搜档网
当前位置:搜档网 › Generation of GeV protons from 1 PW laser interaction with near critical density targets

Generation of GeV protons from 1 PW laser interaction with near critical density targets

Generation of GeV protons from 1 PW laser interaction with near critical density targets
Generation of GeV protons from 1 PW laser interaction with near critical density targets

Generation of GeV protons from1PW laser interaction with near critical density targets

Stepan S.Bulanov,1,2Valery Yu.Bychenkov,3Vladimir Chvykov,1Galina Kalinchenko,1

Dale William Litzenberg,4Takeshi Matsuoka,1Alexander G.R.Thomas,1

Louise Willingale,1Victor Yanovsky,1Karl Krushelnick,1and Anatoly Maksimchuk1

1FOCUS Center and Center for Ultrafast Optical Science,University of Michigan,Ann Arbor,

Michigan48109,USA

2Institute of Theoretical and Experimental Physics,Moscow117218,Russia

3P.N.Lebedev Physics Institute,Russian Academy of Sciences,Moscow119991,Russia

4Department of Radiation Oncology,University of Michigan,Ann Arbor,Michigan48109,USA

?Received23October2009;accepted5March2010;published online12April2010?

The propagation of ultraintense laser pulses through matter is connected with the generation of

strong moving magnetic?elds in the propagation channel as well as the formation of a thin ion

?lament along the axis of the channel.Upon exiting the plasma the magnetic?eld displaces the

electrons at the back of the target,generating a quasistatic electric?eld that accelerates and

collimates ions from the?lament.Two dimensional particle-in-cell simulations show that a1PW

laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an

energy of1.3GeV.Scaling laws and optimal conditions for proton acceleration are established

considering the energy depletion of the laser pulse.?2010American Institute of Physics.

?doi:10.1063/1.3372840?

I.INTRODUCTION

The acceleration of charged particles from intense laser interactions with targets of different density and composition is considered to be one of the main applications of high power laser systems.In particular,the acceleration of ions attracted a lot of interest over the last few years.The accel-erated ions can potentially be used for fusion ignition,1had-ron therapy,2radiography of dense targets,3and injection into conventional accelerators.4Ion beams with a maximum en-ergy of tens of MeV were observed in previous experiments from laser interactions with solid and gaseous targets.5,6The generation of energetic ions beams has also been thoroughly studied using both two dimensional?2D?and three dimen-sional?3D?particle-in-cell?PIC?computer simulations.7,8 These simulations show that with laser systems capable of producing ultrashort pulses in the multiterawatt or even peta-watt power range it is possible to generate ion beams with energies of several hundreds of MeV or even several GeV by optimizing the parameters of the pulse and the target,and employing new regimes of acceleration.

There are several regimes of ion acceleration discussed in the literature:?i?target normal sheath acceleration ?TNSA?,9?ii?Coulomb explosion?CE?,10and?iii?radiation pressure or laser piston regime?LP?.11In these three regimes the laser pulse interacts with a thin foil of solid density. When the pulse is not intense enough to burn through the target,it launches hot electrons from the front surface through the target.Upon reaching the back of the target,they establish a sheath electrostatic?eld which accelerates ions ?TNSA?.When the laser pulse is suf?ciently intense,it ef-fectively removes all the electrons from the irradiated vol-ume and subsequently the bare ion core explodes due to the repulsion of noncompensated positive charges?CE?.In the radiation pressure regime,the laser pulse is able to push the foil as whole due to the fact that as it is re?ected it acts as a

?ying relativistic mirror?LP?.Recently several new schemes

were proposed,based on the enhancement and different com-

binations of these regimes:?i?Breakout afterburner,the ef-

fective combination of TNSA with the direct acceleration by

the burning through laser pulse,12?ii?the enhanced CE, where the ions are injected into a Coulomb?eld,13?iii?the directed CE,14,15which is achieved in laser double-layer foil

interactions.In the directed CE regime the electrons are ex-

pelled from the focal spot,the?rst layer of heavy ions is

accelerated by the radiation pressure,and then experiences a

CE,transforming into a positively charged cloud expanding

in the direction of laser pulse propagation.The second layer

ions are accelerated in the moving charge separation electric

?eld of this cloud.

In this paper we report on the study of a different and

potentially more ef?cient mechanism of ion acceleration.

Whereas in all the above mentioned schemes thin and ultra-

thin solid density targets are used,here we utilize a regime of

laser pulse interaction with near critical density targets.

These targets have the thickness which is larger than the

laser pulse length.When laser propagates through such tar-

gets,it forms a channel in both the electron and ion density.

A portion of the electrons is accelerated in the direction of

laser pulse propagation by the longitudinal electric?eld.The

motion of these electrons generates a magnetic?eld,which

is circulating in the channel around its axis.The region

where the magnetic?eld is present moves behind the pulse.

Upon exiting the channel the magnetic?eld expands into

vacuum and the electron current is dissipated.This?eld has

the form of a dipole in2D and a toroidal vortex in3D.The

magnetic?eld displaces the electron component of plasma

with regard to the ion component and a strong quasistatic

electric?eld is generated that can accelerate and collimate

ions.The accelerated ions originate from the thin ion?la-

PHYSICS OF PLASMAS17,043105?2010?

1070-664X/2010/17?4?/043105/8/$30.00?2010American Institute of Physics

17,043105-1

ment that is formed along the axis of the propagation channel ?see Fig.1?.The mechanism under consideration was pro-posed in Ref.16and studied in a number of papers.17–19It was shown recently that a short pulse can accelerate ions up to the maximum energy of 18MeV per nucleon from cluster-gas targets.20In the case of long pulses the acceleration of helium ions up to 40MeV from underdense plasmas was observed on the VULCAN laser.6However the scaling and optimal conditions were not established.

We study the dependence of ion maximum energy on the target density,thickness,as well as on the focusing and power of the laser pulse in order to optimize the acceleration process.We should note here the maximum proton energy is obtained for slightly overcritical targets and since the laser pulse should be able to establish a channel that goes through the target,the laser should be tightly focused on the front surface of the target to ensure the penetration through the target.We show that it is not only important that the pulse penetrates the target,but also that it does not break into ?laments.The latter will immediately reduce the effective-ness of acceleration.It is therefore necessary to establish matching between the dimensions of the focal spot,the po-sition of the focus relative to the target boundary,and the diameter of the self-focusing channel for each target density and thickness in order to avoid ?lamentation,as was shown in Ref.21.The effectiveness of this mechanism depends on the ef?cient transfer of laser pulse energy into the energy of fast electrons that are accelerated along the propagation channel.Because of this,for each laser target con?guration there exists an optimum target thickness that maximizes the ion energy.We show how the optimum target thickness scales with peak intensity and pulse duration.The energies of protons produced in such interaction by multiterawatt and petawatt class lasers are of the order of several hundreds of MeV ,which is interesting for many applications that require ion beams.1–4

The paper is organized as follows.In Sec.II we present the results of 2D PIC simulations of intense tightly focused laser pulse interaction with near critical density targets of different thickness and discuss the mechanism of proton ac-celeration.The scaling of the optimal target thickness with laser pulse parameters,based on the optimal laser pulse en-

ergy depletion,is presented in Sec.III.We conclude in Sec.IV .

II.THE RESULTS OF 2D PIC SIMULATIONS

In this section we present the results of 2D PIC simula-tions of an intense laser pulse interaction with underdense and near-critical density targets.The simulations were per-formed using the Relativistic Electro Magnetic Particle code.22Space and time are measured in units of laser pulse wavelength,?,and wave period,T =2?c /?,correspond-ingly,?is the laser pulse frequency.The grid mesh spacing is ?/20,and the time step is T /40.The total number of particles in the simulation box is about 5?106.A laser pulse with Gaussian temporal and spatial pro?les is introduced at the left boundary.The pulse duration is ?=30fs or 10??1/e 2?and it is focused to a 1.5??full width at half maxi-mum ?FWHM ??spot size at a distance of 6?from the left boundary ?f /D =1.5?and the power is 1PW ?I ?1023W /cm 2?.It is worth mentioning here that the simu-lations we performed for different f/D show that the optimal acceleration conditions are reached for f /D =1.5?E p ?400TW,2.7n cr ?=480MeV ?,which we use through-out the paper,unless stated otherwise.For f /D =1the pulse immediately goes into ?lamentation reducing the ef?ciency of acceleration,E p ?400TW,2.7n cr ?=300MeV.For f /D =3the peak intensity drops leading to a reduction in maxi-mum proton energy,E p ?400TW,2.7n cr ?=370MeV,meaning that thinner targets should be used.

At intensities of about 1023W /cm 2the effects of radia-tion backreaction can become important and lead to the modi?cation of the laser-plasma interaction,as it was shown in Ref.23.Though we use peak intensities of about 1023W /cm 2in our 2D PIC simulations the effects of radia-tion backreaction are negligible in our case and are not taken into account.It is due to the fact that as it will be shown below the channel in the electron density is formed by the front of the pulse which expels the electron sideways.Thus when the maximum of the pulse arrives there is only a neg-ligible amount of electrons or no electrons at all to interact with.

The target is 40?wide,its left boundary is placed at x =6?.Thus the laser is focused at the front of the target.Focusing the pulse before the target or inside the target leads either to reduced propagation length in plasma or to ?lamen-tation,which are both not bene?cial to ef?cient proton ac-celeration.The target is composed of fully ionized hydrogen.The density is measured in units of the critical density,n cr =m e ?2/4?e 2,m e is the electron mass,and e is the unit charge.We vary the thickness and density of the target since these are two parameters the dependence on which we study.The highest density used in simulations is 16n cr .In view of grid mesh spacing ?/20,it gives ?ve points per plasma wavelength.Most of the simulations were performed at n e =3n cr ,which gives 12points per plasma wavelength.It is enough to resolve the minimum characteristic scale of the problem.

When a tightly focused high-intensity laser pulse inter-acts with a target of near-critical density,it forms a

channel

FIG.1.?Color online ?The principal scheme of the acceleration mechanism.

