尺寸公差要求。为保证套孔和轴的间隙配合,其内孔尺寸公差确定至关重要。 2.1 计算原理 过盈配合的铜套内径加工尺寸的计算[5]依据有四点: (1) 铜套在常温下镶入座孔后,其金属密度变化不大,可以略去不计。

MD Nastran突破有限元分析的极限

MD Nastran突破有限元分析的极限 作者:MSC.Software公司来源:汽车制造业 有限元法FEM分析变得日益复杂,同时有限元分析模型的大小和细节设计要求也在不断增加。尤其是在汽车行业,这一趋势尤其明显。 项目背景 由数百万个单元和数百万的自由度组成的有限元网格的模型已经变得司空见惯,然而模型的尺寸仍在不断地增加。由于数学方法和软件工程学技术的改进,有限元法程序的工作效率和计算能力也在不断提升,同时构建模型和网格划分软件技术的飞速进步使模型的生成变得更加方便快捷。数年前,发动机引擎气缸体的网格划分需要几个月的时间,而现在只是几个小时的问题。 德国汽车制造商宝马公司是大范围使用虚拟仿真技术的公司之一。在宝马公司和其他一些制造商中,为了缩短研发周期,减少物理样机和物理试验的次数,完整的汽车模型得到了最优化的使用,其基础便是日益复杂的有限元仿真模型,包括对噪音和舒适度的刚性评定、乘客安全性和空气动力学仿真等。在数值计算方法方面,使用了隐式线性分析和显式非线性瞬态分析。 图1 “后天之模型”的基础是宝马X3汽车的车体 早在2007年初,宝马公司便对计算机辅助工程CAE的流程重新进行了检测,以便发现将来可能由仿真模型尺寸增加引起的瓶颈问题。宝马公司的车体和零部件设计小组开发了迄今为止最大的有限元法模型作为基准测试的考题模型,被冠以“后天之模型(Model of the

Day After Tomorrow)”的名称。小组成员丹尼尔·海泽尔博士表示,“对我们来说,在标准的硬件和软件设备上进行此次基准测试是非常重要的,使用当前的基础设施解决基准模型问题的目的,并不是为了要减少计算时间,而是为了识别理论极限和当前方法的瓶颈。” 基准考题的目的是为了寻找标准分析(双载荷工况条件下的线性静态分析)中进行有限元法分析基本步骤的极限和时间: 1. 读取输入数据,对它们进行分类、制成表格,并进行一致性检查; 2. 计算单元刚体矩阵,并集成一个整体刚体矩阵; 3. 计算位移和应力数据; 4. 输出结果。 宝马公司提出的问题是有限元分析还能应对这一增长趋势多长时间?用“后天之模型”作为考题的目的是如何突破近10年间所要面临的硬件和软件极限问题。MSC.Software公司同美国国际商用机器IBM公司合作,能够在短短的几个月的时间内解决这一问题。在一份用该模型分析的详细报告中,项目成员彼得·沙尔茨和杰拉德·希姆莱(MSC.Software公司),丹尼尔·海泽尔(宝马汽车制造公司)和D·皮特施(IBM公司)详细介绍了他们实现宝马公司苛刻要求的方法。 图2 BMW X3减振器支座外壳模型(蓝色),MODAW部分描绘图(黄色) 软、硬件的发展 大多数有限元法分析程序都存在计算能力不在最佳状态的情形。1957年,雷W克拉夫和他的学生在一台内存只有16位的IBM701计算机上开发出了后来成为有限元法的程序。方程式大约在40个以上的问题需要out of core(即数据不全部存储在内存中,而是存储在硬盘的临时文件夹中)求解逻辑,这意味着要借助二级存储介质。10年之后,Nastran软件被开发出来之后,要求条件也非常类似。软件客户美国国家航空航天局(NASA)要求开

用ANSYS进行四连杆机构的有限元分析

用ANSYS进行四连杆机构的有限元分析 作者:谭辉 日期:08年3月6日 分析目的 1、利用ANSYS对典型的四连杆机构进行分析,主要包含各点的轨迹分 析,例如X和Y方向的位移等。 2、为五连杆和六连杆机构的分析提供可行的分析方法以及原型代码。 问题简述 分析主动杆1绕节点1旋转一周时节点4的运动轨迹,杆2和杆3为从动杆,具体问题见下图:

