搜档网
当前位置:搜档网 › 当今凝聚态物理研究的主要几个分支及研究进展

当今凝聚态物理研究的主要几个分支及研究进展

当今凝聚态物理研究的主要几个分支及研究进展
当今凝聚态物理研究的主要几个分支及研究进展

龙源期刊网 https://www.sodocs.net/doc/1d1915304.html,

当今凝聚态物理研究的主要几个分支及研究进展

作者:张翠萍

来源:《中国新技术新产品》2016年第16期

摘要:本文通过对凝聚态物理固体电子论中的关联区、宏观量子态、介观物理与纳米结

构和软物质物理学这几个分支研究的一些内容还有对当今凝聚态物理研究的一些现象及其理论方法和已经取得的一些成就连同它们在器件和材料方面产生的作用和对未来影响的阐述,给出了这一基础学科对科学技术的影响和贡献,表明了凝聚态物理对现代科技的作用。

关键词:凝聚态物理;关联区;量子态;理论方法

中图分类号:O469 文献标识码:A

凝聚态物理学是当今物理学中最大也是最重要的分支学科之一,它是从微观角度出发,研究凝聚态物质的物理性质、微观结构以及它们之间的关系,因此建立起既深刻又普遍的理论体系,是当前物理学中最重要、最丰富和最活跃的学科,在许多学科领域中的重大成就已在当今高新科学技术领域中起了关键性作用,为发展新材料、新器件和新工艺提供了科学基础。凝聚态物理一方面与粒子物理学在概念上的发展相互渗透,对一些最基本的问题给出启示;另一方面为新型材料的研发和制备提供理论上和实验上的支持,与工科的技术学科衔接构成科学上最有实用性的拓新领域。那么,当今凝聚态物理主要研究哪些分支内容?使用什么样的理论方法?这些研究在哪些方面有所成就?

一、凝聚态物理当今主要研究的一些分支内容

凝聚态指的是由大量粒子组成且粒子间有很强相互作用的系统。固态和液态是最常见的凝聚态,低温下的超流态、超导态、玻色-爱因斯坦凝聚态、磁介质中的铁磁态、反铁磁态等,也都是凝聚态。凝聚态物理是属于偏应用的交叉学科,研究方向和分支很多,基本任务是阐明微观结构与物理性质的关系。传统的凝聚态物理主要研究半导体、磁学、超导体等,现今凝聚态物理学研究的理论内容十分广泛,以下是其中较活跃的几个分支:

1.固体电子论中的关联区

研究固体中的电子行为,是凝聚态物理的前身固体物理学的核心问题。按电子间相互作用的大小,固体中电子的行为分成3个区域,它们分别是弱关联区、中等关联区和强关联区。弱关联区的研究基于电子受晶格上离子散射的能带理论,应用于半导体和简单金属,构成了半导体物理学的理论基础;中等关联区的研究包括一般金属和强磁性物质,是构成铁磁学的物理基

当今凝聚态物理研究的主要几个分支及研究进展

龙源期刊网 https://www.sodocs.net/doc/1d1915304.html, 当今凝聚态物理研究的主要几个分支及研究进展 作者:张翠萍 来源:《中国新技术新产品》2016年第16期 摘要:本文通过对凝聚态物理固体电子论中的关联区、宏观量子态、介观物理与纳米结 构和软物质物理学这几个分支研究的一些内容还有对当今凝聚态物理研究的一些现象及其理论方法和已经取得的一些成就连同它们在器件和材料方面产生的作用和对未来影响的阐述,给出了这一基础学科对科学技术的影响和贡献,表明了凝聚态物理对现代科技的作用。 关键词:凝聚态物理;关联区;量子态;理论方法 中图分类号:O469 文献标识码:A 凝聚态物理学是当今物理学中最大也是最重要的分支学科之一,它是从微观角度出发,研究凝聚态物质的物理性质、微观结构以及它们之间的关系,因此建立起既深刻又普遍的理论体系,是当前物理学中最重要、最丰富和最活跃的学科,在许多学科领域中的重大成就已在当今高新科学技术领域中起了关键性作用,为发展新材料、新器件和新工艺提供了科学基础。凝聚态物理一方面与粒子物理学在概念上的发展相互渗透,对一些最基本的问题给出启示;另一方面为新型材料的研发和制备提供理论上和实验上的支持,与工科的技术学科衔接构成科学上最有实用性的拓新领域。那么,当今凝聚态物理主要研究哪些分支内容?使用什么样的理论方法?这些研究在哪些方面有所成就? 一、凝聚态物理当今主要研究的一些分支内容 凝聚态指的是由大量粒子组成且粒子间有很强相互作用的系统。固态和液态是最常见的凝聚态,低温下的超流态、超导态、玻色-爱因斯坦凝聚态、磁介质中的铁磁态、反铁磁态等,也都是凝聚态。凝聚态物理是属于偏应用的交叉学科,研究方向和分支很多,基本任务是阐明微观结构与物理性质的关系。传统的凝聚态物理主要研究半导体、磁学、超导体等,现今凝聚态物理学研究的理论内容十分广泛,以下是其中较活跃的几个分支: 1.固体电子论中的关联区 研究固体中的电子行为,是凝聚态物理的前身固体物理学的核心问题。按电子间相互作用的大小,固体中电子的行为分成3个区域,它们分别是弱关联区、中等关联区和强关联区。弱关联区的研究基于电子受晶格上离子散射的能带理论,应用于半导体和简单金属,构成了半导体物理学的理论基础;中等关联区的研究包括一般金属和强磁性物质,是构成铁磁学的物理基