043105-2Bulanov et al.Phys.Plasmas 17,043105?2010?

in both electron and ion density.The evolution of the laser ?eld inside the channel is shown in Fig.2.The pulse is tightly focused at the front surface of the target ?t =15?,after which it begins to diverge in the plasma and to expel the electrons creating a channel in electron density.The results of these simulations indicate that this process is connected with a swift rise of electron density on the walls of this channel.Soon the laser pulse divergence stops and the pulse propagates inside this channel ?t =35,t =55?,losing en-ergy,which is transformed into the energy of fast electrons,which are mainly accelerated in the transverse direction.At t =75the laser pulse exits the plasma and diverges ?t =90?.Comparing the pulse at t =15and t =90we see that a signi?-cant part of laser energy has been transferred to plasma elec-trons.The formation of the channel in electron density and a stream of accelerated electrons,which exit the plasma behind the pulse,along the laser propagation axis are shown in Figs.3?a ?and 3?b ?correspondingly.We notice here that the den-sity in the stream of accelerated electrons is substantially higher than the electron density in the ambient plasma.In the equilibrium the electron density inside the bunch can be ?e 2times greater than the ion density in the plasma ?e.g.,see Ref.24?.Here ?e is the electron bunch relativistic gamma-factor.

These electrons generate a magnetic ?eld,circulating in-side the channel around its axis.The region,where the mag-netic ?eld is generated,moves behind the pulse.Upon exit-ing the plasma the magnetic ?eld expands and the electron current is dissolved.Some of the electrons leave the target,other return back,helping to sustain the magnetic ?eld on the back of the target ?see Fig.3?b ??.This ?eld displaces the electron component of plasma with regard to the ion compo-nent thus generating a strong quasistatic electric ?eld that can accelerate and collimate ions.In order to illustrate the process of this electric ?eld generation,Fig.4shows the

longitudinal electric and z-component of magnetic ?eld for different moments of time.It can be clearly seen that the growth of the electric ?eld is connected with the expansion of the magnetic ?eld,which has a form of a dipole in 2D ?in 3D it will be a toroidal vortex ?.

This electric ?eld will accelerate and collimate ions from the thin ?lament,which is formed along the laser propaga-tion axis inside the channel in ion density.In Fig.5we present a series of proton density pro?les at different time intervals to illustrate the creation of a channel,the formation of a thin proton ?lament,and the proton acceleration from this ?lament by the longitudinal quasistatic electric ?eld.

In Fig.6?a ?we show a typical spectrum of ions for a 1PW laser pulse interacting with a 50?thick target having a density of 3.0n cr and producing protons with a maximum energy of 1.3GeV .The number of protons with energy above 1GeV is about 4?108.The dependence of ion maximum energy on time,shown in Fig.6?b ?,illustrates the accelera-tion mechanism.The steep rise in maximum energy begins at t =70,which corresponds to the formation of a quasistatic ?eld at the back of the target ?see Fig.4?.By t =120this ?eld is almost dissolved and the acceleration stops.In Fig.6?c ?we present the angular distribution of protons.Two large side peaks at ?=?/2correspond to the protons pushed out from the channel by the laser pulse in the transverse direction.A narrow peak ???=6°at FWHM ?at ?=0represents the pro-tons accelerated along the laser propagation axis.

It is evident that there should be a strong dependence of the acceleration effectiveness on the target thickness and density connected with a variation in energy transfer ef?-ciency from laser pulse to the electrons and protons.This is due to the fact that if the target is very thick the pulse will not penetrate the target and generate an accelerating ?eld,and if the target is too thin then the pulse will transfer a negligible amount of its energy into accelerating ?elds.For low densities,tight focusing of the pulse leads to ?lamenta-tion,causing a rapid drop in acceleration ef?ciency.For high densities the channel radius is reduced,so the generated ac-celerating ?elds are also reduced.Hence,the laser pulse properties should be properly matched to the target condi-tions to ensure optimal conditions for acceleration.By opti-mal conditions we mean that the laser pulse is able to go through the target without ?lamentation,and the laser pulse energy is almost all converted into the energy of fast elec-trons.

That is why we perform a two-parameter scan of

the

FIG.2.?Color online ?The evolution of the laser pulse electric ?eld for a 1PW laser pulse interacting with a 50?thick target with a density of 3.0n cr

.

FIG.3.?Color online ??a ?The formation of a channel in electron density.?b ?The stream of laser accelerated electrons exiting plasma behind the pulse for a 1PW laser pulse interacting with a 50?thick target with density of 3.0n cr .

043105-3Generation of GeV protons from 1PW laser interaction …Phys.Plasmas 17,043105?2010?

maximum proton energy.In Fig.7?a ?we show the results of this scan,i.e.,the dependence of the maximum proton energy on target thickness and density.The parameter space was explored by a large number of simulations to generate the plot.The shape of the surface indicates that for every density there is an optimal target thickness that maximizes the proton energy.Moreover the shape suggests that the optimal target thickness for each value of target density can be determined from the condition n e b L =const,where b is some number.Fit-ting the results of 2D PIC simulations we obtain that b =0.65?see Fig.7?b ?,where the dependence of target thick-ness on target density for optimal proton acceleration is plot-ted along with its ?t by a function f /n e b ,f =442,b =0.65?.We should mention here that the data and the power law ?t are in good agreement for 1.6?n i /n cr ?10,as it can be seen from the inset Fig.7?b ?.The comparison of this scaling with the analytical results and the discussion of the scaling applica-bility range are carried out in the next section.According to the results presented in Fig.7?a ?the maximum proton energy of 1.3GeV in the interaction of a 1PW laser pulse with a target of near-critical density is obtained for a target thick-ness of 50?and density of 3.0n cr .

III.THE OPTIMAL THICKNESS AND ITS SCALING WITH INTERACTION PARAMETERS

As it was demonstrated in the previous section there ex-ists an optimal target thickness that maximizes the acceler-ated proton energy for given laser and target properties.In other words the optimal target thickness corresponds to most ef?cient transformation of laser pulse energy into the

energy

FIG.4.?Color online ?The evolution of the longitudinal electric and the z-component of the magnetic ?elds for a 1PW laser pulse interacting with a 50?thick target with density of 3.0n cr

.

FIG.5.?Color online ?The evolution of ion density for a 1PW laser pulse interacting with a 50?thick target with density of 3.0n cr .

043105-4Bulanov et al.Phys.Plasmas 17,043105?2010?

of protons,which are accelerated by the longitudinal quasi-static electric ?eld.As it was shown in the previous section this ?eld is generated due to the expansion of the magnetic ?eld as it exits the channel.The magnetic ?eld in its turn is connected with the electron current along the axis of the channel.These are the electrons which are accelerated by the laser pulse in the forward direction.The magnetic ?eld,in-duced by the electron current,grows as long as these elec-trons are accelerated.That is why the optimal target thick-ness should be equal to the electron acceleration length.For the targets of such density,as considered in this paper,the acceleration length is determined by the laser depletion length.In other words the target thickness should be equal to laser depletion length.We can make an estimate of the opti-mal target thickness from the condition that all the laser en-ergy ?W p ?is transferred to the energy of electrons ?W e ?,which were initially in the would-be propagation channel:W p =W e ,where W e =?R 2L ch n e am e c 2,R is the radius of the channel,L ch is the channel length,and a is the maximum

value of the laser pulse dimensionless vector-potential in the channel.Here we assumed that the electrons acquire an av-erage energy of am e c 2after being pushed out from the chan-nel in the transverse direction.We also assume that the thick-ness of the target is much larger than the pulse length,so the channel can be established.The energy of the pulse can be estimated as follows:W p =?R 2?a 2m e cn cr .Then

a ?n e n cr L ch

L p

,?1?

where L p =?/c is the length of the laser pulse.If we assume that the diameter of the plasma channel is about R =a 1/2c /?pe /2=??n e /n cr ?1/2a 1/2/2,and express a in terms of

laser pulse energy then n e 2/3

L ch =const.This relation agrees well with the results of 2D PIC simulations,which gives a power of 0.65for density in the scaling ?see Fig.7?b ??.

Let us utilize a simple model to more carefully estimate a constant of proportionality in Eq.?1?.In order to do this we need to calculate with accuracy better then above the energy of the laser pulse inside the self-generated channel.We will also use the results of 2D PIC simulations below to prove the assumption that the average energy of electrons that are ejected from the channel is am e c 2.Let us ?rst calculate the energy of the laser pulse.Since we are considering the inter-action of an intense laser pulse with a plasma of near-critical density,it is plausible to expect that the walls of the self-generated channel will have high density.The laser pulse will be contained inside the channel almost completely since it would not be able to penetrate these high density walls.That is why in order to estimate the energy of the laser pulse inside the channel we can use a well-known result for the behavior of the EM wave inside a waveguide.25In doing so,we neglect the laser pulse energy loss,while the channel is being established.Since,initially,the pulse has no longitudi-nal component of electric ?eld,and it is tightly focused on the front surface of the target,it is reasonable to assume that the mode with lowest transverse frequency will propagate through this self-generated plasma waveguide.This will be an H -wave ?E x =0?with

H x =AJ 1??r ?cos ??t ?kx ?,

?2?

where J 1is the Bessel function of the ?rst kind and ?=1.84/R ;here R is the radius of the waveguide.The trans-verse components of electric and magnetic ?eld are ex-pressed through the longitudinal one according to well-known formulae,

E r =

i ??2c ?H x

?r

,

H r =

??2c ?H x

?r

.

?3?

Since the amplitude of the transverse ?eld inside the wave-guide is E 0=mc ?a /e then the amplitude of the magnetic ?eld in Eq.?2?is A =?2c ?/i ???mc ?a /e ?.The energy of the EM wave traveling in such a waveguide per unit length

is

FIG.6.?a ?The spectrum of protons at t =140.?b ?The dependence of maxi-mum proton energy on time.?c ?Angular distribution of protons,n =3.0n cr ,P =1PW,f /D =1.5,L =50?

.

FIG.7.?a ?The distribution of proton maximum energy in plane ?n e ,L ?;the black dot marks the optimal target for proton acceleration by a 1PW pulse:n e =3.0n cr and L =50?,which gives a maximum energy of 1.3GeV .?b ?The dependence of target thickness on target density corresponding to maximum

accelerated proton energy ?2?and its ?t by a function f /n e b

,f =442,b =0.65,?1?;the log-log plot of L ?n i ?is shown in the inset.

