搜档网
当前位置:搜档网 › 主流DDR2内存颗粒

主流DDR2内存颗粒

主流DDR2内存颗粒
主流DDR2内存颗粒

主流DDR2内存颗粒

主流DDR2内存颗粒

目前,市面上的内存就制造上主要分为两大类。一类来自采用现代、三星、英飞凌等国际半导体芯片制造商生产的的内存芯片,然后打造自己品牌的产品,比如目前金士顿、威刚等品牌的内存都属于此类内存模块。二类就是DRAM大厂的原厂内存。由于DRAM大厂的原厂内存更多的是被整机厂商使用,而直接在国内零售市场和最终用户见面的机会并不多,目前国内的消费者能够买到的原厂内存一般只有三星“金条”与英飞凌原厂内存。

由于原厂内存一般都具有极佳的PCB设计和制造品质使其拥有品质优秀、兼容性好、超频能力强、稳定性一流等特点,因此吸引了大批超频玩家通过各种渠道去获得这些原厂内存条来满足自己PC的超频需要。

不过,无论是什么品牌的内存模块,都离不开内存颗粒,这往往是对内存性能的最大决定因素。由于当前可以生产内存颗粒的厂商不多,因此我们很容易从内存颗粒上辨别出所选择内存模块的规格、性能。

三星(Samsung)

三星有GC和ZC(G为FBGA封装方式,Y为FBGA-LF)系列,另外还有SC和YC,并采用90nm生产工艺,使相同晶元可以生产出更多的颗粒,从而降低了成本。YC是外形最小的一种封装方式,性能表现也最好,现在市面上很少见到。目前较常见到的有GCCC(多用于DDR2-400)、GCD5/ZCD5(多用于DDR2-533)、GCD6/GCE6(多用于DDR2-667)、GCF7/GCE7(多用于DDR2-800)等;这些内存颗

粒在超频方面同样有着不容小视的实力,且仍保持低延迟风格。不过经过编号更改后(由SAMSUNG改为SEC),默认时序参数已设定得较为保守,不过某些DDR2-533默认延迟仍设定在4-4-4-10上。通常情况下三星DDR2-533内存时序参数可以稳定在3-3-3-4上,优势明显,这也是为什么三星颗粒品质较好的一个原因。GCCC和GCD5颗粒大都具备在5-5-5-15参数下超频至DDR2-800以上水平。使用三星ZCD5颗粒的DDR2-533内存在不加电压超频情况下,能够以4-4-4-X的时序稳定工作在DDR2-667模式,更具备挑战DDR2-900的实力,且售价也较高,三星原厂条多选用这种颗粒。

三星DDR2内存颗粒的第一排编号通常由K4开头,代表Memory DRAM的意思

第三位“T”代表内存为DDR2内存

第四、第五位代表容量,其中51代表512MB容量,如果为56则是256MB容量,1G为1GB容量,2G为2GB容量

第六、第七位代表位宽,08:×8位宽,如果是04则位宽

为×4、06为×4Stack、07为×8Stack、08为×8、16为×16

第八位代表逻辑Bank,其中“3”的逻辑Bank数量为4Banks,如果是4则为8Banks

第九位代表接口类型,一般为“Q”,表示接口类型工作电压为SSTL 1.8V

第十位代表颗粒版本,其中“B”代表的产品版本为3rd Generation,C为4th Generation,DEFGH依此类推、越新越好

第十一位代表封装类型,其中“G”代表封装类型为FBGA,如果是S则为FBGA(Small)、Z为FBGA-LF、Y则为FGBA-LF(Small)

第十二位代表功耗类型,其中“C”表示普通能耗,如果是L则为低能耗

第十三、十四位代表内存速度,其中D5:速度为DDR2 533 4-4-4,如果是D6则为DDR2 677 4-4-4,如果是E6则为DDR2 677 5-5-5,如果是F7则为DDR2 800 6-6-6。总体来说,三星DDR2内存颗粒的超频性能都不错,即便是D5、E6的DDR2颗粒,也可以超到700MHz、800MHz的水准。

常采用三星内存颗粒的内存模块厂商:三星、金士顿、创见、超胜、Apacer等厂商

英飞凌(Infineon)

提起Infineon(中文名:英飞凌)这家由德国西门子(Siemens)公司半导体部改组而来的世界顶级半导体芯片制造商,其生产的内存颗粒一直被全世界的电脑玩家狂热推崇,笔者也相信国内不少的电脑玩家已经是它的忠实FANS了。英飞凌DDR2内存颗粒编号也象上面海力士、三星一样有规可循,我们可以将其分成9部分来解读内存规格,下面我们以“HYB18T256800AF25”为例:

HYB:就像现代的HY、三星的K4一样是为英飞凌内存颗粒的编号的前缀

18:工作电压为1.8V

T:DDR2

256:容量为256MB,如果是512则为256MB,1G则为1GB 80:位宽为×8,如果是40位宽则为×4,如果是16位宽则为×16

0:Standard product(标准产品)

A:封装版本

F:封装形式为FBGA

25:表示这是一款DDR2 800颗粒,如果是37则为DDR2 533(4-4-4),如果是3则为DDR2 677(4-4-4)。在速度标准中,英飞凌的芯片还有一种3S的参数,代表DDR2-667(5-5-5)。

英飞凌DDR2颗粒在品质上都属于上乘货色,超频性也不错,目前采用英飞凌颗粒的厂商有Infineon、金士顿、宇瞻等内存模块厂商

美光(Micron)

美光的DDR2内存芯片编号比较特别,封装上的编号并不是正规的编号,从编号上一般只能识别出这是颗粒的生产日期和产地编号,但是在芯片上也找不到美光所公布的正规编号。对于这种情况,用户只需将颗粒表面的第二行编号(又称为FBGA码)输入到相关页面上

(https://www.sodocs.net/doc/1516207869.html,/support/fbga/decoder.aspx)查询规格。

值得一提的是,虽然从编号识美光内存颗粒的规格还有一定的障碍,但仍有几款内存颗粒的超频性能特别优异,它们就是被玩家称为“fatboy d9”的D9内存颗粒。D9内存颗粒最早的编号全称为“FBGA D9”,由于五位编号会以“D9”为起始,所以也被称为“D9”颗粒。

“Fatboy”D9昵称的由来是其110纳米制造工艺导致的芯片体积,然而先进工艺=更好性能的惯例此次被打破,这种样子夸张的内存芯片对工作电压的提高有极好的正面反馈,2.4V以上工作电压的“Fatboy”D9芯片DDR2 400/533内存模组有很多可以把内存时序调节到3-2-2(DDR2 SDRAM支持的最快时序)并且工作在DDR2-800以上的频率上,如果是4-3-2设定,这些怪物突破DDR2-1000频率也不是难事。

要知道这样的成绩是在04、05年生产的DDR2-400/533内存芯片上实现的,其他厂商的DDR2 SDRAM内存芯片的超频能力根本无法望其项背。此前Crucial、CORSAIR、mushkin、Patriot、OCZ、GEIL等多家DDR2 533超频内存大多数就是采用此类内存颗粒。但也不是所有的D9都好超,像绿色PCB上的就是普通颗粒,超频能力并不理想。

除了“FBGA D9”颗粒之外,美光还推出了D9GKX、D9GHM、D9DCN等新的D9颗粒。其中该系列内存精选口碑出众的镁光D9GMH颗粒,在MT将DDR2内存颗粒制程由110纳米转向90纳米后,FATBODYD9就很少见到了,取而代之的就是现在很多内存厂商封装记忆体时优先选用的小D9颗粒。这些编号为D9GMH、D9GCT、D9GKX等的新一代内存芯片在保持接近“Fatboy”D9低时序能力和对电压敏感的前提下,把4-4-4时序下的频率上限提高到了DDR2-1100附近!而极限运行频率更达到约1200MHz!能实现如此超频目标的芯片本身规格仍旧是DDR2-533/667。

另外,还有易胜(Elixir)、南亚等内存颗粒,在性能上属于中规中距,因此在这里就不再一一介绍了。如遇到颗粒表面覆盖了散热片或者颗粒表面已被内存厂商重新标注的情况,显然无法再用前面所讲的方法识别内存颗粒的标准规格。虽然用CPU-Z可以查到内存的相关信息,但并不能保证完全准确,因此我们建议大家最好是向厂商

咨询。

4、海力士(Hynix)

海力士DDR2内存颗粒的第一排编号通常由HY开头

第3、4位“5P”代表DDR2

第5位“S”代表VDD电压为1.8V、VDDQ电压为1.8V

第6、7位代表容量,本例中“12”代表512Mb,其它如“28”为128Mb、“56”为256Mb、“1G”为1Gb、“2G”为2Gb。该值除以8即为单颗容量,再乘以颗粒数便是整条内存的容量

第8、9位代表颗粒位宽,如果为“4”和“8”,则只占编号中的第8位,如本例所示;如果为“16”和“32”,则占第8、9位

第10位代表逻辑Bank数。其中“1”为2Banks,“2”为4Banks,而“3”为8Banks

第11位代表接口类型。比如“1”为SSTL_18,另外,“2”为SSTL_2

第12、13位代表产品的规格,比如C4:速度为DDR2 5333 4-4-4,如果是S6则为DDR2 800 6-6-6、S5则为DDR2 800 5-5-5、Y6为DDR2 677 6-6-6、Y5为DDR2 677 5-5-5、Y4为DDR2 677 4-4-4、C5为DDR2 533 5-5-5、C3为DDR2 533 3-3-3,字母越靠后越好