凝聚态物理领域的著名人物

https://www.sodocs.net/doc/1d1915304.html,/u/4ae56600010005oo MIT MIT的凝聚态理论组里面做高温超导的教授有Patrick Lee, 文小刚(Xiao-Gang Wen ),和刚刚加盟的Todadri Senthil,前两位在本版介绍过无数次了,这里就不说了 。Senthil是Sachdev的PhD,他在Santa Barbara做Postdoc的时候跟Matthew Fishe r (UCSB)合作的一系列关于Z2规范场论、电荷分数化和拓扑序的工作使他很快成名 ,他现在的研究重点是寻找各种强关联体系中的分数化和拓扑序。除这三位教授之 外,MIT凝聚态组里还有两个postdoc从事高温超导的研究,Motrunich和Vishwanat h,都是Senthil小组的,后者是MIT的Pappalardo Fellow。 Stanford Stanford只有张守晟(Shou-Cheng Zhang)和Rob Laughlin从事高温超导的研究,前 者的SO(5)模型名气很大,后者的任意子超导名气很大,但基本上已经被实验排除了 。SO(5)倒是还在坚挺,因为张守晟会不断修改他的理论,以适应实验。Laughlin在 三年前跟别人合作提出来所谓的DDW模型,去年又独自抛出了一个Gossamer超导体的概念,不过没有引起太多注意。Laughlin一直关注高温超 导,也有不少想法,但写paper很少。 90年代超导实验的引用次数最多的文章可能是丁洪、Norman、Randeria发现赝能隙 的那篇, 是发表在1996年的Nature上的,我去年查的时候这篇文章已经被引了600多次了。沈志勋(Stanford)的发现赝能隙的那篇,也就473次而已。 沈志勋在高温超导国际会议上获得了昂纳斯奖,以表彰他在用photoemission研究高 温超导电性质方面的工作,其实丁洪也不差。可能是因为这个,据说俩人关系不睦 ,很可惜。 Princeton 一提起Princeton大家就会想到Anderson,不过我不想说他。我想说的是年轻的Shi vaji Sondhi,这个印度人和法国人Moessner合作在寻找Anderson提出的RVB和spin liquid方面做出了很值得重视的工作,最近三年里很多研究小组在各种Heisenber g模型上寻找spin liquid和分数化,其中Sondhi贡献很大。 单纯地通过看他们的paper来了解他们的工作,是不现实的,因为你目前并无研究经验,无法判断某篇paper是否重要以及对错。 paper多不代表牛,因为可能都是无价值的;paper被引用多也不代表牛,因为可能 这篇paper是在一个错误的方向上的;曾经做出了不错的工作也不代表牛,因为他可 能是在该项研究中处于次要地位,等他自己做了professor,反而表现不出强的独立 科研能力。

数学学科前沿讲座报告

数学学科前沿讲座 通过一个学期的学习和学校数位专家教授的耐心讲解,产生了一些自己对数学学科的体会。下面就简要谈谈,通过听取前沿讲座我对数学学科的理解与变化。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。因有数学,才有今天科技的繁荣,在我们身边到处都有数学问题。今天科技领域也以数学为基础。如计算机的发展,一切理论都是数学家提出的,某个物理学家要研究某个项目,都要以丰厚 的数学功底为前提。在人们的生活中,时刻与数学打交道,可谓世界因数学而精彩。既然数学有如此大的魅力,下面将粗略的介绍一下。数学曾出现三次危机:无理数的发现——第一次数学危机;无穷小是零吗——第二次数学危机;悖论的产生---第三次数学危机。数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。在悖论中逐渐成熟,进而到现在出现多个分支,分为:基础数学、数论、代数学、几何学、拓扑学、函数论、常微分方程、偏微分方程、概率论、应用数学、运筹学。 一、应用数学应用数学属于数学一级学科下的二级学科。应用数学是应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的数学模型、利用数学方法解决实际问题等。主要研究方向: (1) 非线性偏微分方程非线性偏微分方程是现代数学的一个重要分支,无论在理论中 还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 (2)拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起 源于希腊语Τοπολογ的音译。Topology 原意为地貌,于 19 世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓

全国高校研究生专业排名

全国重点学科最好的考研高校来源:贾琳的日志 全国重点学科 (一)经济学 政治经济学:北京大学中国人民大学南开大学复旦大学南京大学厦门大学西南财经大学 经济思想史:上海财经大学 经济史:南开大学 西方经济学:中国人民大学武汉大学 世界经济:南开大学辽宁大学复旦大学武汉大学 人口、资源与环境经济学:中国人民大学 国民经济学:北京大学中国人民大学辽宁大学 区域经济学:中国人民大学南开大学兰州大学 财政学:中国人民大学上海财经大学厦门大学中南财经政法大学 金融学:中国人民大学中央财经大学南开大学复旦大学厦门大学西南财经大学 产业经济学:中国人民大学北方交通大学东北财经大学复旦大学暨南大学 国际贸易学:对外经济贸易大学 劳动经济学:中国人民大学 统计学:中国人民大学厦门大学 数量经济学:清华大学吉林大学 (二)法学 法学理论:北京大学吉林大学 法律史:中国政法大学 宪法学与行政法学:北京大学中国人民大学 刑法学:北京大学中国人民大学 民商法学:中国人民大学 诉讼法学:中国政法大学 经济法学:北京大学西南政法大学 环境与资源保护法学:武汉大学 国际法学:对外经济贸易大学厦门大学武汉大学 政治学理论:北京大学复旦大学 科学社会主义与国际共产主义运动:北京大学华中师范大学中央党校 中共党史:中国人民大学中央党校 马克思主义理论与思想政治教育:中国人民大学武汉大学中山大学 国际政治:北京大学 国际关系:复旦大学 社会学:北京大学中国人民大学 人口学:中国人民大学 人类学:北京大学中山大学 民俗学:北京师范大学中央民族大学云南大学 (三)教育学 教育学原理:北京师范大学东北师范大学华东师范大学南京师范大学

中科大物理考研参考书

专业代码及名称培养单位代码招生类专业代码及名称培养单位代码招生类别 070121★数学物理001 硕,博3 623 数学分析《数学分析教程》常庚哲中国科大出版社数学分析:极限、连续、微分、积分的概念及性质 4 802 线性代数与解析几何《线性代数》李炯生中国科大出版社《空间解析几何简明教程》吴光磊高等教育出版社线性代数:行列式,矩阵,线性空间线性映射与线性变换,二次型与内积;解析几何:向量代数,平面与直线,常见曲面 070201理论物理004 硕、博 3 62 4 普通物理A 中国科大、北大或其他高校物理系普通物理教材力学、电磁学、原子物理 4 811 量子力学《量子力学》第一卷曾谨言科学出版社第三版量子力学的概念和基本原理、波函数和波动方程,一维定态问题、力学量算符与表象变换,对称性及守恒定律、中心力场、粒子在电磁场中的运动、定态微扰论、量子越迁 070202粒子物理与原子核物理004 硕、博 3 62 4 普通物理A 中国科大、北大或其他高校物理系普通物理教材力学、电磁学、原子物理 4 811 量子力学《量子力学》第一卷曾谨言科学出版社第三版量子力学的概念和基本原理、波函数和波动方程,一维定态问题、力学量算符与表象变换,对称性及守恒定律、中心力场、粒子在电磁场中的运动、定态微扰论、量子越迁 070203原子与分子物理004 硕、博 234 硕、博 3 62 4 普通物理A 中国科大、北大或其他高校物理系普通物理教材力学、电磁学、原子物理 4 83 5 原子物理与量子力学《近代物理学》徐克尊高等教育出版社《原子物理学》杨福家高等教育出版社第三版《原子物理学》褚圣麟高等教育出版社《量子力学导论》曾谨言高等教育出版社原子结构和光谱、分子结构和光谱、量子力学概论 070204等离子体物理004 硕、博 4 808 电动力学A 《电动力学》郭硕鸿高等教育出版社第二版电磁现象的普遍规律,静电场和静磁场,电磁波的传播,电磁波的辐射(包括低速和高速运动带电粒子的辐射),狭义相对论 4 872 等离子体物理导论《等离子体物理导论》F. F. Chen科学出版社1980《等离子体物理原理》马腾才胡希伟陈银华中国科大出版社1988 单粒子理论、等离子体平衡、等离子体波动、等离子体不稳定性 070205凝聚态物理002 博 203 硕 3 62 4 普通物理A 中国科大、北大或其他高校物理系普通物理教材力学、电磁学、原子物