043105-5Generation of GeV protons from 1PW laser interaction …Phys.Plasmas 17,043105?2010?

w =

?2

8??2c 2

?

?H x ?2df

=?R 22

n cr a 2m e c 2??J 1??R ??2?J 0??R ?J 2??R ??.?4?

If we take into account the ?nite duration of the pulse and assume that it is Gaussian,then the integration over time will produce the following result:

???

+??exp ??4t 2

?

2

??2

dt =

?

?8

?.?5?

Then the energy of the laser pulse inside the self-generated plasma waveguide is given by the following formula:

W p =?R 2?a 2m e cn cr K ,

?6?

where K =??/32?J 1??R ?2?J 0??R ?J 2??R ??.Above we as-sumed that the average energy of electrons accelerated by the laser pulse is am e c 2,and the total energy of these electrons is

W e =?R 2

L ch n e am e c 2

.

?7?

Let us test this assumption against the results of 2D PIC simulations.The typical spectrum of electrons is presented in Fig.8.It is obvious that the electron energy does not follow the scaling a 2?=40000,or 20GeV electron energy ?,since the maximum electron energy is equal to 1GeV .Let us es-timate the average energy of accelerated electrons.We as-sume that all the energetic electrons come from the volume occupied by the laser produced channel,and de?ne their number as N ch .Then from the electron spectrum we can determine the threshold energy,E th ,i.e.,the minimum energy that the electron initially from the channel can have

N th =

?

E th

E max

N ?E ?dE .?8?

The average energy of these electrons then can be de?ned as

E ˉ=1N ch

?

E th

E max

EN ?E ?dE .?9?

For the spectrum,shown in Fig.8,the average energy is E ˉ=93MeV.This means that if E ˉ=am e c 2,as we assumed,then a =186.Such value of a coincides well with the value obtained in 2D PIC simulations for the amplitude of vector potential in the propagation channel.This supports the as-sumption that the bulk electrons which are accelerated by the laser gain energy that scales as a .

Then

L ch =a n cr

n e

L p K ,?10?

or

a =

1K n e n cr L ch

L p

.

If we consider a propagation of the electromagnetic pulse in a 2D waveguide then in the above calculation only factor K will change,which is directly connected to the dimension of the problem and exact form of the laser ?eld in the wave-guide.In the 2D case K =1/10?instead of K =1/13.5in 3D ?.For the parameters,used in 2D PIC simulations,the maxi-mum value of the vector potential inside the channel a =200,n e =3.0n cr ,and L p =10?,the optimal target thickness is L ch =50?,which is in good agreement with the prediction of condition ?10?.

The scaling ?10?can be rewritten in terms of laser pulse energy.Taking into account that the radius of the channel is R =?/2?n e /n cr ?1/2a 1/2and that a can be determined from the expression for the energy of the laser pulse,we obtain

n e 2/3L ch

W p

=C ,?11?

where the constant C is

C =?4K 2n cr L p

2??2m e c

2

?

1/3

.

As we can see from the comparison of results of 2D PIC simulation and the simple analytical model,the scaling fails at low and high densities,while it works well for the inter-mediate ones ?1.6?n i /n cr ?10,see Fig.7?b ??.In the case of low densities,n i ?1.6n cr ,the ?lamentation of the laser pulse and Langmuir wave generation due to self-modulation de-crease the optimal target thickness by adding new sources of laser pulse energy depletion not accounted for in the scaling ?11?.In the case of high densities,n i ?10n cr ,other mecha-nisms of ion acceleration come into play and their effective-ness is no longer determined by the depletion of the laser pulse.Moreover the optimal target thickness that follow from the result of 2D PIC simulations for high density targets is no longer much larger than the pulse length,whereas

the

FIG.8.The spectrum of electrons for a 1PW laser pulse interacting with a 50?thick target with density of 3.0n cr .

043105-6Bulanov et al.Phys.Plasmas 17,043105?2010?

condition of the theoretical model applicability is L ch?L p.

In contrast with the results of the present paper the scal-ing of the optimal target thickness for ion acceleration from thin foils is determined from the condition of the relativistic transparency of the foil.This condition stems out of the re-quirement that the electric?eld of the laser is equal to the electric?eld of the ion core,stripped of all the electrons,and which is as follows:26

a=?n e

n cr

l

?,?12?

where l is the foil thickness,and?is the laser wavelength.

This scaling was thoroughly studied in Ref.27in a series of

2D PIC simulations,where the ion acceleration from thin

double-layer foils was considered.The difference in scaling

is due to different targets and thus to different interaction

properties.The effect of relativistic transparency on en-

hanced ion acceleration schemes was studied experimentally

in Ref.28.

The maximum energy of the accelerated protons can be

estimated from the fact that the acceleration itself takes place

in the region which is of the order of channel diameter.The

electric?eld,which accelerated protons,should be of the

order of the magnetic?eld generated by the accelerated elec-

tron bunch,i.e.,E?B?4?en e?e2R e,b,where R e,b ?a1/2c/?pe is the transverse size of the electron bunch.Here we take into attention the known fact that the relativistic

electron bunch density at the equilibrium due to the plasma

lensing effect is in a factor?e2higher than the background plasma density n e.Then the proton energy is given by

E p?e2n e?e2?a1/2c/?pe?2?a?e2m e c2.?13?The coef?cient of proportionality should be determined from PIC simulations.

It is easy to?nd a relationship between the dimension-

less amplitude a of laser beam inside the self-focusing chan-

nel of the radius a1/2c/?pe and the laser power P.It reads a=?8??P/P c??n e/n cr??1/3,?14?where P c=2m e2c5/e2=17GW.For P=1PW and n e/n cr=3, it yields a?102.As we can see,Eq.?13?gives1GeV proton energy for1PW laser if the bulk energy of fast electrons corresponds to?e?7.

IV.CONCLUSIONS

In this paper we studied,using2D PIC simulations,the mechanism of proton acceleration from near-critical density plasma.In this scheme the laser pulse burns through the target generating strong electric and magnetic?elds in the propagation channel.The magnetic?eld begins to expand along the transverse direction upon exiting the channel, pushing the electron component of plasma inside the target and generating the quasistatic electric?eld.This electric?eld accelerates and collimates ions from the thin?lament which is formed in the propagation channel.

The results of simulations indicate the existence of an optimal target thickness that maximizes the energy of accel-erated ions.Since the quasistatic?elds are generated by the electron current the optimal target thickness is connected with the maximum energy transfer from the laser pulse to the plasma electrons.A parameter scan using2D PIC simula-tions con?rmed a scaling law for proton acceleration from the near critical density targets,given by

L ch=a

n cr

n e

L p K,?15a?or

a=

1

K

n e

n cr

L ch

L p

,?15b?or in terms of laser pulse energy,

n e2/3L ch

W p

=constant,?15c?

where K is a numerical factor determined by the laser pulse pro?le and its propagation inside the self-generated plasma channel.This scaling comes from the requirement of optimal laser pulse depletion in plasma and the fact that the laser pulse should be able to burn through the https://www.sodocs.net/doc/1e16038040.html,paring the analytical scaling and the results of2D PIC simulations, we came to a conclusion that the scaling?11?has an appli-cability range of 1.6?n i/n cr?10.For high densities?n i ?10n cr?other mechanisms of ion acceleration come into play and their effectiveness does not depend on the laser pulse energy depletion.Thus the scaling?11?is no longer valid.For low densities?n i?1.6n cr?the scaling fails due to the fact that the?lamentation of the laser pulse and Lang-muir wave generation due to self-modulation decrease the optimal target thickness by adding new sources of laser pulse energy depletion not accounted for.

A parameter scan over different values of target density and thickness allowed us to determine the optimal conditions for proton acceleration by a1PW laser pulse focused to a 1?m focal spot from a near-critical density target:a thick-ness of50?and density of3.0n cr.The resulting protons have the maximum energy of 1.3GeV.This mechanism also works for lower intensities.For example,a100TW laser pulse with intensity of6?1021W/cm2interacting with 2.7n cr dense plasma produces40MeV maximum energy pro-tons.For a500TW laser pulse the maximum proton energy goes up to770MeV.

Let us brie?y mention that the protons accelerated by the studied in this paper mechanism can be of interest for appli-cations in hadron therapy.For a225TW laser pulse which interacts with a2.25n cr,60?plasma slab the maximum pro-ton energy is about300MeV.The number of protons accel-erated to the energy of250MeV with an energy spread of 1%is estimated to be about108.As a result these proton beam parameters make this acceleration regime an interest-ing potential candidate for proton therapy.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-dation through the Frontiers in Optical and Coherent Ul-trafast Science Center at the University of Michigan and by Grant No.R21CA120262-01from the National Institutes of

043105-7Generation of GeV protons from1PW laser interaction…Phys.Plasmas17,043105?2010?

Health and the International Science and Technology Center ?Project2289?.The authors would like to acknowledge fruit-ful discussions with A.Brantov.

1M.Roth,T.E.Cowan,M.H.Key,S.P.Hatchett,C.Brown,W.Fountain, J.Johnson,D.M.Pennington,R.A.Snavely,S.C.Wilks,K.Yasuike,H. Ruhl,F.Pegoraro,S.V.Bulanov,E.M.Campbell,M.D.Perry,and H. Powell,Phys.Rev.Lett.86,436?2001?;V.Yu.Bychenkov,W.Rozmus, A.Maksimchuk,D.Umstadter,and C.E.Capjack,Plasma Phys.Rep.27, 1017?2001?;A.Macchi,A.Antonicci,S.Atzeni,D.Batani,F.Califano, F.Cornolti,J.J.Honrubia,T.V.Lisseikina,F.Pegoraro,and M.Temporal, Nucl.Fusion43,362?2003?;J.J.Honrubia,J.C.Fernández,M.Tempo-ral,B.M.Hegelich,and J.Meyer-ter-Vehn,Phys.Plasmas16,102701?2009?.

2S.V.Bulanov and V.S.Khoroshkov,Plasma Phys.Rep.28,453?2002?;

E.Fourkal,B.Shahine,M.Ding,J.S.Li,T.Tajima,and C.M.Ma,Med. Phys.29,2788?2002?;V.Malka,S.Fritzler,E.Lefebvre,E.d’Humieres, R.Ferrand,G.Grillon,C.Albaret,S.Meyroneinc,J.-P.Chambaret,A. Antonetti,and D.Hulin,ibid.31,1587?2004?.