海力士内存颗粒的超频性一向不错,比如C5、C3,特别是目前代号S6的DDR2-800内存颗粒比较好超,一般都可以超到1000MHz的水准,因此对于组建扣肉、AM2超频平台的朋友来说,是极不错的选择

常采用的内存模块厂商:很多品牌的DDR2内存都有采用海力士DDR2内存颗粒,如创见、威刚、超胜等

全面教你认识内存参数

全面教你认识内存参数 内存热点 Jany 2010-4-28

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是 Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM 的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存 第二代DDR内存

DDR2 是 DDR SDRAM 内存的第二代产品。它在 DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存 DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit 预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片

芯片命名规则

MAXIM命名规则 AXIM前缀是“MAX”。DALLAS则是以“DS”开头。 MAX×××或MAX×××× 说明:1后缀CSA、CWA 其中C表示普通级,S表示表贴,W表示宽体表贴。 2 后缀CWI表示宽体表贴,EEWI宽体工业级表贴,后缀MJA或883为军级。 3 CPA、BCPI、BCPP、CPP、CCPP、CPE、CPD、ACPA后缀均为普通双列直插。举例MAX202CPE、CPE普通ECPE普通带抗静电保护 MAX202EEPE 工业级抗静电保护(-45℃-85℃)说明 E指抗静电保护 MAXIM数字排列分类 1字头模拟器 2字头滤波器 3字头多路开关 4字头放大器 5字头数模转换器 6字头电压基准 7字头电压转换 8字头复位器 9字头比较器 三字母后缀: 例如:MAX358CPD C = 温度范围 P = 封装类型 D = 管脚数 温度范围: C = 0℃ 至70℃(商业级) I = -20℃ 至+85℃ (工业级) E = -40℃ 至+85℃ (扩展工业级) A = -40℃ 至+85℃ (航空级) M = -55℃ 至+125℃ (军品级) 封装类型: A SSOP(缩小外型封装) B CERQUAD C TO-220, TQFP(薄型四方扁平封装) D 陶瓷铜顶封装 E 四分之一大的小外型封装 F 陶瓷扁平封装 H 模块封装, SBGA(超级球式栅格阵列, 5x5 TQFP) J CERDIP (陶瓷双列直插) K TO-3 塑料接脚栅格阵列 L LCC (无引线芯片承载封装) M MQFP (公制四方扁平封装) N 窄体塑封双列直插 P 塑封双列直插

电脑内存时序

举例9-9-9-27,一般1600的条子spd出厂就这么设置的 前面2个9对性能很重要,第2个9又比第1个9重要,比如说 我要超1866或者2133,设置成9-10-X-X基本没有问题,但是 设置成10-9-X-X就开不了机了,很多条子都这样子的,比如说 现在很火的3星金条。 第3位9基本上是打酱油的了,设置成9,10,11都对性能木有太大影响。 第4位数字基本就无视好了,设置21-36对测试都没变化,原来稳定的 还是稳定,原来开不了机的还是开不了。 以前的ddr2时代对内存的小参数很有影响,现在ddr3了,频率才是王道哦。 2133的-11-11-11-30都要比1866的-9-9-9-27测试跑分的多。当然平时用是感觉不出来的。 最后我再鄙视下金士顿的XX神条马甲套装,当年不懂事大价钱买的,就是YY用的, 1.65v上个1866都吃力,还要参数放的烂。 对性能影响最大的是CL 第一个9对性能影响最大。l第二个9对超频稳定性影响最大 最普通的ddr3 1333内存都可以1.5V运行在7-8-6-1666 CR1,77 Z博士: 一般来说,体现内存延迟的就是我们通常说的时序,如DDR2-800内存的标准时序:5-5-5-18,但DDR3-800内存的标准时序则达到了6-6-6-

15、DDR3-1066为7-7-7- 20、而DDR3-1333更是达到了9-9-9-25! 土老冒: 俺想知道博士所说的5-5-5- 18、6-6-6-15等数字每一个都代表什么。 Z博士: 这4个数字的含义依次为: CAS Latency(简称CL值)内存CAS延迟时间,这也是内存最重要的参数之一,一般来说内存厂商都会将CL值印在产品标签上。 第二个数字是RAS-to-CAS Delay(tRCD),代表内存行地址传输到列地址的延迟时间。 第三个则是Row-precharge Delay(tRP),代表内存行地址选通脉冲预充电时间。 第四个数字则是Row-active Delay(tRAS),代表内存行地址选通延迟。 除了这四个以外,在AMD K8处理器平台和部分非Intel设计的对应Intel芯片组上,如NVIDIA nForce 680i SLI芯片组上,还支持内存的CMD 1T/2T Timing 调节,CMD调节对内存的性能影响也很大,其重要性可以和CL相比。 其实这些参数,你记得太清楚也没有太大用处,你就只需要了解,这几个参数越低,从你点菜到上菜的时间就越快。 土老冒: 好吧,俺自己也听得一头雾水,只需要记得它越低越好就行了。那么俺想问,为什么DDR3内存延迟提高了那么多,Intel和众多的内存模组厂商还要大力推广呢?