前沿讲座

这次的前沿专题课程一共上了四次课,分别由不同的老师给我们讲解了不同的研究方向的一些前沿的知识,使我了解了很多自己课题方向之外的内容。 首先讲课的是郭希娟老师,她的方向是计算机器人与计算机科学。这是个集计算机,数学,机械,物理力学等多学科交叉的方向,而且实用性很强。她给我们讲解了用最小分离距离来解决碰撞检测问题的原理,演示了研究课题的一些成果,包括:直升机飞行器的原理仿真、乒乓球运动员直线打球的原理演示、物体的碰撞检测演示等。她根据自己多年的研究经验,总结出书《机构性能指标理论与仿真》。郭老师告诉我们:任何的学术研究一定要和实际应用联系起来。 第二次上课的是焦移山老师,他以日线股票为例给我们讲了时间序列预测的方法与应用。他讲的是一篇提出预测时间序列的最新方法的论文。时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。时间序列的预测一般用的是相似度预测原理,而相似度预测的方法有:欧式距离、最长公共子序列、DTW(Dynamic time warpping)。焦老师研究的是金融时间序列的预测,而金融时间序列的特点:1.适合用分段线性表示方式。这种方式容易去掉数据中的噪声,还原数据本质,而且易于计算。2.必须是zig-zag 形式。这篇论文所提出的算法使原来预测的准确率有65%提高到70%。这个结果已经很令人满意了。 第三次上课的是唐勇老师。他的研究方向是虚拟现实,他以虚拟现实的必然与冲击为题开始了这次的课程。唐老师讲到:我们生活在现实、抽象、数字这三个世界之中。虚拟现实及仿真技术影响深远,虚拟增强现实实践梦想体现在飞越时空、穿越极限、再现历史、颠覆传统、访问心灵、康复床上、虚实同进等。数字(虚拟)世界牵引科学技术的发展:仿真数据驱动的大规模场景的绘制与漫游,不规则物体建模的创新性探索。唐老师强调技术人生,强调把学术与人生联系一起。 最后一次上课的是张付志老师,他讲的是个性化协同推荐系统中的安全与信任问题。我觉得张老师的方向与自己的方向有一定的联系,所以下面重点总结一下张老师的内容。 1.推荐系统简介: 推荐系统是指能够为用户提供关于对用户来说有用的项目的建议的一类软

2010纺织导论试题库

07《纺织导论》复习大纲 一、单项选择题(在每小题的四个备选答案中,选出一个错误答案,并将错误答案的序号填在题干的括号内。每小题分,共分) 1、关于纤维的描述哪个是错误的?() ①纤维是一种细而长的物体,它的直径细到几微米,长度则为几毫米、几十毫米甚至上千米; ②纤维是具有较大长径比和一定强、伸度的柔软材料; ③纤维就是像羊毛那样的细而长并具有一定强伸度的柔软材料,而钢丝则不是纤维; ④纤维材料的来源可分为来自于天然生长的纤维材料和用化学方法得到的纤维材料; 2、关于天然纤维的描述哪个是错误的? ①天然纤维分为植物纤维、动物纤维和矿物质纤维等类型; ②天然纤维主要分为棉、毛、丝、麻等; ③粘胶纤维是用天然木材制备的木浆经纺丝得到的,所以粘胶纤维是天然纤维; ④合成纤维是由石油裂解物小分子经加成反应和聚合反应得到的合成聚合物,再经纺丝得到的纤维材料; 3、关于纱线的描述哪个是错误的? ①长丝纱线是由若干根连续的长丝平行取向组成的细长的纤维集合体,它的表面没有由伸出的自由端纤维构成的毛羽。 ②整齐排列的短纤维集合体通过搓捻可以制成连续、细长、并具有一定抗拉伸能力的绳索和线, ③只要将纤维束一边加捻一边拉伸,就可以得到这种细长且具有一定强度的柔性材料,这是人类发明的最早的纺纱方法; ④纱线的粗细可用线密度表示,只与纤维含量有关,与它所处环境空气的温度、湿度无关; 4、关于纤维分类的描述哪个是错误的? ①按纤维来源可以分类为天然纤维、化学纤维、合成纤维; ②按纤维使用场合和对象,纤维可以分类为服用纤维、家用与装饰用纤维、产业用纤维; ③按纤维的性能与功能,纤维可以分类为常用纤维、高性能纤维、功能纤维; ④功能纤维可以分类为阻燃纤维、导电纤维、抗菌纤维等; 5、关于纺纱的描述哪个是错误的? ①传统的纺纱过程基本上可分为两个阶段,一是纺纱准备阶段;二是纺纱阶段。 ②棉纺的纺纱系统包括了开清工序、梳理工序、并条、精梳、粗纱、细纱等工序。 ③开清工序有三个主要目的:a.混合:把不同纤维按一定比例混合在一起,以便获得比较均匀的须条;b.开松:把紧密的纤维块松解成小纤维束或纤维根数很少的纤维集合体;c.除杂:清除非纤维性物质(如枝叶、破棉籽等)。 ④在开清棉时,将不同等级的棉花进行混合仅仅是为了降低纺纱成本。 6、关于织物的描述哪个是错误的? ①把聚合物、短纤、长丝、混合片状物,通过成网或固结制成的一种柔韧、多孔的结构材料; ②织物可定义为由纤维、纱线或纤维与纱线组合形成的一种平面状的纤维集合体,并具有一定的摸量、强度、断裂伸长、顶破强力以及耐磨性等力学性能; ③根据织物的使用用途,可以把它分为服装用织物、家庭装饰用织物和产业用织物; ④织物,也称为布,是由经纬纱交织形成的一种片状的纤维集合体; 7、关于络筒的描述哪个是错误的?