分析思路 1、根据分析目的,在ANSYS选用link1单元进行单元建模,主要考虑 是link1单元具有X和Y方向的自由度,可以获得各个节点的位移轨迹。 之后可以用梁单元等实现更高级的分析目的,例如获得杆上的力,位移, 加速度等相关信息。 2、该模型结构简单,可以利用直接建模方法进行有限元系统建模,主 要命令:N,E。 3、利用自由度耦合对重合节点进行建模,例如节点2和节点3、节点4 和节点5进行建模,主要命令:cpintf,利用该命令可以一次性将重合节 点生成自由度耦合。 4、利用表数组对于杆1(主动杆)的节点2进行瞬态边界条件的载荷施 加,分析类型为瞬态分析,主要命令:*dim,d等。 5、生成节点位移的对应变量,从而获得节点4的随时间的位移曲线, 主要命令:nsol,plvar等。 命令流如下 行号命令符号注释 结束上一次的分析 1finish ! 清除数据库,并读取启动配置文件2/clear,start ! 3 ! 设置图形显示的背景颜色 4/color,pbak,on,1,5 ! 5 !

6/units,si ! 设置单位制:国际单位制 7*afun,deg ! 设置三角函数运算采用度为单位 8 ! 9/prep7 ! 进入前处理模块 10et,1,link1 ! 设置单元类型:link1 11mp,ex,1,2.07e11 ! 设置材料的弹性模量 12r,1,1 ! 设置单元的实常数,面积为1 13n,1,0,0,0 ! 在(0,0,0)处建立节点1 14n,2,3,0,0 ! 在(3,0,0)处建立节点2 15n,3,3,0,0 !在(3,0,0)处建立节点3,和节点2重合 16n,4,8,7,0 ! 在(8,7,0)处建立节点4 17n,5,8,7,0 !在(8,7,0)处建立节点4,和节点4重合 18n,6,10,0,0 ! 在(10,0,0)处建立节点6 19e,1,2 ! 建立单元1(连接节点1和2) 20e,3,4 ! 建立单元2(连接节点3和4) 21e,5,6 ! 建立单元3(连接节点5和6) 22 ! 23cpintf,all,1e-3 !对于重合节点一次性的建立耦合自由度,容差1e-3 24 ! 25/pnum,node,1 ! 显示节点编号 26/pnum,elem,1 ! 显示单元编号 27eplot ! 显示单元

风力发电机组轮毂极限强度的有限元分析

风力发电机组轮毂极限强度的有限元分析 文章是基于有限元理论,对兆瓦级风力发电机组的轮毂进行强度及疲劳计算。轮毂是风力发电机中的重要组成部分,铸造而成,是将机械能转换为电能的核心部件,其形状复杂,轮毂的设计质量会直接影响到整个机组的正常运行及使用寿命,在其受复杂风载荷的作用下,其强度和疲劳耐久性成为此行业关注的焦点。此分析利用大型有限元分析软件Ansys对轮毂模型分析。模型中包含轮毂、主轴及叶片,从轮毂的应力分布情况,从中找出最危险的部位,为轮毂的设计提供可靠依据。 标签:风力发电机;轮毂;有限元分析;极限强度 1 绪论 1.1 课题研究背景 经济发展过程中,我国作为世界上人口最多的发展中国家,能源消耗量不断增加,传统化石能源无以为继,面临的能源开发利用的资源约束越来越多,环境压力也越来越大。如今,生态环境承载能力弱、资源相对紧张。传统能源利用导致的环境问题越来越严重,以及全国范围内的雾霾天气都在提醒我们要努力做到全面、协调、可持续发展,以符合当今国情。在众多的可再生能源中,风能以其巨大的优越性和发展潜力受到人们的瞩目。 1.2 轮毂在大型风力发电机组的重要性 在大型风力发电机组中,轮毂是核心构件,其不仅承担着与驱动连的链接,而且将叶片所受的风载荷通过主轴传递给齿轮箱,承担着风力发电机组容量增大而带来的更大的负荷。它需要有足够的强度和刚度,以保证机组在各种工况下能正常运行。由此可看出轮毂在风力发电机组的设计和制造过程中的重要性。 2 轮毂的强度校核计算 2.1 轮毂模型介绍 轮毂模型结构见图1 此机组风轮由三片叶片对称安装在轮毂上构成,叶片间的夹角为120°。利用CAD绘图软件Solidworks,绘制了轮毂的三维实体几何简化模型。在保证计算精度的前提下,由于小的孔类、圆角及小凸台类结构对计算结果影响很小并且不是关键部位,已经略去。叶片产生的气动载荷以及由于风轮旋转和机舱对风轮转动引起的离心力、惯性力和重力通过三片叶片连接点传递到轮毂上,这些载荷和轮毂自身的重力构成了轮毂载荷。最终,轮毂简化后的几何模型如图1所示。