3M.Borghesi,J.Fuchs,S.V.Bulanov,A.J.Mackinnon,P.K.Patel,and M. Roth,Fusion Sci.Technol.49,412?2006?.

4K.Krushelnick,E.L.Clark,R.Allott,F.N.Beg,C.N.Danson,A. Machacek,V.Malka,Z.Najmudin,D.Neely,P.A.Norreys,M.R.Salvati, M.I.K.Santala,M.Tatarakis,I.Watts,M.Zepf,and A.E.Dangor,IEEE Trans.Plasma Sci.28,1184?2000?.

5A.Maksimchuk,S.Gu,K.Flippo,D.Umstadter,and V.Y.Bychenkov, Phys.Rev.Lett.84,4108?2000?;E.L.Clark,K.Krushelnick,J.R. Davies,M.Zepf,M.Tatarakis,F.N.Beg,A.Machacek,P.A.Norreys,M.

I.K.Santala,I.Watts,and A.E.Dangor,ibid.84,670?2000?;R.A. Snavely,M.H.Key,S.P.Hatchett,T.E.Cowan,M.Roth,T.W.Phillips, M.A.Stoyer,E.A.Henry,T.C.Sangster,M.S.Singh,S.C.Wilks,A. MacKinnon,A.Offenberger,D.M.Pennington,K.Yasuike,https://www.sodocs.net/doc/1e16038040.html,ng-don,https://www.sodocs.net/doc/1e16038040.html,sinski,J.Johnson,M.D.Perry,and E.M.Campbell,ibid. 85,2945?2000?.

6L.Willingale,S.P.D.Mangles,P.Nilson,Z.Najmudin,M.S.Wei,A.G. R.Thomas,M.Kaluza,A.E.Dangor,https://www.sodocs.net/doc/1e16038040.html,ncaster,R.J.Clarke,S. Karsch,J.Schreiber,M.Tatarakis,and K.Krushelnick,Phys.Rev.Lett. 96,245002?2006?;L.Willingale,S.R.Nagel,A.G.R.Thomas,C. Bellei,R.J.Clarke,A.E.Dangor,R.Heathcote,M.C.Kaluza,C.Kam-peridis,S.Kneip,K.Krushelnick,N.Lopes,S.P.D.Mangles,W.Naz-arov,P.M.Nilson,and Z.Najmudin,ibid.102,125002?2009?.

7T.Esirkepov,Y.Sentoku,K.Mima,K.Nishihara,F.Califano,F.Pegoraro, N.Naumova,S.Bulanov,Y.Ueshima,T.Liseikina,V.Vshivkov,and Y. Kato,JETP Lett.70,82?1999?;A.M.Pukhov,Phys.Rev.Lett.86,3562?2001?;Y.Sentoku,V.Y.Bychenkov,K.Flippo,A.Maksimchuk,K. Mima,G.Mourou,Z.M.Sheng,and D.Umstadter,Appl.Phys.B:Lasers Opt.74,207?2002?;A.J.Mackinnon,Y.Sentoku,P.K.Patel,D.W. Price,S.Hatchett,M.H.Key,C.Andersen,R.Snavely,and R.R.Free-man,Phys.Rev.Lett.88,215006?2002?.

8S.V.Bulanov,N.M.Naumova,T.Zh.Esirkepov,F.Califano,Y.Kato,T. V.Liseikina,K.Mima,K.Nishihara,Y.Sentoku,F.Pegoraro,H.Ruhl, and Y.Ueshima,JETP Lett.71,407?2000?;H.Ruhl,S.V.Bulanov,T.E. Cowan,T.V.Liseikina,P.Nickles,F.Pegoraro,M.Roth,and W.Sandner, Plasma Phys.Rep.27,363?2001?.

9S.C.Wilks,https://www.sodocs.net/doc/1e16038040.html,ngdon,T.E.Cowan,M.Roth,M.Singh,S.Hatchett, M.H.Key,D.Pennington,A.MacKinnon,and R.A.Snavely,Phys. Plasmas8,542?2001?.10S.V.Bulanov,T.Zh.Esirkepov,V.S.Khoroshkov,A.V.Kuznetsov,and F.Pegoraro,Phys.Lett.A299,240?2002?;E.Fourkal,I.Velchev,and C.-M.Ma,Phys.Rev.E71,036412?2005?.

11T.Esirkepov,M.Borghesi,S.V.Bulanov,G.Mourou,and T.Tajima, Phys.Rev.Lett.92,175003?2004?.

12L.Yin,B.J.Albright,B.M.Hegelich,K.J.Bowers,K.A.Flippo,T.J.T. Kwan,and J.C.Fernández,Phys.Plasmas14,056706?2007?.

13I.Velchev,E.Fourkal,and C.-M.Ma,Phys.Plasmas14,033106?2007?. 14S.S.Bulanov, A.Brantov,V.Yu.Bychenkov,V.Chvykov,G. Kalinchenko,T.Matsuoka,P.Rousseau,S.Reed,V.Yanovsky,D.W. Litzenberg,and A.Maksimchuk,Med.Phys.35,1770?2008?.

15S.S.Bulanov, A.Brantov,V.Yu.Bychenkov,V.Chvykov,G. Kalinchenko,T.Matsuoka,P.Rousseau,V.Yanovsky,D.W.Litzenberg, K.Krushelnick,and A.Maksimchuk,Phys.Rev.E78,026412?2008?. 16A.V.Kuznetsov,T.Zh.Esirkepov,F.F.Kamenets,and S.V.Bulanov,Fiz. Plazmy27,225?2001??Plasma Phys.Rep.27,211?2001??.

17Y.Sentoku,T.V.Liseikina,T.Zh.Esirkepov,F.Califano,N.M.Nau-mova,Y.Ueshima,V.A.Vshivkov,Y.Kato,K.Mima,K.Nishihara,F. Pegoraro,and S.V.Bulanov,Phys.Rev.E62,7271?2000?.

18K.Matsukado,T.Esirkepov,K.Kinoshita,H.Daido,T.Utsumi,Z.Li,A. Fukumi,Y.Hayashi,S.Orimo,M.Nishiuchi,S.V.Bulanov,T.Tajima,A. Noda,Y.Iwashita,T.Shirai,T.Takeuchi,S.Nakamura,A.Yamazaki,M. Ikegami,T.Mihara,A.Morita,M.Uesaka,K.Yoshii,T.Watanabe,T. Hosokai,A.Zhidkov,A.Ogata,Y.Wada,and T.Kubota,Phys.Rev.Lett. 91,215001?2003?.

19A.Yogo,H.Daido,S.V.Bulanov,K.Nemoto,Y.Oishi,T.Nayuki,T. Fujii,K.Ogura,S.Orimo,A.Sagisaka,J.-L.Ma,T.Zh.Esirkepov,M. Mori,M.Nishiuchi,A.S.Pirozhkov,S.Nakamura,A.Noda,H.Na-gatomo,T.Kimura,and T.Tajima,Phys.Rev.E77,016401?2008?.

20Y.Fukuda,A.Ya.Faenov,M.Tampo,T.A.Pikuz,T.Nakamura,M. Kando,Y.Hayashi,A.Yogo,H.Sakaki,T.Kameshima,A.S.Pirozhkov, K.Ogura,M.Mori,T.Zh.Esirkepov,J.Koga,A.S.Boldarev,V.A. Gasilov,A.I.Magunov,T.Yamauchi,R.Kodama,P.R.Bolton,Y.Kato, T.Tajima,H.Daido,and S.V.Bulanov,Phys.Rev.Lett.103,165002?2009?.

21G.Mourou,Z.Chang,A.Maksimchuk,J.Nees,S.V.Bulanov,V.Yu. Bychenkov,T.Zh.Esirkepov,N.M.Naumova,F.Pegoraro,and H.Ruhl, Plasma Phys.Rep.28,12?2002?.

22T.Zh.Esirkepov,https://www.sodocs.net/doc/1e16038040.html,mun.135,144?2001?.

23A.Zhidkov,J.Koga,A.Sasaki,and M.Uesaka,Phys.Rev.Lett.88, 185002?2002?;S.V.Bulanov,T.Zh.Esirkepov,J.Koga,and T.Tajima, Plasma Phys.Rep.30,18?2004?;J.Koga,T.Zh.Esirkepov,and S. Bulanov,Phys.Plasmas12,093106?2005?.

24M.Kando,Y.Fukuda,H.Kotaki,J.Koga,S.V.Bulanov,T.Tajima,A. Chao,R.Pitthan,K.-P.Schuler,A.G.Zhidkov,and K.Nemoto,JETP 105,916?2007?.

https://www.sodocs.net/doc/1e16038040.html,ndau and E.M.Lifshitz,Electrodynamics of Continuous Media ?Pergamon,Oxford,1984?.

26V.A.Vshivkov,N.M.Naumova,F.Pegoraro,and S.V.Bulanov,Phys. Plasmas5,2727?1998?.

27T.Esirkepov,M.Yamagiwa,and T.Tajima,Phys.Rev.Lett.96,105001?2006?.

28A.Henig,D.Kiefer,K.Markey,D.C.Gautier,K.A.Flippo,S.Letzring, R.P.Johnson,T.Shimada,L.Yin,B.J.Albright,K.J.Bowers,J.C. Fernandez,S.G.Rykovanov,H.-C.Wu,M.Zepf,D.Jung,V.Kh.Liecht-enstein,J.Schreiber,D.Habs,and B.M.Hegelich,Phys.Rev.Lett.103, 045002?2009?.

043105-8Bulanov et al.Phys.Plasmas17,043105?2010?