浅谈凝聚态物理学

浅谈凝聚态物理学 09物本—0911*******—郑默超 凝聚态物理学(condensed matter physics)是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。 凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近

年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理学和地球物理等交叉学科的发展。 众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。凝聚态物理以万物皆成于原子为宗旨,以量子力学为基础研究各种凝聚态,这是一个非常雄心勃勃的举措。凝聚态物理这个学科名称的诞生仅仅是最近几十年的事。如果追寻一下它的渊源。应该说出自于对固态中晶态固体的研究和对液态中量子液体的研究。在对这二种特殊态的长期研究中,人们积累了一些经验,也建立起了一些信心,并逐步把一些已有的方法推广用于非晶态和液晶乃至液态的研究,从而大大拓宽了视野,逐步形成了凝聚态物理。今天,凝聚态物理的视野还在继续开拓。然而作为渊源的二种凝聚态即晶态固体和量子液体,时至今日仍然是它主要的研究对象,内容当然越来越丰富了,考

数学学科前沿讲座

数学学科前沿讲座 通过16个学时的学习,我对数学有大概的了解,也有一些自己的体会。下面就简要谈谈。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。因有数学,才有今天科技的繁荣,在我们身边到处都有数学问题。今天科技领域也以数学为基础。如计算机的发展,一切理论都是数学家提出的,某个物理学家要研究某个项目,都要以丰厚的数学功底为前提。在人们的生活中,时刻与数学打交道,可谓世界因数学而精彩。既然数学有如此大的魅力,下面将粗略的介绍一下。 数学曾出现三次危机:无理数的发现——第一次数学危机;无穷小是零吗——第二次数学危机;悖论的产生---第三次数学危机。数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。在悖论中逐渐成熟,进而到现在出现多个分支,分为:基础数学、数论、代数学、几何学、拓扑学、函数论、常微分方程、偏微分方程、概率论、应用数学、运筹学…… 一、应用数学 应用数学属于数学一级学科下的二级学科。应用数学是应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的数学模型、利用数学方法解决实际问题等。 主要研究方向:(1) 非线性偏微分方程 非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 (2)拓扑学 拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。 由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。19世纪末,在拓扑学的孕育阶段,就已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。拓扑学也是数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。简单地说,拓扑就是研究有形的物体在连续变换下,怎

凝聚态物理学发展状况

§1 凝聚态物理学发展状况 凝聚态物理学研究物质的宏观物理性质的学科。所谓“凝聚态”,指的是由大量粒子组成,并且粒子间有很强相互作用的系统。自然界中存在着各种各样的凝聚态物质。固态和液态是最常见的凝聚态。低温下的超流态,超导态,玻色-爱因斯坦凝聚态,磁介质中的铁磁态,反铁磁态等,也都是凝聚态。 研究凝聚态物质的宏观性质及其微观本质的物理学分支。凝聚态物质的共同特点是原子(或分子)的间距和原子(或分子)本身的线度有大致相同的数量级,因而原子(或分子)间有较强的相互作用,这使凝聚态物质表现出具有一定的体积和压缩率很小这些共同的宏观特征;在微观结构上则具有长程有序(晶体)或短程有序(液体)的特点(见非晶态)。和气体相比,凝聚态物质具有迥然不同且更为多样化的属性。凝聚态物理学涉及范围极广的研究领域。自建立了量子理论后,晶态固体的一系列基本宏观性质得到了较好的理论解释,逐渐形成了较完整的晶态物理学基础。以后,晶态物理所研究的内容又有极大的扩展,如开始了对非晶态固体的研究,从完整的和纯净的晶体转移到对杂质和缺陷的研究,从体内性质扩展到表面和界面性质的研究,由平衡态转向瞬态、亚稳态和相变的研究,从常温常压条件转向极低温和超高压条件下的研究,以及从普通晶格扩展到超晶格(一种由不同单晶薄膜周期性地交替叠合而成的人工晶格)的研究,等等。所有这些构成了固体物理学这个宏大学科,按所研究的问题的不同,固体物理学又分出结晶学、金属物理学、半导体物理学、电介质物理学、磁性物理学、表面物理学和超导物理学等分支学科。凝聚态物理学除上述内容外还包括对液态氦和液晶的研究内容。凝聚态物理学由于其实用性强,和其他自然科学领域联系紧密,已成为物理学发展的重点之一。 目前凝聚态物理学面临的主要问题是铁磁态和高温超导体的理论模型。 1. 概况 凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其和宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。 凝聚态物理的研究对象除晶体、非晶体和准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理和团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往和实际的技术使用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理和地球物理等交叉学科的发展。 2.学科研究范围 研究凝聚态物质的原子之间的结构、电子态结构以及相关的各种物理性质。研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理和超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄膜物理、