SDRAM内存详解(经典)

SDRAM内存详解(经典) 我们从内存颗粒、内存槽位接口、主板和内存之间的信号、接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路... 虽然目前SDRAM内存条价格已经接底线,内存开始向DDR和Rambus内存过渡。但是由于DDR内存是在SDRAM基础上发展起来的,所以详细了解SDRAM内存的接口和主板设计方法对于设计基于DDR内存的主板不无裨益。下面我们就从内存颗粒、内存槽位接口、主板和内存之间的信号接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路。 内存颗粒介绍 对于DRAM(Dynamic Random Access Memory)内存我想凡是对于计算机有所了解的读者都不会陌生。这种类型的内存都是以一个电容是否充有电荷来作为存储状态的标志,电容冲有电荷为状态1,电容没有电荷为状态0。其最大优点是集成度高,容量大,但是其速度相对于SRAM (Static Random Access Memory) 内存来说慢了许多。目前的内存颗粒封装方式有许多种,本文仅仅以大家常见的TSSOP封装的内存颗粒为例子。 其各个管脚的信号定义和我们所使用的DIMM插槽的定义是相同的,对于不同容量的内存,地址信号的位数有所不同。另外一个需要注意的地方就是其供电电路。Vcc和Vss是为内存颗粒中的存储队列供电,而VccQ和VssQ是为内存颗粒中的地址和数据缓冲区供电。两者的作用不同。 我们对内存颗粒关心的问题主要是其颗粒的数据宽度(数据位数)和容量(寻址空间大小)。而对于颗粒自检、颗粒自刷新等等逻辑并不需要特别深入的研究,所以对此我仅仅是一笔带过,如果读者有兴趣的读者可以详细研究内存颗粒的数据手册。虽然内存颗粒有这么多的逻辑命令方式,但是由于目前北桥芯片和内存颗粒的集成度非常高,只要在布线和元器件的选择上严格按照内存规范来设计和制造,需要使用逻辑分析仪来调试电路上的差错的情况比较少,并且在设计过程中尽量避免出现这种情况。 168线DIMM内存插槽的信号定义  我们目前PC和Server使用的内存大都是168 Pins的SDRAM,区别只是其工作频率有的可能是100MHz频率,有的可能是133MHz频率的。但是只要是SDRAM,其DIMM插槽的信号定义是一样的。而这些引脚得定义就是设计内存条和主板所必须遵从的规范。 内存引脚主要分为如下几类:地址引脚、数据引脚(包含校验位引脚)、片选等控制信号、时钟信号。整个内存时序系统就是这些引脚上的信号配合产生。下面的表中就是内存插槽的引脚数量和引脚定义,对于一些没有定义或者是保留以后使用的信号就没有列出来。 符号功能详细描述 DQ [0-63] I/O 数据输入/输出 CB [0-7] I/O ECC内存的ECC校验输入/输出 A [0-13] I/O 地址选择 BA [0-1] Control Bank选择 CS [0-3] Control 片选信号 RAS Control 行地址选择信号 CAS Control 列地址选择信号 DQMB [0-7] Control 数据掩码控制(DQ Mask)高有效* WE Control 写允许信号 CK [0-3] Clock 时钟信号 CKE [0-1] Clock 时钟允许信号** REGE Control 寄存器 (Registered) 允许信号

DDR系列内存详解及硬件设计规范-Michael

D D R 系列系列内存内存内存详解及硬件详解及硬件 设计规范 By: Michael Oct 12, 2010 haolei@https://www.sodocs.net/doc/1516207869.html,

目录 1.概述 (3) 2.DDR的基本原理 (3) 3.DDR SDRAM与SDRAM的不同 (5) 3.1差分时钟 (6) 3.2数据选取脉冲(DQS) (7) 3.3写入延迟 (9) 3.4突发长度与写入掩码 (10) 3.5延迟锁定回路(DLL) (10) 4.DDR-Ⅱ (12) 4.1DDR-Ⅱ内存结构 (13) 4.2DDR-Ⅱ的操作与时序设计 (15) 4.3DDR-Ⅱ封装技术 (19) 5.DDR-Ⅲ (21) 5.1DDR-Ⅲ技术概论 (21) 5.2DDR-Ⅲ内存的技术改进 (23) 6.内存模组 (26) 6.1内存模组的分类 (26) 6.2内存模组的技术分析 (28) 7.DDR 硬件设计规范 (34) 7.1电源设计 (34) 7.2时钟 (37) 7.3数据和DQS (38) 7.4地址和控制 (39) 7.5PCB布局注意事项 (40) 7.6PCB布线注意事项 (41) 7.7EMI问题 (42) 7.8测试方法 (42)