潜水排污泵优点与缺点

潜水排污泵优点与缺点 潜水排污泵是一种泵与电机连体,并同时潜入液下工作的泵类产品,与一般卧式泵或立式污水泵相比,潜水排污泵明显具有以下几个方面的优点。 1.结构紧凑、占地面积小。潜水排污泵由于潜入液下工作,因此可直接安装于污水池内,无需建造专门的泵房用来安装泵及机,可以节省大量的土地及基建费用。 2.安装维修方便。小型的潜水排污泵可以自由安装,大型的潜水排污泵一般都配有自动藕合装置可以进行自动安装,安装及维修相当方便。 3.连续运转时间长。排污泵由于泵和电机同轴,轴短,转动部件重量轻,因此轴承上承受的载荷(径向)相对较小,寿命比一般泵要长得多。 4.不存在汽蚀破坏及灌引水等问题。特别是后一点给操作人员带来了很大的方便。 5.振动噪声小,电机温升低,对环境无污染。 正是由于上述优点,排污泵已越来越受到人们的重视,使用的范围也越来越广,由原来的单纯地用来输送清水到现在的可以输送各种生活污水、工业废水、建筑工地排水、液状饲料等等。 在市政工程、工业、医院、建筑、饭店、水利建设等各行各业中起着十分重要的作用。 但是任何事物都是一分为二的,对于排污泵来说最关键的问题是可靠性问题,因为排污泵的使用场合是在液下;输送的介质是一些含有固体物料的混合液体;泵与电机靠得很近;泵为立式布置,转动部件重量与叶轮承受水压力同向。这些问题都使得排污泵在密封、电机承载能力、轴承布置及选用等方面的要求比一般的污水泵要高。 为了提高排污泵的寿命,现在国内外大部分厂家都在泵的保护系统上想办法,即在泵发生泄漏、过载、超温等故障时能进行自动报警,并自动停机备修。可是我们认为,在排污泵中设

置保护系统很有必要的,它能有效地保护电泵的安全运行。 但这并不是问题的关键,保护系统只不过是在泵发生故障后的一种补救办法,是一种比较被动的办法。问题的关键应该是从根本着手,彻底解决泵在密封、过载等方面的问题,这才是一种较为主动的办法。为此我们把副叶轮流体动力密封技术及泵的无过载设计技术应用于潜水排污泵中来,较大提高了泵密封可靠性和承载能力,延长了泵的使用寿命。 为了提高潜水排污泵的寿命,国内外大部分厂家都在泵的保护系统上想办法,即在泵发生泄漏、过载、超温等故障时能进行自动报警,并自动停机备修。 可是我们认为,在排污泵中设置保护系统很有必要的,它能有效地保护电泵的安全运行。但这并不是问题的关键,保护系统只不过是在泵发生故障后的一种补救办法,是一种比较被动的办法。问题的关键应该是从根本着手,彻底解决泵在密封、过载等方面的问题,这才是一种较为主动的办法。 为此我们把副叶轮流体动力密封技术及泵的无过载设计技术应用于潜水排污泵中来,较大提高了泵密封可靠性和承载能力,延长了泵的使用寿命。 当泵工作时,副叶轮随泵主轴一起旋转,副叶轮中的液体也会一起旋转,转动的液体会产生一个向外的离心力,这个离心力一方面顶住流向机械密封处的液体,降低了机械密封处的压力。 另一方面阻止介质中的固体颗粒进入机械密封的摩擦副中,减少机械密封磨块的磨损,延长了其使用寿命。

The way常见用法

The way 的用法 Ⅰ常见用法: 1)the way+ that 2)the way + in which(最为正式的用法) 3)the way + 省略(最为自然的用法) 举例:I like the way in which he talks. I like the way that he talks. I like the way he talks. Ⅱ习惯用法: 在当代美国英语中,the way用作为副词的对格,“the way+ 从句”实际上相当于一个状语从句来修饰整个句子。 1)The way =as I am talking to you just the way I’d talk to my own child. He did not do it the way his friends did. Most fruits are naturally sweet and we can eat them just the way they are—all we have to do is to clean and peel them. 2)The way= according to the way/ judging from the way The way you answer the question, you are an excellent student. The way most people look at you, you’d think trash man is a monster. 3)The way =how/ how much No one can imagine the way he missed her. 4)The way =because

文艺心理学第三章练习题

文艺心理学第三章练习题

《文艺心理学》第三章练习题答案 一、名词解释 1、审美相似律 审美相似律是以存在于原始思维中的那种广义相似性原理为基础的。它是艺术品外在形式生成的一条基本规律,也是人在审美活动中所遵循的独特心理规律,基本上是一种无意识的存在。它是使人将本来与人无关的外在事物变为主观存在,再由主观存在升华为新的客观存在的心理规律,标示着艺术创作主体与艺术形式之间的内在联系。 2、形象范式 是掩藏于现象形态之后,因而不易在创作与阅读中发现的一种艺术范式形态。形象范式是艺术的特殊存在方式和艺术形象特殊的内在结构,能体现出艺术独具的内在性质。形象范式既具有表象的抽象性,又具有情感性、充盈性和个异性。 3、显动机 创作显动机是从事创作的直接心理驱力。生活中,艺术家因各种物象、事件的触发,常发生心理波动,造成失衡,并引发适当强度的情感。宣

泄情感,以恢复心理平衡,便是显动机的主要内容。 4、动机冲突 指一个动机簇内各种子动机的矛盾纠葛。 5、内在形式 又叫审美意象,它是艺术家的心理体验与艺术品的外在形式之间的一个中间环节。是指艺术创作或艺术欣赏以及其他审美活动中主体脑海里活跃着的包含丰富意蕴的形象。 5.同形性:这是格式塔心理学的基本观点,又称为异质同构论。这一理论认为在知觉活动中,在作为对象的物理现象与作为认知主体的人的大脑生理现象之间存在着某种同形关系。 6、潜动机 指艺术家从事创作时内心的某种无意识驱动力量。潜动机的主要特点是驱动性和潜在性。 7、内觉体验 “内觉”是美国心理学家阿瑞提的术语,指的是那些不能用形象、语词、思维和任何动作表达出来的“无定形认识”,亦即非语言的、无意识的或前意识的认识。内觉是一种深层心理状态,不

惠斯通电桥实验报告南昌大学

南昌大学物理实验报告 课程名称:_____________ 大学物理实验 实验名称:_______________ 惠斯通电桥 学院:___________ 专业班级: 学生姓名:_________ 学号: 实验地点:___________ 座位号: 实验时间:第11周星期4上午10点开始

、实验目的: 1. 掌握电桥测电阻的原理和方法 2. 了解减小测电阻误差的一般方法 、实验原理: (1) 惠斯通电桥原理 惠斯通电桥就是一种直流单臂电桥,适用于测中值电阻,其原理电路如图 7-4所示。若调节电阻到合适阻值时, 可使检流计 G 中无电流流过,即 B 、D 两点的电位相等,这时称为“电桥平衡”。电桥平衡,检流计中无电流通过, 相当于无BD 这一支路,故电源 E 与电阻R ,、R x 可看成一分压电路;电源和电阻 R 1 上面两式可得 R 2 桥达到平衡。故常将 R 、R 2所在桥臂叫做比例 臂,与R x 、R S 相应的桥臂分别叫做测量臂和比 较臂。 V B C 点为参考,贝y D 点的电位V D 与B 点的电位V B 分别为 R 2 R S R S V D R X 因电桥平V B V D 故解 R 2、R S 可看成另一分压电路。若以 R x 为 E 待测电阻,则有 R>< R X R S 上式叫做电桥的平衡条件,它说明电桥平衡时,四个臂的阻值间成比例关系。如果 1 10,10 1等)并固定不变,然后调节 金使电

(2)电桥的灵敏度

n R S R S 灵敏度S 越大,对电桥平衡的判断就越容易,测量结果也越准确。 此时R s 变为R s ,则有:R x R2 R s ,由上两式得R x . R s R s 三、 实验仪器: 线式电桥板、电阻箱、滑线变阻器、检流计、箱式惠斯通电桥、待测电阻、低压直流电源 四、 实验内容和步骤: 1. 将箱式电桥打开平放,调节检流计指零 2. 根据待测电阻(线式电桥测量值或标称值)的大小和 R 3值取满四位有效数字原则,确定比例臂的取值,例如 R 为数千欧的电阻,为保证 4位有效数字,K r 取 3. 调节F 3的值与R <的估计 S _____ S 的表达式 R S R S S-i S 2 _____________________ ES R i R 2 R s R x 1 R E % R i R 2R X Rg 2 R x R s R 2 R - R E 2 R R s R x (3) 电桥的测量误差 电桥的测量误差其来源主要有两方面,一是标准量具引入的误差, 二是电桥灵敏度引入的误差。为减少误差传递, 可采用交换法。 交换法:在测定R x 之后,保持比例臂 R -、R 2不变,将比较臂 R s 与测量臂R x 的位置对换,再调节 R s 使电桥平衡,设 电桥的灵敏程度定义: R i

潜水泵与污水泵

潜水泵与污水泵 JYWQ型自动搅匀潜水排污泵 性能及优点 大流道抗堵塞水力部件设计,设置油室密封监视系统全自动安全保护控制柜对泵的运转进行监控,双导轨自动耦合安装系统,方便泵的安装、维修自动搅匀污水池,使排污更彻底。 JYWQ型自动搅匀潜水排污泵是本司在吸收国外先进技术的基础上,采用优秀的水力模型开发研制而成的新型环保类产品,在排送固体颗粒和长纤维垃圾以及减少污水坑内沉积等方面,具有独特功能。 该泵水力性能先进成熟,性能指标已达到或超过国外同类产品先进技术水平。 应用范围 适用于化工、石油、 制药、采矿、造纸、电厂及城市污水处理、市政工程、公共设施排污等输送带颗粒的污水污物。 型号意义: 100 JYWQ 100-15-7.5 100 – 泵排出口公称直径 (mm) JY – 带自动搅匀装置 WQ– 潜水排污泵 100 – 额定流量 (m3/h) 15 – 额定扬程 (m) 7.5 – 配用电机额定功率 (Kw) 产品特点: 1、利用泵自身出水压力,搅匀污水池内沉淀污泥,真正达到彻底排出污水池沉淀物的目的。 2、大流道抗堵塞水力部件设计,大大提高污物通过能力,能有效通过泵口径的5倍纤维物质和直径为泵口径约50%的固体颗粒。 3、设计合理,配套电机合理,效率高,节能效果显著。 4、机械密封采用双道串联密封,材质为硬质耐腐碳化钨,耐用,耐磨,可使泵安全连续运行8000小时以上。