第一章 计算机工程分析前处理和后处理

第一章计算机工程分析的前处理和后处理 本章教学任务要点:通过本章的系统学习,要求学生能够掌握有限单元法计算的前、后处理基本知识,基本原理和基本方法。 §1. 工程对象及选择 例1.工程对象:进行西安城区地裂缝模拟: 研究目标:未来100年,地裂缝活动特点、以及对市政规划的影响。 例 研究目标:未来100年,地裂缝活动特点、以及对市政规划的影响。 选择对象: A位置:隧道埋深 B位置:隧道埋深10m,地面为高层建筑。

例3.工程对象:煤层开采模拟 研究目标:采动后岩层运动规律、离层破坏高度 选择对象: §2. 有限元计算模型的原则:计算模型要能全面反映工程对象的主要特点,又必须具备能适应计算模拟的功能。 例一、工程对象:进行西安城区地裂缝模拟 例二、城市地铁隧道 例三、煤层开采模拟 有限元计算模型的建立主要指,1、将待分析的连续体,如结构物、固体等对象,用假想的点、线、面将连续体分割成有限多个、有限大小的子区域,这些子区域只有在特定点相互连接,从而使得连续体离散化为结构体。其中,这些子区域称为单元,单元与单元之间的连接点称为结点。 单元类型有: 直线单元曲线元 A一维单元

三角形 矩形四边形曲边形 B 二维单元 六面体单元柱体单元 C 三维单元 结点类型:结点与结点之间的连接可以有铰接、固接。如果结构体的一个结点位移或一个方向被限制,则结点上可以安装铰支座、或杆支座等。 上机 §3. 3.1 单元, 单元号,

例图巨型划分成小巨型格,也就是将巨型(1000X1000)划分成小巨型(5格X 5格),其中如:单元n、节点为A、B、C、D。该单元其坐标为: A(400,400),B(600,400),C(600,600),D(400,600)。 用传统解析方法定量地处理岩石力学问题,由于无法考虑复杂的岩石性态及某些明显的地质构造的影响,而存在着几乎是不可克服的困难,正是在这方面有限单元法具有突出的效能。 1)有限单元法使连续体离散化;可以反映复杂实际对象。 2)单元应力状态可以指定,因而可以反映岩体实际状态。 3)处理格式一致。 3.2 网格单元形式 实践证明,采用常应变三角形单元或具有线性应变的任意四边形单元均能达到工程所要求的精度。 在计算精度方面,高阶应变特性的单元对提高计算精度是有限度的,而三角形单元精度略次于四边形单元,且处理岩石某些性态及进行非线性分析时程序处理上不如四边形方便。 3.3 离散化 正确确定边界及其位置条件,网格的细度,对有限元分析结果有很大影响。在保证要求精度的情况下,确定一个最低限度的网格要求是很必要的。例如根据大量计算经验,对地下硐室围岩分析,网格的适度细化,按节点数来说,应不少300节点。对具有一个对称轴时,节点总数不少于150~200个;对具有两个对称轴时,节点数不少于600个。 对网格疏密度,在应力变化处,可密;否则疏。例如对地下硐室围岩1~1.5倍直径区域加密。 对研究范围的大小及边界位置:如圆孔应力集中问题中,计算精度与精确解的误差在10%以内,必要的边界条件,一般应在距坑硐中心不少于坑硐直径3.5 ~ 4倍。又如,对弹模很低(1×105以下)的岩石,则所取范围尚应适当增大。 应指明:采用“翻转应力法”模拟开挖,边界均以固定点来考虑。 3.4 网格剖分的处理方法 地下硐室围岩应力分布问题,单元划分情况可分两种类型。即取全部或部分对称部分。