摘要: 本文介绍了DDR 系列SDRAM 的一些概念和难点,并分别对DDR-I/Ⅱ/Ⅲ的技术特点进行了论述,最后结合硬件设计提出一些参考设计规范。 关键字关键字::DDR, DDR, SDRAM SDRAM SDRAM, , , 内存模组内存模组内存模组, , , DQS DQS DQS, DLL, MRS, ODT , DLL, MRS, ODT , DLL, MRS, ODT Notes : Aug 30, 2010 – Added DDR III and the PCB layout specification - by Michael.Hao

超频内存时序表

内存时序 一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。 在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是 “CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍: 一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置 首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表: Command Per Clock(CPC) 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。 显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。 该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。CAS Latency Control(tCL) 可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。 一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。 CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。 内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。 这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失数据,因此在提醒大家把CAS延迟设为2或2.5的同时,如果不稳定就只有进一步提高它了。而且提高延迟能使内存运行在更高的频率,所以需要对内存超频时,应该试着提高CAS延迟。

芯片命名规则

IC命名规则是每个芯片解密从业人员应当了解和掌握的IC基础知识,一下详细地列出了IC 命名规则,希望对你的芯片解密工作有所帮助。 一个完整的IC型号一般都至少必须包含以下四个部分: ◆.前缀(首标)-----很多可以推测是哪家公司产品 ◆.器件名称----一般可以推断产品的功能(memory可以得知其容量) ◆.温度等级-----区分商业级,工业级,军级等 ◆.封装----指出产品的封装和管脚数有些IC型号还会有其它容: ◆.速率-----如memory,MCU,DSP,FPGA等产品都有速率区别,如-5,-6之类数字表示◆.工艺结构----如通用数字IC有COMS和TTL两种,常用字母C,T来表示 ◆.是否环保-----一般在型号的末尾会有一个字母来表示是否环抱,如Z,R,+等 ◆.包装-----显示该物料是以何种包装运输的,如tube,T/R,rail,tray等 ◆.版本号----显示该产品修改的次数,一般以M为第一版本 ◆.该产品的状态 举例:EP 2C70 A F324 C 7 ES :EP-altera公司的产品;2C70-CYCLONE2系列的FPGA;A-特定电气性能;F324-324pin FBGA封装;C-民用级产品;7-速率等级;ES-工程样品MAX 232 A C P E + :MAX-maxim公司产品;232-接口IC;A-A档;C-民用级;P-塑封两列直插;E-16脚;+表示无铅产品 详细的型号解说请到相应公司查阅。 IC命名和封装常识 IC产品的命名规则: 大部分IC产品型号的开头字母,也就是通常所说的前缀都是为生产厂家的前两个或前三个字母,比如:MAXIM公司的以MAX为前缀,AD公司的以AD为前缀,ATMEL公司的以AT 为前缀,CY公司的以CY为前缀,像AMD,IDT,LT,DS,HY这些公司的IC产品型号都是以生产厂家的前两个或前三个为前缀。但也有很生产厂家不是这样的,如TI的一般以SN,TMS,TPS,TL,TLC,TLV等字母为前缀;ALTERA(阿尔特拉)、XILINX(赛灵斯或称赛灵克斯)、Lattice(莱迪斯),称为可编程逻辑器件CPLD、FPGA。ALTERA的以EP,EPM,EPF为前缀,它在亚洲国家卖得比较好,XILINX的以XC为前缀,它在欧洲国家卖得比较好,功能相当好。Lattice一般以M4A,LSP,LSIG为前缀,NS的以LM为前缀居多等等,这里就不一一做介绍了。 紧跟前缀后面的几位字母或数字一般表示其系列及功能,每个厂家规则都不一样,这里不做介绐,之后跟的几位字母(一般指的是尾缀)表示温度系数和管脚及封装,一般情况下,C 表示民用级,I表示工业级,E表示扩展工业级,A表示航空级,M表示军品级 下面几个介比较具有代表性的生产厂家,简单介绍一下: AMD公司FLASH常识:

DDR内存时序设置详解

内存时序设置详解 内容概要 关键词:内存时序参数设置 导言:是否正确地设置了内存时序参数,在很大程度上决定了系统的基本性能。本文详细介绍了内存时序相关参数的基本涵义及设置要点。 与传统的SDRAM相比,DDR(Dual date rate SDRSM:双倍速率SDRAM),最重要的改变是在界面数据传输上,其在时钟信号上升缘与下降缘时各传输一次数据,这使得DDR 的数据传输速率为传统SDRAM的两倍。同样地,对于其标称的如DDR400,DDR333,DDR266数值,代表其工作频率其实仅为那些数值的一半,也就是说DDR400 工作频率为200MHz。 FSB与内存频率的关系 首先请大家看看FSB(Front Side Bus:前端总线)和内存比率与内存实际运行频率的关系。 FSB/MEM比率实际运行频率 1/1 200MHz 1/2 100MHz 2/3 133MHz 3/4 150MHz 3/05 120MHz 5/6 166MHz 7/10 140MHz 9/10 180MHz 对于大多数玩家来说,FSB和内存同步,即1:1是使性能最佳的选择。而其他的设置都是异步的。同步后,内存的实际运行频率是FSBx2,所以,DDR400的内存和200MHz的FSB正好同步。如果你的FSB为240MHz,则同步后,内存的实际运行频率为240MHz x 2 = 480MHz。

FSB与不同速度的DDR内存之间正确的设置关系 强烈建议采用1:1的FSB与内存同步的设置,这样可以完全发挥内存带宽的优势。内存时序设置 内存参数的设置正确与否,将极大地影响系统的整体性能。下面我们将针对内存关于时序设置参数逐一解释,以求能让大家在内存参数设置中能有清晰的思路,提高电脑系统的性能。 涉及到的参数分别为: ?CPC : Command Per Clock ?tCL : CAS Latency Control ?tRCD : RAS to CAS Delay ?tRAS : Min RAS Active Timing ?tRP : Row Precharge Timing ?tRC : Row Cycle Time ?tRFC : Row Refresh Cycle Time ?tRRD : Row to Row Delay(RAS to RAS delay) ?tWR : Write Recovery Time ?……及其他参数的设置 CPC : Command Per Clock 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。

SDRAM时序控制

SDRAM的时序控制 一、SDRAM的外在物理结构 (1)P-Bank 为保证CPU的正常工作,SDRAM必须一次传输完CPU在一个传输周期内所需要的数据量,也就是CPU数据总线的位宽(bit),这个位宽也就是物理Bank(Physical Bank, P-Bank)的位宽,所以内存需要组成P-Bank来与CPU打交道。 (2)芯片位宽与芯片数量 然而每个内存芯片都有自己的位宽,即每个传输周期能提供的数据量。由于技术要求、成本和实用性等方面限制,内存芯片的位宽一般都小于P-Bank的位宽,这就需要多颗内存芯片并联工作,以提供CPU正常工作时一个传输周期内所需要的数据量。所以,P-Bank实际上就是一组内存芯片的集合,这个集合的位宽总和=P-Bank的位宽=CPU数据位宽,但这个集合的数据容量没有限制。 一个SDRAM只有一个P-Bank已经不能满足容量的需要,所以,多个芯片组可以支持多个P-Bank,一次选择一个P-Bank工作。 (3)SDRAM的封装 SIMM: Single In-line Memory Module,单列内存模组,内存模组就是我们常说的内存条,所谓单列是指模组电路板与主板插槽的接口只有一列引脚(虽然两侧都有金手指pin)DIMM: Double In-line Memory Module, 双列内存模组,所谓双列是指模组电路板与主板插槽的接口有两列引脚,模组电路板的每侧金手指对应一列引脚。 DIMM是SDRAM集合形式的最终体现。前文讲过P-Bank对芯片集合的位宽有要求,对芯片集合的容量则没有任何限制。高位宽的芯片可以让DIMM的设计简单一些(因为所用的芯片少),但在芯片容量相同时,这种DIMM的容量就肯定比不上采用低位宽芯片的模组,因为后者在一个P-Bank中可以容纳更多的芯片。 SDRAM的引脚与封装: 二、SDRAM内部逻辑结构 (1)L-Bank SDRAM的内部实际上是一个存储阵列,就如同表格一样,而每个单元格就称为存储单元,这张表格就成为逻辑Bank(Logical Bank, L-Bank)。考虑到技术、成本、执行效率等方面原因,不可能只需要一个全容量的L-Bank,所以人们在SDRAM内部分割多个L-Bank,目前基本都是4个,内存访问时,一次只能是一个L-Bank。

内存的时序以及内存时序优化

一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。 在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是“CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍: 一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置 首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off 或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表: Command Per Clock(CPC) 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。 显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。 该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。 CAS Latency Control(tCL) 可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。 一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。 CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency 是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。 内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。 这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失