物理学前沿讲座——激光技术

物理学前沿讲座——激光技术 物理学前沿讲座—— 激光技术 激光技术 一、引言 随着社会的发展,各类新型技术也如雨后春笋般破土而出。虽然世界第一台激光器早在1960年由赴美国的梅曼研发成功,而我国的第一台红宝石激光器也在1961年于长春问世。但在短短40多年的时间里,激光技术的应用发展得到了迅猛的发展。激光技术已与多个学科相结合形成多个应用技术领域。本文将从激光的由来,激光的特特,以及激光的应用几方面来介绍而、激光。二、正文 1、激光的由来 激光最初的中文名叫“镭射”,“莱塞”,是它的英文名字LASER的音译,是取自英文Light Amplification by Stimulation Emission of Radiation的各名词的头一个字母组成的缩写词,意思是“受激辐射的光放大”。激光的英文全名已完全表达了制造激光的主要过程。而在1964年按照我国著名科学家钱学森的建议将“光受激发射”改名为“激光”。 2、激光的特性 激光具有定向发光、亮度亮度极高、颜色极强、相位高度一致的特性。激光光波在空间叠加时,重叠区的光强分布会出现稳定的强弱相间的现象,因而我们可知激光是相干波,而普通光源发出的光,其频率、振动方向、相位不一致,而导致了普通光源是非相干波。 3、激光的应用

基于激光独特的性质,目前激光已被应用到生活、科研的方方面面。激光焊接、激光打孔、激光淬火,激光热处理、激光打标(许多矿泉水上的生产日期等)、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗、激光测距、激光医疗、激光雷达、激光武器、激光打印机等各个方面。下面就让我们来具体看一下最近几十年来在激光武器、激光医疗、激光雷达技术、光纤激光器等方面的取得的巨大的成果。 3、1激光武器 激光武器是利用激光辐射能量达到摧毁战斗目标或使其丧失战斗力等的作战武器,是一种利用沿一定方向发射的激光束攻击目标的定向能武器。其具有快速、灵活、精确和抗电磁干扰性等优异性能。在光电对抗、防空和战略防御中可发挥独特作用。它分为战斗激光武器和战略激光武器两种。激光武器将会成为一种常规的威慑力量。由于激光武器的速度是光速,因此在使用时不需要提前量。“鹦鹉螺”激光武器可谓是激光武器中的典型代表。在2000年10月25日以色列国防部就透露“鹦鹉螺”激光武器于6月6日,8月28日,9月22日进行三次激光武器系统系列试验中,分别成功击落了一枚、两枚、两枚“喀秋莎”火箭,进而成为世界上第一个成功击落火箭的战术高能激光系统。 图1 鹦鹉螺 3、2激光医疗

材料专业全国排名

材料物理与化学是一门以物理、化学和数学等自然科学为基础,从分子、原子、电子等多层次上研究材料的物理、化学行为与规律,致力于先进材料与相关器件研究开发的学科。 材料学以理论物理、凝聚态物理和固体化学等为理论基础,应用现代物理与化学研究方法和计算技术,研究材料科学中的物理与化学问题,着重研究材料的微观组织结构和转变规律,以及他们与材料的各种物理、化学性能之间的关系,并运用这些规律改进材料性能,研制新型材料,发展材料科学的基础理论,探索从基本理论出发进行材料设计,着重现代物理和化学的新概念、新方法在材料研究中的应用。 材料加工工程 主要研究内容涉及高分子材料的加工成型原理、工艺学,先进复合材料制备科学与成型技术、原理,无机非金属材料的加工技术及原理,先进的聚合物加工设备设计学,弹性体配合与改性科学,高分子材料的反应加工技术、原理,高分子材料改性科学与技术等方面。 材料专业全国排名 材料专业全国排名 材料学(160) 排名学校名称等级排名学校名称等级排名学校名称等级 1 清华大学A+ 1 2 四川大学 A 2 3 燕山大学 A 2 西北工业大学A+ 1 3 山东大学 A 2 4 吉林大学 A 3 北京科技大学A+ 1 4 武汉理工大学 A 2 5 上海大学 A 4 上海交通大学A+ 1 5 西安交通大学 A 2 6 重庆大学 A 5 哈尔滨工业大学A+ 1 6 北京化工大学 A 2 7 大连理工大 学 A 6 同济大学A+ 1 7 北京工业大学 A 2 8 湖南大学 A 7 东北大学A+ 18 中国科学技术大 学 A 29 华中科技大 学 A 8 北京航空航天大 学 A+ 19 天津大学 A 30 昆明理工大 学 A 9 浙江大学 A 20 东华大学 A 31 北京理工大 A