基于ANSYS Workbench的定位卡锁机构有限元分析

基于ANSYS Workbench的定位卡锁机构有限元分析 摘要本文首先在Pro/E中建立了定位卡锁机构受最大外力时的简化模型,然后将该模型导入到ANSYS Workbench 13平台中进行了有限元模型的分析求解,最后结合求解结果用第四强度理论对定位卡锁机构各零件进行了强度校核,同时对该定位卡锁机构的改进提出了建议。 关键词定位卡锁机构;有限元分析 在某工程项目中应用的定位卡锁机构承担着为某输送设备准确定位的作用。由于该输送设备运行一个周期位就要启停一次,启停工作由定位卡锁机构配合实现。定位卡锁机构收回,输送设备开始运转,一个周期位后电机停转,定位卡锁机构伸出,进入与之配合的凹槽使输送设备完全停位。因此,定位卡锁机构成为该输送设备的关键部件,是保证输送设备正常工作的必备条件。所以,对定位卡锁机构的研究与分析有着重要的意义。 定位卡锁机构在伸出状态受最大外力时,其所受最大应力不应超过材料的许用应力是保证定位卡锁机构实现其功能的充分条件。为了保证定位卡锁机构的工作可靠性,本文利用ANSYS Workbench对该机构进行有限元分析,研究在定位卡锁机构受最大外力时的受力及变形情况,并依据理论知识对其强度进行校核。 1 定位卡锁机构模型的建立与导入 在对定位卡锁机构进行有限元分析之前,首先应建好定位卡锁机构的三维模型。一般在整个有限元分析的过程中,几何建模的工作量占据了非常多的时间,同时也是非常重要的过程[2]。ANSYS Workbench 13中,建模工作主要由ANSYS Workbench 自带的几何建模工具Design Modeler模块完成。对于小型或简单模型的建立可以直接在Design Modeler模块中建模,这样避免了从CAD系统中导入ANSYS的模型可能不能直接进行网格划分,需进行大量修补完善工作的麻烦。对于零部件较多的装配体的建模,通常先利用专业的三维建模软件完成模型的建立,然后再把它导入到ANSYS中进行分析。这样,工程技术人员就可以使用自己擅长的CAD软件建好模型,从而避免了重复现有CAD模型的劳动。 本文采用PTC公司的Pro/Engineer对定位卡锁机构进行三维建模。定位卡锁机构简化模型由液压缸、卡锁活塞杆、端盖、螺塞、螺钉组成,建好的三维模型如图1所示。建好后的三维模型可以在Pro/E中直接导入到ANSYS Workbench 13 中进行有限元分析。 图1 定位卡锁机构的三维模型 2 定位卡锁机构的有限元分析 2.1 定义模型材料属性