5、泵结构紧凑,体积小、移动方便,安装简便,无需建泵房,潜入水中即可工作,减少工程造价。 6、油室内设有油水探头,对泵实施绝对保护。 7、可配备全自动安全保护控制柜,对泵的漏水、漏电、过载及超温等进行绝对保护,提高产品的安全可靠性。 8、浮球开关可根据所需的水位变化,自动控制泵的停启,无需专人看管。 9、电机可采用水套式外循环冷却系统,保证电泵在无水(干式)状态下安全运行。 10、双导轨自动耦合安装系统,给泵的安装、维修带来极大的方便,人可不必为此进入污水坑。 11、安装方式有固定式自动耦合安装和移动式自由安装二种,可满足不同的使用场合

The way的用法及其含义(二)

The way的用法及其含义(二) 二、the way在句中的语法作用 the way在句中可以作主语、宾语或表语: 1.作主语 The way you are doing it is completely crazy.你这个干法简直发疯。 The way she puts on that accent really irritates me. 她故意操那种口音的样子实在令我恼火。The way she behaved towards him was utterly ruthless. 她对待他真是无情至极。 Words are important, but the way a person stands, folds his or her arms or moves his or her hands can also give us information about his or her feelings. 言语固然重要,但人的站姿,抱臂的方式和手势也回告诉我们他(她)的情感。 2.作宾语 I hate the way she stared at me.我讨厌她盯我看的样子。 We like the way that her hair hangs down.我们喜欢她的头发笔直地垂下来。 You could tell she was foreign by the way she was dressed. 从她的穿著就可以看出她是外国人。 She could not hide her amusement at the way he was dancing. 她见他跳舞的姿势,忍俊不禁。 3.作表语 This is the way the accident happened.这就是事故如何发生的。 Believe it or not, that's the way it is. 信不信由你, 反正事情就是这样。 That's the way I look at it, too. 我也是这么想。 That was the way minority nationalities were treated in old China. 那就是少数民族在旧中

美学专题复习题答案

2013年秋期成人教育(专科) 《美学原理》期末复习指导 第三部分综合练习题 一、填空题 1.鲍姆嘉通在1750年出版的专著《美学》中首次提出“美学”这一名称,这被认为是美学学科产生的标志。 2.俄国民主主义者车尔尼雪夫斯基依据唯物主义哲提出了“美是生活”这一著名的美学命题。 3.马克思说,“(人的)五官感觉的形成是以往全部世界史的产物”。 4.17世纪法国哲学家笛卡尔提出了“我思故我在”的著名命题,为从理性上探讨美学问题提供了理论依据。 5.在认识论美学的五种形态中,德国古典美学最为重要,它的代表性人物是康德、席勒、黑格尔。 6.在中国现代的美学家中,李泽厚认为美是“客观性和社会性的统一”。 7.提出“有意味的形式”美学观的是英国艺术批评家克莱夫贝尔。 8.王维国从20世纪初年起关注“美学”问题,借鉴西方自学观念和术语陆续撰写一系列美学与美育论文,由此被视为中国现代美学的创始人。 9.中国现代美学史上,宗白华倡导并亲身实践体验美学,提出了“艺术意境(意境或境界也对)”、“节奏”等重要概念,产生了重要而广泛的影响。 10.清末明初著名学者王国维接受了德国唯意志论思想家叔本华的“审美静观说”,发挥了审美无功利观念。 11.在《古代社会》一书里面,(美国)摩尔根(L.H.Morgan)依照物质生产方式中技术发展的程度,将人类历史划分为蒙昧时代、野蛮时代和文明时代。 12.我国在上世纪 50年代出现过短暂而热烈的“美学讨论”,围绕美的本质问题形成了客观论、主观论、主客观统一论和社论等多种不同学说及其争鸣场面。 13.美的四个基本特征是符号性、无功利、形象性和感染性。 14.美的形式是具体审美对象的感性形态,是同美的内容直接相联系的;而形式美则是从各个具体的美的形式中抽象出来的共同的美。 15.“泛审美”指的是随着时代的变化,审美趋向生活化、实用化、通俗化、和商业化,变成了人们生活本身的一个组成部分。 16.美感不是心灵所固有的,也非天然的禀赋,更不是神赐的迷狂,美感来源于

惠斯通电桥测电阻实验报告

肇 庆 学 院 肇 庆 学 院 电子信息与机电工程 学院 普通物理实验 课 实验报告 级 班 组 实验合作者 实验日期 姓名: 学号 老师评定 实验题目: 惠斯通电桥测电阻 实验目的: 1.了解电桥测电阻的原理和特点。 2.学会用自组电桥和箱式电桥测电阻的方法。 3.测出若干个未知电阻的阻值。 1.桥式电路的基本结构。 电桥的构成包括四个桥臂(比例臂R 2和R 3,比较臂R 4,待测臂R x ),“桥”——平衡指示器(检流计)G 和工作电源E 。在自组电桥线路中还联接有电桥灵敏度调节器R G (滑线变阻器)。 2.电桥平衡的条件。 惠斯通电桥(如图1所示)由四个“桥臂”电阻(R 2、R 3、R 4、和R x )、一个“桥”(b 、d 间所接的灵敏电流计)和一个电源E 组成。b 、d 间接有灵敏电流计G 。当b 、d 两点电位相等时,灵敏电流计G 中无电流流过,指针不偏转,此时电桥平衡。所以,电桥平衡的条件是:b 、d 两点电位相等。此时有 U ab =U ad ,U bc =U dc , 由于平衡时0=g I ,所以b 、d 间相当于断路,故有 I 4=I 3 I x =I 2 所以 44R I R I x x = 2233R I R I = 可得 x R R R R 324= 或 43 2R R R R x = 一般把 K R R =3 2称为“倍率”或“比率”,于是 R x =KR 4 要使电桥平衡,一般固定比率K ,调节R 4使电桥达到平衡。 3.自组电桥不等臂误差的消除。 实验中自组电桥的比例臂(R 2和R 3)电阻并非标准电阻,存在较大误差。当取K=1时,实际上R 2与R 3不完全相等,存在较大的不等臂误差,为消除该系统误差,实验可采用交换测量法进行。先按原线路进行测量得到一个R 4值,然后将R 2与R 3的位置互相交换(也可将R x 与R 4的位置交换),按同样方法再测 一次得到一个R ’ 4值,两次测量,电桥平衡后分别有: 43 2R R R R x ?= ' 42 3R R R R x ?= 联立两式得: ' 44R R R x ?= 由上式可知:交换测量后得到的测量值与比例臂阻值无关。 4.电桥灵敏度 电桥灵敏度就是电桥偏离平衡状态时,电桥本身的灵敏感反映程度。在实际测量中,为了便于灵敏度 I 2 I x c

(完整版)the的用法

定冠词the的用法: 定冠词the与指示代词this ,that同源,有“那(这)个”的意思,但较弱,可以和一个名词连用,来表示某个或某些特定的人或东西. (1)特指双方都明白的人或物 Take the medicine.把药吃了. (2)上文提到过的人或事 He bought a house.他买了幢房子. I've been to the house.我去过那幢房子. (3)指世界上独一无二的事物 the sun ,the sky ,the moon, the earth (4)单数名词连用表示一类事物 the dollar 美元 the fox 狐狸 或与形容词或分词连用,表示一类人 the rich 富人 the living 生者 (5)用在序数词和形容词最高级,及形容词等前面 Where do you live?你住在哪? I live on the second floor.我住在二楼. That's the very thing I've been looking for.那正是我要找的东西. (6)与复数名词连用,指整个群体 They are the teachers of this school.(指全体教师) They are teachers of this school.(指部分教师) (7)表示所有,相当于物主代词,用在表示身体部位的名词前 She caught me by the arm.她抓住了我的手臂. (8)用在某些有普通名词构成的国家名称,机关团体,阶级等专有名词前 the People's Republic of China 中华人民共和国 the United States 美国 (9)用在表示乐器的名词前 She plays the piano.她会弹钢琴. (10)用在姓氏的复数名词之前,表示一家人 the Greens 格林一家人(或格林夫妇) (11)用在惯用语中 in the day, in the morning... the day before yesterday, the next morning... in the sky... in the dark... in the end... on the whole, by the way...

文艺心理学练习题答案(已整理_全套_可直接打印)

《文艺心理学》导论练习题答案 一、填空 1、在西方,文艺心理学是在19世纪后半期,随着自然科学的迅速发展,特别是随着现代心理学的产生而发展起来的。 2、19世纪,西方主要的文艺心理学流派或文艺心理学理论有: 实验心理学、移情说、距离说。 3、实验心理学是文艺心理学的第一个重要流派,代表人物是德国心理学家费希纳。 4、实验心理学与传统美学的不同之处在于:一是研究对象不同。二是研究方法不同。 5、实验心理学使美学研究发生了由“自上而下”的研究向“自下而上”的研究的转变,开辟了现代美学的新纪元,标志着文艺心理学的产生。 6、“移情说”的代表人物是德国心理学家里普斯。“距离说”是瑞士心理学家布洛提出来的。 7、20世纪西方主要的文艺心理学流派有:精神分析文艺心理学、格式塔文艺心理学、人本主义文艺心理学、社会文化历史文艺心理学。 8、20世纪影响最大的文艺心理学流派是精神分析文艺心理学。其代表人物是奥地利的精神病学家弗洛伊德和瑞士的精神病学家荣格。 9、弗洛伊德的精神分析学说以泛性论为基础,强调无意识的重要性。 10、荣格与弗洛伊德分道扬镳后自力门户,创立了“心理分析学派”。同弗洛伊德的个人无意识和性本能的立论不同,荣格强调集体无意识,认为艺术就是要揭示人类集体无意识的原型。 11、格式塔心理学是20世纪德国的一个心理学流派,其代表人物是考夫卡和阿恩海姆。 12、阿恩海姆把格式塔心理学系统运用于美学研究之中,主要以视觉艺术作为分析对象。 13、人本主义是20世纪文艺心理学的最新潮流,其代表人物是美国心理学家马斯洛。 14、社会文化历史文艺心理学是苏联的一个文艺心理学流派,它以马克思列宁主义为指导,代表人物是维戈茨基、列昂节夫和鲁利亚。 15、王国维是我国现代文艺心理学的鼻祖。他在《〈红楼梦〉评论》中运用叔本华的观点来说明《红楼梦》的悲剧。在《人间词话》中,他提出了“境界”说。他的“境界”说是对西方的“移情说”说和“距离说”说的创造性运用。 16、郭沫若在《论诗三札》中把诗的创作看成是一个由生活现实转化为心理现实再转化为艺术现实的过程。在其他文章中,他还自觉地运用弗洛伊德的精神分析学来解释《西厢记》的创作动机和自己的小说《残春》主人公梦的起因和变态。 17、鲁迅翻译了日本学者厨川白村文艺心理学著作《苦闷的象征》。 18、中国现代最早在高等学校开设文艺心理学课程的人是鲁迅。 19、朱光潜在美学研究方面走的是一条从心理学角度研究美学的道路,他的文艺心理学专著有《悲剧心理学》、《变态心理学》、《文艺心理学》。其中《悲剧心理学》是他在1933年用英文写作的,此书使他获得了博士学位并在国外出版。 20、在现代中国,是第一个对审美经验作出系统的理论概括的人。 21、朱光潜的三本文艺心理学专著的出版,特别是《文艺心理学》一书的出版,标志着中国现代形态的文艺心理学的形成。 22、胡风结合革命文艺的实践对创作心理进行独特的研究,他把创作主体提到主要地位,认为创作过程是创作主体和创作对象“相生相克”的过程。 23、文艺心理学的产生和兴起始终受到科学主义思潮和人文主义思潮的影响。人文