浅谈凝聚态物理学的历史发展与研究

浅谈凝聚态物理学的历史发展与研究 摘要:所谓“凝聚态”,指的是由大量粒子组成,并且粒子间有很强相互作用的系统。自然界中存在着各种各样的凝聚态物质。固态和液态是最常见的凝聚态。低温下的超流态,超导态,玻色- 爱因斯坦凝聚态,磁介质中的铁磁态,反铁磁态等,也都是凝聚态。当代物理学把固态物质和液态物质统称为凝聚态物质。本文就凝聚态物理的内容和发展进行综合性的概述。 关键词:凝聚态凝聚态物理固体物理超导物理 引言: 凝聚态物理学是当今物理学最大也是最重要的分支学科之一。研究由大 量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质与应用的科学。它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体与准晶体等固体物质外,还包括稠密气体、液体以及介于液体与固体之间的各种凝聚态物质,内容十分广泛。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数,从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的分支学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力. 一、凝聚态物理学的历史和发展 凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。70年代特别是80年代之后, 由于固体物理学和研究范围在不断扩大,其涉及的概念体系也开始变迁的转移,固体物理学这一名词常被“凝聚态物理学”所取代。随着液体物理,半导体物理,超导物理,纳米材料等科学的发展,凝聚态物理学逐渐成为物理学科内一门不可或缺的分支。 1.1. 凝聚态物理学的萌芽时期——固体物理学的建立 固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。 19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家奥古斯特·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。 1984年发现准周期结构以及分形结构中波的传播都存在一些新现象。在低温下考虑波的相干性,电输运现象会出现一些新结果,在介观物理领域中观测到一系列反映量子相干性的效应。由此看来,固体物理学范式扩大,由周期结构到非周期结构,可以容纳许多物理学研究的新领域。能带理论是建立在单电子近似的基础上的,也就是说忽略了电子间的相互作用。但实际上这种相互作用总是存在,

材料学科前沿讲座总结

材料学科前沿讲座总结 生物医用高分子 一.引言 生物医用功能材料即医用仿生材料,又称为生物医用材料。这类材料是用于与生命系统接触并发生相互作用,能够对细胞、组织和器官进行诊断治疗、替换修复或诱导再生的天然或人工合成的特殊功能材料。随着化学工业的发展和医学科学的进步,生物医用功能材料的应用越来越广泛。从高分子医疗器械到具有人体功能的人工器官,从整形材料到现代医疗仪器设备,几乎涉及到医学的各个领域,都有使用医用高分子材料的例子。医用高分子材料所用的材料种类已由最初的几种,发展到现在的几十种,其制品种类已有上千种。 目前,生物医用功能材料应用很广泛,几乎涉及到医学的各个领域。其大致可分为机体外使用与机体内使用两大类。机体外用的材料主要是制备医疗用品,如输液袋、输液管、注射器等。由于这些高分子材料成本低、使用方便,现已大量使用。机体内用材料又可分为外科用和内科用两类。外科方面有人工器官、医用黏合剂、整形材料等。内科用的主要是高分子药物。所谓高分子药物,就是具有药效的低分子与高分子载体相结合的药物,它具有长效、稳定的特点。 二.发展历史 生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。

目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。 三.基本性能要求 1. 力学性能稳定 在使用期限内,针对不同的用途,材料的尺寸稳定性、耐磨性、耐疲劳度、强度、模量等应适当。比如,用超高分子量聚乙烯材料做人工关节时,应该用模量高、耐疲劳强度好、耐磨性好的材料。 2. 化学性能稳定 作为生物材料,化学性能必须稳定,对人体的血液、体液等无影响,不形成血栓等不良影响。人体是一个相当复杂的环境,血液在正常环境下呈现微碱性,胃液呈酸性,且体液与血液中含有大量的钾、钠、镁离子,含有多种生物酶、蛋白质、人体的环境易引起聚合物的降解、交联及氧化反应;生物酶会引起聚合物的解聚;体液会引起高分子材料中的添加剂析出;血液中的脂类、类固醇以及脂肪等会引起聚合物的溶胀,使得材料的强度降低。例如聚氨酯中含有的酰胺基极易水解,在体内会降解而失去强度,经过嵌段改性后,化学稳定性提高。 3. 与人体的组织相容性好 医用材料必须与人体的组织相容性好,不会引起炎症或其他排异反应材料,所引起的宿主反应应该能够控制在一定可以接受的范围之内。一些含有对人体有毒有害的基团是不能用作生物医用功能材料的,如有些添加剂对人体有害或有些残留单体对人体有不良影响等,这都应该引起极度的警惕。有些添加剂会随时间的变化,从材料内部逐渐迁移到表面与体液和组织发生作用,引起各种急性和慢性的反应。

2015级硕士研究生凝聚态物理导论考试题目及答案(自己整理)