有限元极限载荷分析法在压力容器分析设计中的应用2010

有限元极限载荷分析法在压力容器分析设计中的应用2010-07-15 10:39:54| 分类:分析设计| 标签:极限分析分析设计asme规范先进设计方法经验分享|字号大 中 小订阅 在某炼化一体化项目中,几个加氢反应器均采用分析法设计。详细设计时,国内计算后,反应器的主要受压元件厚度均要比专利商建议的厚度多出10~30mm不等。这其中有国内设计出于保守的考虑,另一个原因:同是采用分析设计,ASME的非线性分析相对先进一点。参与国际竞争时,先进的设计方法值得我们研究。 1.背景 随着中国加入WTO,国内各工程公司正积极走向海外。随之进入国际市场的压力容器产品也面临着严峻的挑战,为了在国际舞台上获得竞争优势,各工程公司必须采用先进的技术设计出更安全和更低成本的产品。压力容器分析设计是力学与工程紧密结合产物,解决了常规设计无法解决的问题,代表了近代设计的先进水平[1]。过去,国内分析设计通常采用弹性应力分析法,通过路径分析,应力线性化处理获得路径上的一次应力和二次应力,进而进行强度评定。该方法主要存在以下问题:⑴对大多数情况是安全可靠的,但对某些结果可能出现安全裕度不足的情况(如球壳开打孔);⑵如何对有限元法求解获得的总应力分解并正确分类遇到了困难。假如把一次应力误判为二次,则设计的结果将非常危险,反之,把二次应力误判为一次,则又非常保守。文[2]5.2.1.2节明确提到:应力分类需特殊的知识和识别力,应力分类方法可能产生模棱两可的结果。国内专家亦也认为对应力进行正确的分类存在一定困难[3-6]。 以弹性分析代替塑性分析,是一种工程近似方法。实际结构的破坏往往是一个渐进过程,随着载荷的增加,高应力区首先进入屈服,载荷继续增加时塑性区不断夸大,同时出现应力重新分布。当载荷增大到某一值时,结构变为几何可变机构,此时即使载荷不在增加,变形也会无限增大,发生总体塑性变形(overall plastic deformation),此时的载荷称为“极限载荷(limit load)”。 极限载荷分析法(下文简称极限分析)的目的是求出结构的极限载荷。在防止塑性垮塌失效时,极限分析相比弹性应力分析更接近工程实际,同时避免了应力分类,对防止塑性垮塌有比较精确的评定。 2.极限载荷的求解方法 塑性力学提出极限分析法由来已久。经典的极限分析方法有如下3种[8]:(1)广义内力与广义变形法;(2)上限定理与下限定理法;(3)静力法和机动法。经典解法的分析与计算均很复杂,只能应用于少数结构简单的压力容器元件,从而使极限分析的工程应用受到了限制。 上世纪七十年代出现三维有限元计算后,有限元的应用大大扩展。为了适应工程需要,有限元极限分析应运而生,形成了分析设计中的一个重要分支,它使得复杂的塑性极限分析可以通过计算机数值计算得以解决。在不久的将来,极限分析必与弹性应力分析法、弹-塑性应力分析法一同形成三足鼎立之势。极限分析的模型精度和计算成本居后两者之间。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