大学物理实验教程预习思考题、分析题参考答案

大学物理实验教程预习思考题、分析题参考答案

大学物理实验教程预习思考题、分析题参考答案 分享 作者:雪已被分享2次评论(0)复制链接分享转载举报 为节省大家时间,特从网上搜相关答案供大家参考!(按咱做实验顺序) 2.用模拟法测绘静电场 【预习思考题】 1.用电流场模拟静电场的理论依据是什么?模拟的条件是什么?用电流场模拟静电场的理论依据是:对稳恒场而言,微分方程及边界条件唯一地决定了场的结构或分布,若两种场满足相同的微分方程及边界条件,则它们的结构也必然相同,静电场与模拟区域内的稳恒电流场具有形式相同的微分方程,只要使他们满足形式相同的边界条件,则两者必定有相同的场结构。模拟的条件是:稳恒电流场中的电极形状应与被模拟的静电场中的带电体几何形状相同;稳恒电流场中的导电介质是不良导体且电导率分布均匀,并满足σ极>>σ介以保证电流场中的电极(良导体)的表面也近似是一个等势面;模拟所用电极系统与被模拟电极系统的边界条件相同。

2.等势线和电场线之间有何关系? 等势线和电场线处处相互垂直。 3.在测绘电场时,导电微晶边界处的电流是如何流动的?此处的电场线和等势线与边界有什么关系?它们对被测绘的电场有什么影响? 在测绘电场时,导电微晶边界处的电流为0。此处的电场线垂直于边界,而等势线平行于边界。这导致被测绘的电场在近边界处受边界形状影响产生变形,不能表现出电场在无限空间中的分布特性。 【分析讨论题】 1.如果电源电压增大一倍,等势线和电场线的形状是否发生变化?电场强度和电势分布是否发生变化?为什么? 如果电源电压增大一倍,等势线和电场线的形状没有发生变化,但电场强度增强,电势的分布更为密集。因为边界条件和导电介质都没有变化,所以电场的空间分布形状就不会变化,等势线和电场线的形状也就不会发生变化,但两电极间的电势差增大,等势线的分布就更为密集,相应的电场强度就会增加。 2.在测绘长直同轴圆柱面的电场时,什么因素会使等势线偏离圆形?

“the way+从句”结构的意义及用法

“theway+从句”结构的意义及用法 首先让我们来看下面这个句子: Read the followingpassageand talkabout it wi th your classmates.Try totell whatyou think of Tom and ofthe way the childrentreated him. 在这个句子中,the way是先行词,后面是省略了关系副词that或in which的定语从句。 下面我们将叙述“the way+从句”结构的用法。 1.the way之后,引导定语从句的关系词是that而不是how,因此,<<现代英语惯用法词典>>中所给出的下面两个句子是错误的:This is thewayhowithappened. This is the way how he always treats me. 2.在正式语体中,that可被in which所代替;在非正式语体中,that则往往省略。由此我们得到theway后接定语从句时的三种模式:1) the way+that-从句2)the way +in which-从句3) the way +从句 例如:The way(in which ,that) thesecomrade slookatproblems is wrong.这些同志看问题的方法

不对。 Theway(that ,in which)you’re doingit is comple tely crazy.你这么个干法,简直发疯。 Weadmired him for theway inwhich he facesdifficulties. Wallace and Darwingreed on the way inwhi ch different forms of life had begun.华莱士和达尔文对不同类型的生物是如何起源的持相同的观点。 This is the way(that) hedid it. I likedthe way(that) sheorganized the meeting. 3.theway(that)有时可以与how(作“如何”解)通用。例如: That’s the way(that) shespoke. = That’s how shespoke.

实验3.8 惠斯通电桥

A B C D G R 1 R 2 R s R x E I 1 I 2 3.8 惠斯通电桥 【实验简介】 惠斯通电桥是一种精确测量电阻的装置。 电桥法测电阻的实质是将被测电阻与已知电阻相比较,从而确定待测电阻的阻值。制造高精度的电阻比较容易,因此电桥法测电阻容易获得较高的测量精度。 直流电桥主要分为单臂电桥(又称惠斯通电桥)和双臂电桥(又称开尔文电桥)。 单臂电桥用于测量中值电阻(10Ω-106 Ω),双臂电桥用于测量1Ω以下的低值电阻。 【实验目的】 1.了解惠斯通电桥测电阻的原理,掌握用惠斯通电桥测电阻的方法。 2.了解电桥的灵敏度,学习合理选择实验条件,减小系统误差。 【预习思考题】 1. 调电桥平衡的技巧是什么? 2. 使用检流计有哪些注意事项 3. 调节电桥平衡的过程中,如何使用保护开关K 和滑线变阻器r ? 4. 惠斯通电桥测电阻系统误差产生的原因主要有哪三种? 【实验仪器】 检流计、电阻箱、干电池、滑线变阻器、保护开关、待测电阻、导线、开关。 【实验原理】 1. 电桥的基本原理和平衡条件 惠斯通电桥的基本电路如图 3.8.1所示。电阻1R 、2R 、s R 、x R 组成电桥的四个桥臂,C 、D 两点间接有检流计将两点的电位直接进行比较,当两点电位相等时,检流计G 中无电流通过,我们称电桥达到平衡。这时有 x s R I R I R I R I 212211,== 由上两式得出电桥的平衡条件: 平衡时,若已知1R 、2R 、s R 则可求得: (3.8.1) 用惠斯通电桥测电阻x R x 时,首先要调电桥的平衡。本实验中1R 、2R 、s R 均用电阻箱 x s R R R R = 21s x R R R R 1 2= 图3.8.1

way 用法

表示“方式”、“方法”,注意以下用法: 1.表示用某种方法或按某种方式,通常用介词in(此介词有时可省略)。如: Do it (in) your own way. 按你自己的方法做吧。 Please do not talk (in) that way. 请不要那样说。 2.表示做某事的方式或方法,其后可接不定式或of doing sth。 如: It’s the best way of studying [to study] English. 这是学习英语的最好方法。 There are different ways to do [of doing] it. 做这事有不同的办法。 3.其后通常可直接跟一个定语从句(不用任何引导词),也可跟由that 或in which 引导的定语从句,但是其后的从句不能由how 来引导。如: 我不喜欢他说话的态度。 正:I don’t like the way he spoke. 正:I don’t like the way that he spoke. 正:I don’t like the way in which he spoke. 误:I don’t like the way how he spoke. 4.注意以下各句the way 的用法: That’s the way (=how) he spoke. 那就是他说话的方式。 Nobody else loves you the way(=as) I do. 没有人像我这样爱你。 The way (=According as) you are studying now, you won’tmake much progress. 根据你现在学习情况来看,你不会有多大的进步。 2007年陕西省高考英语中有这样一道单项填空题: ——I think he is taking an active part insocial work. ——I agree with you_____. A、in a way B、on the way C、by the way D、in the way 此题答案选A。要想弄清为什么选A,而不选其他几项,则要弄清选项中含way的四个短语的不同意义和用法,下面我们就对此作一归纳和小结。 一、in a way的用法 表示:在一定程度上,从某方面说。如: In a way he was right.在某种程度上他是对的。注:in a way也可说成in one way。 二、on the way的用法 1、表示:即将来(去),就要来(去)。如: Spring is on the way.春天快到了。 I'd better be on my way soon.我最好还是快点儿走。 Radio forecasts said a sixth-grade wind was on the way.无线电预报说将有六级大风。 2、表示:在路上,在行进中。如: He stopped for breakfast on the way.他中途停下吃早点。 We had some good laughs on the way.我们在路上好好笑了一阵子。 3、表示:(婴儿)尚未出生。如: She has two children with another one on the way.她有两个孩子,现在还怀着一个。 She's got five children,and another one is on the way.她已经有5个孩子了,另一个又快生了。 三、by the way的用法

2017年成人高考专升本语文练习题三

2017年成人高考专升本语文练习题三 一、选择题:1~20小题,每小题2分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。 第1题单选下列词句中,借用典故抒情的是() A.遥岑远臼,献愁供恨,玉簪螺髻。 B.落日楼头,断鸿声里,江南游子。 C.可惜流年,忧愁风雨,树犹如此。 D.倩何人唤取、红巾翠袖,温英雄泪。 参考答案:C 第2题单选下列句中加点的词属使动用法的是() A.左右皆笑之,以告。 B.冯谖客孟尝君 C.左右以君贱之也,食以草具。 D.吾尝闻少仲尼之闻而轻伯夷之义者…… 参考答案:C 第3题单选下列《陌上桑》诗句中,在描写罗敷美貌时运用了侧面烘托手法的是() A.头上倭堕髻 B.耳中明月珠 C.来归相怨怒 D.紫绮为上襦 参考答案:C 第4题单选《种树郭橐驼传》的作者是() A.司马迁 B.韩愈 C.柳宗元 D.欧阳修 参考答案:C 第5题单选屈原的《国殇》选自他的() A.《九章》 B.《九歌》 C.《离骚》 D.《天问》 参考答案:B 第6题单选词人李清照生活的年代是() A.南唐 B.北宋 C.南宋 D.北宋南宋交替之间 参考答案:D 第7题单选下列关于作品、作者、国别搭配正确的是() A.《论学问》——培根——英国 B.《麦琪的礼物》——欧·享利——德国 C.《米龙老爹》——屠格涅夫——俄国 D.《门槛》——莫泊桑——法国