内存上面的标识解读

内存上面的标识解读(Memory Rank Single Rankx4) 2011-10-28 17:29:11| 分类: | 标签:|字号订阅 一组或几组Memory chips,Chips分为两种4Bits与8Bits, 由于CPU处理能力为64Bits, 如果内存要达到CPU处理能力, 就把Chips组成了Rank; 简单理解就是64Bits为1 Rank. Single Rank:1组Memory chip Dual Rank: 2 组Memory chip ,one rank per side Quad Rank: 4 组Memory chip ,two rank per side Rank并不是同时间读写, 而是使用了Memory interleaving进行读写, 这样提高了总线利用效率! 解读内存中的Bank 两种内存Bank的区别 内存Bank分为物理Bank和逻辑Bank。 1.物理Bank 传统内存系统为了保证CPU的正常工作,必须一次传输完CPU在一个传输周期内所需要的数据。而CPU在一个传输周期能接收的数据容量就是CPU数据总线的位宽,单位是bit(位)。内存与CPU之间的数据交换通过主板上的北桥进行,内存总线

的数据位宽等同于CPU数据总线的位宽,这个位宽就称之为物理Bank(Physical Bank,简称P-Bank)的位宽。以目前主流的DDR系统为例,CPU与内存之间的接口位宽是64bit,也就意味着CPU在一个周期内会向内存发送或从内存读取64bit的数据,那么这一个64bit的数据集合就是一个内存条Bank。不过以前有不少朋友都认为,内存的物理Bank是由面数决定的:即单面内存条则包含一个物理Bank,双面内存则包含两个。其实这个看法是错误的! 一条内存条的物理Bank是由所采用的内存颗粒的位宽决定的,各个芯片位宽之和为64bit就是单物理Bank;如果是128bit 就是双物理Bank。读到这里,大家也应该知道,我们可以通过两种方式来增加这种类型内存的容量。第一种就是通过增加每一个独立模块的容量来增加Bank的容量,第二种方法就是增加Bank的数目。由于目前内存颗粒位宽的限制,一个系统只有一个物理Bank已经不能满足容量的需要。所以,目前新一代芯片组可以支持多个物理Bank,最少的也能支持4个物理Bank。对于像Intel i845D这种支持4个Bank的芯片组来说,我们在选购内存时就要考虑一下插槽数与内存Bank 的分配问题了。因为如果选购双Bank的内存,这意味着在Intel i845D芯片组上我们最多只能使用两条这样的内存,多了的话芯片组将无法识别。这里我建议大家最好根据自己的主板所提供的内存插槽数目来选购 内存,如果主板只提供了两个内存插槽,那就不必为内存是单

内存时序修改教程

如题,首先上个修改的好的低时序,给大伙看看改好后的效果,原时序为1066频率下的7-7-7-20(1333内存条降频到1066) 这是原始时序: 修改后的低时序:

也许有人发现问题了,频率变了,没错,但是这个只是内存频率变了,实际有效频率依然是1066(533)

虽然如此,但是偶们已经达到偶们的目的——时序变低了(6-6-6-19,如上图),而这结果带来的影响不仅仅只是参数变了,请看下两图: 这是原始参数7-7-7-20时序在EVREST内存测试中的成绩:

这是在EVREST的内存测试中修改后的低时序6-6-6-19的成绩:

可以明显的看出低时序相对原始时序在内存读写性能上的提升,这低时序正是追求性能的DIY玩家所需要的,反之,高时序则是稳定性的保证,然而因为内存颗粒体制的差别,过低的时序反而会引起系统的不稳定(本人亲测过修改成了4-4-4-12时序的4G DDR2 800的尔必达日本原厂条,结果开机不能)同时也是金士顿HYPERX神条强势的原因(颗粒体制)。 这只是个引子,一是希望让大家了解下修改时序的意义和效果,也是为不死兄説的1656上1333频率做准备,既然知道了高时序能保证稳定性,那么对于要超到1333内存频率的I3/I5(包括I7 6系列)的1656来说,通过修改时序达到1333内存默认时序,对超频到1333来说,是一个有力的保证。接下来偶就将修改过程一步步教给大家: 首先,偶们用到的工具软件有:THAIPHOON BURNER 6.3 SuperBlaster Edition(DRIVER Signature Enforcement Overrider,该软件是专为64位系统修改时序准备的,32位WINDOWS系统不需要。使用方法看见P.S.部分) THAIPHOON BURNER 的修改基本原理与方法,与流行一时的SPDTOOLS差不多,不