大型齿轮与空心轴过盈连接性能分析

【48】?第39卷?第10期? 2017-10 大型齿轮与空心轴过盈连接性能分析 Performance analysis of interference fit between large gear and hollow shaft 王征兵1,刘忠明1,张志宏1,朱帅华2 WANG Zheng-bing 1, LIU Zhong-ming 1, ZHANG Zhi-hong 1, ZHU Shuai-hua 2 (1.郑州机械研究所 研发中心,郑州 450052;2.河南科技大学 机电工程学院,洛阳 471003)摘 要:采用有限元法对过盈连接进行了计算,得到了配合面的真实接触状态;结果表明,配合面接触 压力沿轴向呈U形分布,配合面中部仿真数值与理论计算值吻合较好,两端有较大应力集中。分析了离心力对配合性能的影响,结果表明,低转速时,离心力产生的影响非常有限,但转速一旦超过一定值,接触压力下降较快,此时要使连接可靠,过盈量计算必须考虑离心力作用,并给予补偿。 关键词:空心轴;过盈连接;有限元 中图分类号:TH124 文献标识码:A 文章编号:1009-0134(2017)10-0048-03 收稿日期:2017-06-02 基金项目:国家科技支撑项目:桥式起重机械轻量化减速器关键技术研究与应用(2015BAF06B02)作者简介:王征兵(1985 -),男,河南郸城人,工程师,主要从事机械传动产品的设计与研发。0 引言 空心轴结构具有质量轻、承载强度高、散热性能好等优点,被广泛地用于起重机械、高速铁路、石油装备、航空航天等领域。过盈连接承载能力强、结构简单、定心性好、无需任何紧固件,而且可避免因采用键槽削弱零件强度的缺点,在以传递动力的孔轴类、齿轮轴类等紧密装配件中得到广泛应用。 过盈配合属于边界条件高度非线性的接触问题,配合面间的接触状态和应力状态都非常复杂。传统计算方法是在假定零件处于平面应力状态、配合面压强均匀分布等前提下进行的,很难精确地计算出配合面的压力分布和应力集中情况,从而影响过盈连接的可靠性和设计质量,存在一定的局限性[1~3]。 本文采用有限元法对过盈配合真实接触状态进行计算,分析可能影响配合性能的相关因素,并与解析法计算结果进行比较分析,探索一种精确、有效、可靠的过盈连接计算方法。 1 过盈连接设计计算 以某规格起重机减速器末级传动为例,减速器额定功率为94.6kW,低速大齿轮与输出轴采用过盈连接方式,输出轴采用空心轴设计。过盈连接的结构尺寸如图1所示。齿轮材料为17CrNiMo6,空心轴材料为 42CrMo,转速为3.04r/min,传递转矩T=297642N .m。 过盈配合计算,需计算出承受传递外负荷所需的最小过盈量 min 和在保证联结件强度条件下被连接件不产 生塑性变形所允许的最大有效过盈量max ,并依此来选 择恰当的过盈配合。 1)最小过盈量 min 计算 要计算承受传递外负荷所需的最小过盈量min ,首 先要计算过盈配合面间所需的最小径向压力P min ,其公 式为: (1) 式中,F,T分别为过盈连接承受的轴向力和转矩;d,l分别为配合公称直径和配合长度;f为配合面间的摩擦系数。 则最小过盈量min 为: (2) 式中,E a 、E i 分别为包容件与被包容件的弹性模 图1 齿轮与空心轴过盈连接结构图

岩土工程极限分析有限元法及其应用

岩土工程极限分析有限元法及其应用 摘要:通过研究分析发现,将工程结构离散化是极限分析有限元法的核心内容,简单地说实际的工程结构是通过想象进行离散一定数量的规则单元组合体,然后 分析这些组合,结果应用于实际的结构中,通过这种实践在一定程度上解决了工 程建设过程中的问题。因此,本文笔者将详细对极限分析有限元法进行分析阐述。关键字:岩土工程;极限分析有限元法;应用 引言 自上世纪初,岩土工程的极限分析方法(包括极限平衡法、滑移线场法、上下限分析法)取得了较好进展,在实际工程得到了广泛的应用。其中一些方法需要一些人工架设,一些方 法的解决方案非常有限,这限制了该方法的开发和应用。其中有限元法数值方法适应力较强 且应用广泛,但在工程设计中,不能求出稳定安全系数 F 和极限承载力,从而限制了岩土工 程中有限元数值分析方法的运用。 一、经典岩土极限分析法的发展及问题 基于力学的极限分析方法,土体处于理想的弹塑性或者刚塑性状态,处于极限平衡状态,即土体滑动面上各点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。 极限平衡状态下的土体有两个力学性质:第一是土体处于不稳定的状态,所以它可以作为一 个岩土工程破坏失稳的判据;第二是岩土材料强度充分发挥,达到最大经济效益,因此,在 岩土工程中常把土体极限平衡作为设计依据。有两种方法可以将地基或土坡引入极限状态: 一是增量加载,如地基的极限承载力;二是强度折减,如土坡的稳定安全系数。 经典极限分析方法普遍应用于均质材料。极限状态的设计计算仅参考破坏条件及屈服条件,不需要参考岩土复杂的本构关系,从而大大简化了岩土工程的设计计算。极限状态计算 应满足以下条件: (1)屈服条件或者破坏条件。 (2)静力平衡条件和力的边界条件。 (3)应变、位移协调条件和位移边界条件。 目前主要采用以下4种经典极限分析法:上、下限分析法、滑移线场法、变分法与极限 平衡法。每种都具有各自的特点,但还有一些需作假定,如上限法、滑移线场法、极限平衡 法等都需对临界滑动面作假定,不适用于非均质材料,特别是岩石工程强度的不均性,从而 限制了极限分析法的应用,这正是极限分析法在经典岩土工程的缺陷。 二、极限分析有限元法的基本原理 2.1 安全系数的定义 有两种方法可以将地基或者土坡引入极限状态:一是增量加载,如求地基的极限承载。 力二是强度折减,如求土坡的稳定安全系数。 极限平衡方法是先假定滑动面,再使用传统边坡稳定分析,按照力(矩)的平衡计算安全系 数并将其定义为滑动面的抗滑力(矩)与下滑力(矩)之比。 目前,不平衡推力法(传递系数法)在我国滑坡稳定分析中得到广泛应用,该方法是我国 独立开创的滑坡稳定分析方法。有关推力安全系数,一般将增加下滑力的分项系数作为安全 贮备,但严格意义上不是荷载增加系数,因为边(滑)坡工程中荷载增加,不但会导致下滑力 增加,还会导致抗滑力增加,但目前的传递系数法中不考虑抗滑力增加,这与力学规律相符。一般,滑坡推力的标准值为:

有限元极限分析发展及其在岩土工程中的应用

科技论坛 有限元极限分析发展及其在岩土工程中的应用 何小红 (长春科技学院,吉林长春130000) 有限元极限分析法实际应用于岩土工程中,能够对岩土工程的安全系统、失稳数据等做出判断,但是在应用的过程中,需要做出假设,并且求解范围相对有限,在应用上有一定的限制。尽管如此,有限元极限分析法的适应性能也比较强,尽管它在使用的过程中不能对稳定安全系数F做出明确计算,受到了限制,但是在实际应用中依然能够发挥出其自身价值,为工作人员提供有用的数据信息,让岩土工程的发展也得到促进性作用。 1有限元极限分析法发展历程 有限元极限法最初的提出者是英国科学家,时间在20世纪70年代中期,这也是首次将有限元极限分析法应用于岩土工程中,计算出岩土工程额极限荷载及其安全系数。在20世纪90年代,该方法又应用于边坡和地基的稳定性分析中,但当时收到技术限制,并没有较强大和可靠的元程序支持,计算的精度也不够,在岩土工程中的推广使用收到了限制。 在20世纪末,国际又对有限元极限分析法做出了新的研究,主要以有限元强度折减法的求解上比较集中,计算结果和之前的结果仍然很相似,慢慢也就被学术界接受到,从此有限元极限分析法也就进入了一个新的发展时期。直到20世纪末,有限元分析法才在我国开始应用,主要是应用于土坡分析上。在21世纪初,我国学者分析边坡稳定性上,有效应用了有限元折减法,这也是我国最早对有限元强度折减法的应用,并在基本理论以及计算精度上做出了细致研究。在这两方面,我国也得到了较好的应用,并向着长远发展目标推进。 在研究方面,有限元强度折减法主要集中在安全系数与滑面系数方面,而有限元增量超载法主要是在地基极限车承载力方面。这方面的研究文献虽然不多,但是却取得了可观的研究成果。这两种方法,统称为有限元极限分析法,从根本上来说,均为采用数值分析方法求解的一种极限分析法。在国际上,有限元极限分析法大都采用编数值分析程序比较多,而该方法的应用范围仅局限于二维平面土基与土坡分析中。而在国内方面,大都采用大型通用程序,在计算、程序可靠性、功能等方面,均有很大的优势。近年来,国内在有限元极限分析法方面,取得了很大的进展。但是从整体情况来看,仍然研究的起步阶段,距离革新设计方法,尚有一段很长的距离。 2有限元极限分析法原理 2.1安全系数概念。对于有限元极限分析法安全系数有很多种定义,这些定义都是和岩土工程受破坏状态有直接关系。安全系数定义主要非两种,即有限元强度折减法以及有限元增量超载法;有限元强度折减法主要指受到环境影响,让岩土强度较低,边坡失去稳定性,通过岩土强度的降低计算出最终破坏的状态;有限元增量超载法主要指岩土地基上的荷载持续性增加,让地基稳定性受到破坏,导致超载安全系数呈现倍数递增上涨趋势;这两种方式计算的安全系数是有所不同的。 2.2有限元极限分析法原理。(1)有限元强度折减法原理。在岩土工程中,主要采用莫尔-库仑材料,安全系数w的计算式为:T= c'=c/ω,tanφ'=(tanφ)/ω(2) 有限元增量超载法。在工程中,岩土的破坏,不是朝夕之事,而是一个循序渐进的过程,由线弹性状态,逐步过渡到塑性流动,最终达到 极限破坏状态。因此,这就给增量超载方法求解地基的极限承载力,提供了有利的条件。 3有限元极限分析法基本理论 3.1判断岩土工程整体失稳的依据。所谓岩土工程整体失稳破坏,主要是指岩土沿滑面出现滑落或者是坍塌情况,导致岩土不能达到极限的平衡状态,不能继续承载,滑面的岩土也会有位移现象发生。