2015年“凝聚态物理导论”课程考试题目 (2015级硕士研究生,2016年1月) 一、简答题(合计30分,要求给出简洁和准确的解答,字数不少于1000字) 1. 固体物理学的范式? 答:(1)晶体学研究,涉及晶体的周期性结构(2)固体比热理论,涉及晶格振动的研究(3)金属导电的自由电子理论(4)铁磁性研究相关内容[1]。 2. 凝聚态物理学的新范式? 答:凝聚态物理学是从微观角度出发,研究相互作用多粒子系统组成的凝聚态物质的结构和动力学过程以及其与宏观物理性质之间关系的一门科学。经过长时间的发展,如进行成了以“对称破缺”为核心概念所建立的凝聚态物理学新范式,包括了(1)基态(2)元激发(3)缺陷(4)临界区域等四个不同的层次,而且这些层次之间又彼此相互关联[2]。 3. Hartree-Fock 近似? 答:总的来看,Hartree-Fock 近似是一种对“原子核和周围与其保持电中性的一组电子”这一系统哈密顿量的一种简化处理,以实现单电子近似。它主要涉及到对“电子之间的相互作用势”这一项的简化与修正。这种简化并非是一蹴而就的,首先是Hartree 的自洽场近似,假设每个电子运动于其他所有电子构成的电荷分布(通过2 Ψ)所决定的场里,引入电子之间的相互作用势: ()()j i j j i j i i i dr r r r Ψe r V ∑≠-=22041 πε(1) 来代替原先Hamilton 量中的电子之间的相互作用势。之所以称为“自洽”是因为最终的方程组可以通过自洽的方式求解。 另外一方面,如果考虑电子的自旋,总波函数相对于互换一对电子应是反对称的,最终求解出的电子系统的总能量还要增加一项:每对平行自旋电子的交换能。 ()()()()r drd r r r r r r e E j i j j i i ''' -?'=∑??≠∞ψψψψπε1802(2) 结合以上两种处理就是Hartree-Fock 近似。 4. 密度泛函理论? 答:密度泛函理论的含义从其英文“Density functional theory ”更能直观的反映出来,它应用“电子密度泛函数”来处理多体问题。而泛函数通常指一种定义域为函数,而值域为实数的函数,换句话说,是一种函数组成的向量空间到实数的一个映射[3]。泛函数常用来寻找某个能量泛函的最小系统状态,这为密度泛函理论的应用提供了一个基础。下面对密度泛函理论的理论基础做一些初步的解释:一般在固体周期性结构中,当我们把原子或者离

凝聚态物理学

凝聚态物理学 本书是为一年级研究生的凝聚态物理课程撰写的教 科书。其1版出版于2000年,本书是2010年出版的第2版。它统一地处理所有的凝聚态物质,既包括了对于传统的、经典的课题的阐述,也给出了作者认为对于未来的发展将会起重要作用的一些领域的介绍。本书不仅讲述能带理论、输运现象、半导体物理,而且也介绍了准晶、相变动力学、纳米尺度电子的干涉、量子霍耳效应和超导等。在这个第2版中,包括了一些最新的进展,特别是关于软物质物理学,包括液晶、聚合物物理以及流体动力学等的材料。 本书有如下几个特点:1.强调理论与实验的对照,作者明确地指出了理论并非都与实验完全相符,目前仍然存在许多不确定的理论问题有待解决。2.书中给出了许多直接取自实验的新的图和数据表。3.每一章末尾的习题,大部分与课文紧密相关,而且分步骤给出了求解的指导。有些题目要求用计算机数值求解,特别是一些简单的能带计算,需要用计算机画出图来。4.全书末尾给出了一个长达40页的索引,这在一般的书上很少见。给读者查找相关内容带来了很大的方便。5.对于一些现象的解释尽可能做到简单,但对于一些计算和充分肯定的实验数据的解释尽量详细。6.本书列出了

1000多篇最近发表的以及历史上起过重要作用的参考文献,便于读者进一步深入研习。 全书共分27章,分别归属于六个部分。各部分与各章内容分别为:第一部分原子结构,含第1―5章:1.晶体概念; 2.三维晶格; 3.散射与结构; 4.表面和界面; 5.除晶体之外。第二部分电子结构,含第6―10章: 6.自由费米气体和单电子模型; 7.周期势中的无相互作用电子; 8.近自由与紧束缚; 9.电子一电子相互作用;10.固体中的一些实际计算。第三部分力学,含第11―15章:11.固体的内聚力;12.弹性;13. 声子;14.位错和缺陷;15.流体力学。第四部分电子输运,含第16―19章:16.Bloch电子动力学;17.输运现象和费米液体理论;18.传导的微观理论:19.电子学。第五部分光学性质,含第20-23章:20.唯象理论;21.半导体的光学性质; 22.绝缘体的光学性质;23.金属的光学性质与非弹性散射。第六部分磁性,含第24―27章:24.磁性和有序化的经典理论;25.离子与电子的磁性;26.相互作用磁矩的量子力学; 27.超导电性。 本书内容丰富,叙述清晰、透彻、易于理解,是一本适合于凝聚态物理、电子工程、材料科学、应用数学及化学学科高年级大学生和研究生学习凝聚态物理的很好的教材。对于相关领域的研究人员也具有重要的参考价值。 丁亦兵,教授

相关主题