参考答案:A 第8题单选“民为贵,社稷次之,君为轻“这一思想的提出者是() A.孔子 B.庄子 C.韩非子 D.孟子 参考答案:D 第9题单选本文中作者所写的主要人物是() A.张巡、许远 B.张巡、许远、南霁云 C.雷万春、张巡、许远 D.于嵩、张巡、许远 参考答案:B 第10题单选《张中丞传后叙》中,作者所抨击的人物是() A.张籍 B.于嵩 C.李翰 D.贺兰进明 参考答案:D 第11题单选李清照《声声慢》(寻寻觅觅)词的最突出的语言技巧是() A.夸张 B.拟人 C.叠字 D.比喻 参考答案:C 第12题单选填入下面括号处,与上下文衔接最恰当的一项是化学农药的使用是三大公害之一,理应加以限制。但是,( )。有实验表明,在当前的生产水平下,如果不使用化学农药,有些蔬菜会减收80%以上。实际上,不同化学农药的毒性及其对环境的污染程度是很不相同的,我们要禁止使用那些高毒、剧毒和在人体内可能长期残留的农药。 A.有一些病虫害还是主要依赖化学农药进行控制,所以目前人类还离不开化学农药,也就还不能限制使用农药 B.限制不等于不用,这是因为目前人类还离不开化学农药,甚至有一些病虫害主要依赖化学农药进行控制 C.事实上还不能加以限制,因为有一些病虫害主要依赖化学农药进行控制,人类目前还离不开化学农药 D.人类目前还离不开化学农药,甚至有一些病虫害主要依浈化学农药进行控制,因此适当的限制是必要的 参考答案:B 第13题单选“知识就是力量”的提出者是() A.鲁迅 B.莫泊桑 C.欧·亨利 D.培根 参考答案:D

惠斯通电桥实验报告.pdf

南昌大学物理实验报告 课程名称:惠斯通电桥 实验名称:惠斯通电桥 学院:眼视光学院专业班级:眼视光151班学生姓名:许春芸学号:6303615024 实验地点:210座位号:30 座实验时间:第8周星期6上午10点10开始

一、实验目的: 1.掌握电桥测电阻的原理和方法。 2.了解减小测电阻误差的一般方法。 二、实验原理: 惠斯通电桥的电路四个电阻 R1.R2.R3.Rx 连成一个四边形,每一条边称作电桥的一个臂,对角 A 和 C 加上电源 E,对角 B 和 D 之间连接检流计 G,所谓桥就是指 BD 这条对角线,它的作用就是将桥的两个端点的电势直接进行比较。当 B.D 两点电势相等时,检流计中无电流通过,电桥达到了平衡,这时有:R2/R1=Rx/R3,即*Rx=(R2/R1)R3。若 R1.R2.R3 均已知,则 Rx 可由上式求出。 电桥电路可以这样理解,电源 E.R2.Rx 是一个分压电路,Rx 上的电压为[Rx/(R1+R2)]·E,又 E 和 R1.R3 也是一个分压电路,R3 上的电压等于[R3/(R3+R1)]·E,现在用检流计来比较 Rx 和 R3 的电压,根据电流方向,可以发现哪一个电压更大些。当检流计指零时,说明两电压相等,也就得出*式。 三、实验仪器: 线式电桥板、电阻箱、滑线变阻器、检流计、箱式惠斯通电桥、待测电阻、低压直流电源。 四、实验内容和步骤: 1、标准电阻 Rn 选择开关选择“单桥”档; 2、工作方式开关选择“单桥”档; 3、电源选择开关选在有效量程里; 4、G 开关选择“G 内接”; 5、根据 Rx 的估计值,选好量成倍率,设置好 R1R2 值和 R3 值,将位值电阻 Rx 接入 Rx 接线端子(注意 Rx 端于上方短接片应接好); 6、打开仪器市电开关、面板指示灯亮; 7、建议选择毫伏表作为仪器检流计,释放“接入”键,量程置“2mV”挡,调节“调零”电位器,将数显表调零。调零后将量程转入 200mV 量程,按下“接入”按键,也可以选择微安表做检流计; 8、调节 R3 各盘电阻,粗平衡后,可以选择 20mV 或 2mV 挡,细调 R3,使电桥平衡;

文艺心理学 复习题

名词解释 21艺术典型(177) 所谓典型,就是一种具有鲜明的独特性和深广的概括性、性格丰富而又有机统一的圆整的人物形象。 22意境(181) 意境,是由客观景象与主观情趣互渗交融而生成的趋于空灵的艺术天地。 28召唤结构(253) 伊赛尔指出:“作品的意义不确定性和意义空白促使读者去寻找作品的意义,从而赋予他参与作品意义构成的权利。”这种不确定性与空白构成本文的基础结构,即本文的召唤结构。 29期待视野(254) 前理解包括前拥有、前观念和前假定,从前理解中产生出期待系统,姚斯称之为“期待视野”。 30共鸣(261) 在声学中,共鸣是指两个物体振动频率相等或相近,在一定条件下发生共振而视振幅急剧增大、声音骤然加强的现象。文艺学借用过来,用以指称人们在欣赏文艺作品时常常出现同作者在作品中所表现的相同或相似情感的精神感应现象。 25现实主义(333) 是艺术中一种偏于反映现实,要求按事物本来的样子描写,力图真实再现现实存在的生活图景的创作倾向。 26理想主义(333) 是艺术中一种偏于超越现实、要求按实物应该有的样子描写,力图真诚表现主体向往的生活情景的创作倾向。 37古典主义(339) 是一种强调继承传统、贯通古今,要求遵循规范、恪守规则,重视理智的驾驭、追求形式典雅的创作倾向。 38浪漫主义(339) 是一种强调个性显现、要求手法变异,反对千人约束而寻求新的突破,注重情感的宣泄而导致形式相对“无序”的创作倾向。 复习思考题 第三章艺术创作 1简述创作激情的特点(107-108) 深刻性。肤浅的情感仅与感性欲念相关联,不能体现人性的深度,也就缺少必要的文化价值。别林斯基认为,“任何伟大的诗人之所以伟大,是因为他们的痛苦和幸福深深扎根于社会和历史的土壤里,他从而成为社会、时代,以及人类

厂家浅谈污水泵和潜水泵的区别

污水泵和潜水泵是使用范围很广泛的两种泵,那么污水泵和潜水泵都有什么区别呢?接下来我们就来详细了解一下吧。 1、两种泵的使用工艺不同 潜水泵适合一些特殊地工艺要求,比如泄漏、流体介质特殊等,价格较贵。 污水泵一般用于调节,也有开关量的,比如:风机盘管末端。 2、两种泵的开关形式不同 潜水泵通过线圈驱动,只能开或关,开关时动作时间短。 污水泵的驱动一般是用电机,热水泵开或关动作完成需要一定的时间模拟量的,可以做调节。 3、两种泵的工作性质不同 潜水泵一般流通系数很小,而且工作压力差很小。比如一般25口径的潜水泵流通

系数比15口径的电动球阀小很多。 潜水泵的驱动是通过电磁线圈,比较容易被电压冲击损坏。相当于开关的作用,就是开和关2个作用。 污水泵的驱动一般是用电机,比较耐电压冲击。潜水泵是快开和快关的,一般用在小流量和小压力。 污水泵反之,污水泵阀的开度可以控制,状态有开、关、半开半关,可以控制管道中介质的流量,而潜水泵达不到这个要求。潜水泵一般断电可以复位,污水泵要这样的功能需要加复位装置。 潜水泵是代表该水泵可以潜在水里运行,好多潜水泵都是适用于清洁水;清洁的潜水泵不适用于污水。

污水泵叶轮一般是闭式的,主要适用于含杂质的水。开式叶轮的污水泵一般用于带颗粒的或者含纤维布条的水,脏的东西不容易卡住。污水泵也有不能放在水里的,比如卧室的污水泵。 潜水泵是指泵的安装形式,电机和泵体都装在水下。可以做污水泵,热水泵也可以做清水泵或者别的用途。污水泵看名字就知道,就是打污水的,可以用潜水泵,也可以用别的形式的泵。 以上就是潜水泵和污水泵的差别所在,希望能对大家有一定的帮助。想要了解更多有关潜水泵和污水泵的资讯,或者购买潜水泵或者污水泵,可以电话联系河北京潜泵业有限公司。

The way的用法及其含义(一)

The way的用法及其含义(一) 有这样一个句子:In 1770 the room was completed the way she wanted. 1770年,这间琥珀屋按照她的要求完成了。 the way在句中的语法作用是什么?其意义如何?在阅读时,学生经常会碰到一些含有the way 的句子,如:No one knows the way he invented the machine. He did not do the experiment the way his teacher told him.等等。他们对the way 的用法和含义比较模糊。在这几个句子中,the way之后的部分都是定语从句。第一句的意思是,“没人知道他是怎样发明这台机器的。”the way的意思相当于how;第二句的意思是,“他没有按照老师说的那样做实验。”the way 的意思相当于as。在In 1770 the room was completed the way she wanted.这句话中,the way也是as的含义。随着现代英语的发展,the way的用法已越来越普遍了。下面,我们从the way的语法作用和意义等方面做一考查和分析: 一、the way作先行词,后接定语从句 以下3种表达都是正确的。例如:“我喜欢她笑的样子。” 1. the way+ in which +从句 I like the way in which she smiles. 2. the way+ that +从句 I like the way that she smiles. 3. the way + 从句(省略了in which或that) I like the way she smiles. 又如:“火灾如何发生的,有好几种说法。” 1. There were several theories about the way in which the fire started. 2. There were several theories about the way that the fire started.

相关主题