在滑面节点上位移导致的塑形或者是突变性就是对边坡整体失稳的判断标志。所以,可以利用有限元静力计算来确定边坡是否失稳,判断出边坡失稳特征。 3.2提高计算精度的条件。在有限元极限分析法中,要想将计算的精度提高上来,就要满足一定的条件。首先是成熟可靠、程序的功能足够强大,尤其是通用于国际的程序;其次是强度准则以及结构模型有较高的实用性;最后是满足计算的需要,即计算的范围、网络划分以及边界条件等。只有满足这些条件,有限元极限分析法的计算精度才能够提高上来,降低计算的误差。 4有限元极限分析法的应用 4.1在二维边坡中的应用。结合下面的算例,探讨该方法的应用。通过大型有限元ANSYS5.62软件建立有限元模型,根据平面建立有限元模型,左右两侧为边界约束条件。按照边坡破坏的特点,在边坡遭到破坏时,滑面上的塑性应变和节点上的位移,将发生突变、塑性应变突变和滑动面水平位移。所以,这就能够按照塑性应变值云图方法来确定滑动面,并与之前的滑面方法相比。 4.2有限元超载法在土基上的应用。光滑刚性条形地基的极限承载力,均承受为垂直半无限、无重量地基,计算的方法如下:qu=ccosφ[exp(πtanφ)tan2(π/4+φ/2)-1 根据上述公式,当地基处于极限状态下,基础附近局部位移矢量将随着基础附近局部的等效塑性应变等发生变化。通过计算结果可看出,计算的结果与实际相符合。而对于有重地基极限承载力的计算,已经存在各种公式,但是相比较而言,魏锡克经验公式计算的记过比较准确。此外,有限元极限分析法在隧道工程、滑坡支档结构等均有着实际的应用,而且该方法的应用范围还在不断扩大。 结束语 从有限元极限分析法的自身应用方法来看,主要有有限元强度折减法以及有限元超载法这两种,这两种方法在当前的应用上都处于快速发展阶段,对其的研究也一直在进行,应用于岩土工程中也有着较好的效果。本文中,主要是从岩土工程的实际工作中应用有限元极限分析法做出简单分析,从其发展历程,再到安全系数定义,最后到岩土工程中的应用,这些都能够有效促进有限元极限分析法的进一步发展,以期有着借鉴价值。 参考文献 [1]赵尚毅,郑颖人.基于Drucker-Prager 准则的边坡安全系数转换[J].岩石力学与工程学报,2013(11). [2]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2013(21). [3]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2014(23). [4]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程 学院学报,2011(21). [5]宋亚坤,赵尚义,郑颖人.有限元强度折减法在三维边坡中的应用 与研究[J].地下空间与工程学报,2010(12). 摘要:从有限元极限分析法的优点上来看,该方法特别适合在岩土工程中应用,也得到了较好的发展。在实际应用过程中,是需要做 出假设并求解的,而且应用的范围有一定的局限性,这是有限元极限分析法应该创新的地方,在科技进步之下,对方法进行完善,让其适用的范围有所扩大,同时也推动在岩土工程中应用的价值。本文主要从有限元极限分析法做出了介绍,进而分析其在岩土工程中实际的应用。 关键词:有限元极限分析法;应用;岩土工程92··

相关主题