IC芯片命名规则大全

IC芯片命名规则 MAXIM 专有产品型号命名 MAX XXX (X) X X X 1 2 3 4 5 6 1.前缀: MAXIM公司产品代号 2.产品字母后缀: 三字母后缀:C=温度范围; P=封装类型; E=管脚数 四字母后缀: B=指标等级或附带功能; C=温度范围; P=封装类型; I=管脚数 3.指标等级或附带功能:A表示5%的输出精度,E表示防静电 4 .温度范围: C= 0℃ 至70℃(商业级) I =-20℃ 至+85℃(工业级) E =-40℃ 至+85℃(扩展工业级) A = -40℃至+85℃(航空级) M =-55?至+125℃(军品级) 5.封装形式: A SSOP(缩小外型封装) Q PLCC B CERQUA D R 窄体陶瓷双列直插封装 C TO-220, TQFP(薄型四方扁平封装) S 小外型封装 D 陶瓷铜顶封装 T TO5,TO-99,TO-100 E 四分之一大的小外型封装U TSSOP,μMAX,SOT F 陶瓷扁平封装 H 模块封装, SBGA W 宽体小外型封装(300mil) J CERDIP (陶瓷双列直插) X SC-70(3脚,5脚,6脚) K TO-3 塑料接脚栅格阵列 Y 窄体铜顶封装 L LCC (无引线芯片承载封装) Z TO-92MQUAD M MQFP (公制四方扁平封装) / D裸片 N 窄体塑封双列直插 / PR 增强型塑封 P 塑 料 / W 晶圆 6.管脚数量: A:8 J:32 K:5,6 8 S:4,80

B:10,64 L:4 0 T:6,160 C:12,192 M:7,4 8 U:60 D:14 N:1 8 V:8(圆形) E:16 O:4 2 W:10(圆形) F:22,256 P:2 0 X:36 G:24 Q:2,10 0 Y:8(圆形) H:44 R:3,8 4 Z:10(圆形) I:28 AD 常用产品型号命名 单块和混合集成电路 XX XX XX X X X 1 2 3 4 5 1.前缀: AD模拟器件 HA 混合集成A/D HD 混合集成D/A 2.器件型号 3.一般说明:A 第二代产品,DI 介质隔离,Z 工作于±12V 4.温度范围/性能(按参数性能提高排列): I、J、K、L、M 0℃至70℃ A、B、C-25℃或-40℃至85℃ S、T、U -55℃至125℃ 5.封装形式: D 陶瓷或金属密封双列直插R 微型“SQ”封装 E 陶瓷无引线芯片载体RS 缩小的微型封装 F 陶瓷扁平封装S 塑料四面引线扁平封装 G 陶瓷针阵列 ST 薄型四面引线扁平封装 H 密封金属管帽 T TO-92型封装 J J形引线陶瓷封装U 薄型微型封装 M 陶瓷金属盖板双列直插 W 非密封的陶瓷/玻璃双列直插 N 料有引线芯片载体Y 单列直插

内存基本知识详解

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存

第二代DDR内存 DDR2 是DDR SDRAM 内存的第二代产品。它在DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存

DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片 SPD(Serial Presence Detect): SPD是一颗8针的EEPROM(Electrically Erasable Programmable ROM 电可擦写可编程只读存储器), 容量为256字节,里面主要保存了该内存的相关资料,如容量、芯片厂商、内存模组厂商、工作速度等。SPD的内容一般由内存模组制造商写入。支持SPD的主板在启动时自动检测SPD中的资料,并以此设定内存的工作参数。 启动计算机后,主板BIOS就会读取SPD中的信息,主板北桥芯片组就会根据这些参数信息来自动配置相应的内存工作时序与控制寄存器,从而可以充分发挥内存条的性能。上述情况实现的前提条件是在BIOS设置界面中,将内存设置选项设为“By SPD”。当主板从内存条中不能检测到SPD信息时,它就只能提供一个较为保守的配置。 从某种意义上来说,SPD芯片是识别内存品牌的一个重要标志。如果SPD内的参数值设置得不合理,不但不能起到优化内存的作用,反而还会引起系统工作不稳定,甚至死机。因此,很多普通内存或兼容内存厂商为了避免兼容性问题,一般都将SPD中的内存工作参数设置得较为保守,从而限制了内存性能的充分发挥。更有甚者,一些不法厂商通过专门的读

Atmel改变命名规则的芯片型号对照表

ATMLU对应ATMEL芯片:换代选型 2011-04-25 23:57 AT24C01BN-SH-B/T ATMEL ATMLU701 DIP AT24C01B-PU ATMEL ATMLU702 DIP AT24C02B-10PU-1.8 ATMEL ATMLU703 DIP AT24C02BN-SH-B/T ATMEL ATMLU704 DIP AT24C02B-PU ATMEL ATMLU705 DIP AT24C04-10PU-2.7 ATMEL ATMLU706 DIP AT24C04BN-SH-B ATMEL ATMLU707 DI P AT24C04N-10SU-2.7 ATMEL ATMLU708 DIP AT24C08A-10PU-2.7 ATMEL ATMLU709 DIP AT24C08A-10TU-2.7 ATMEL ATMLU710 DIP AT24C08AN-10SU-2.7 ATMEL ATMLU711 DIP AT24C128-10PU-2.7 ATMEL ATMLU712 DIP AT24C128N-10SU-2.7-SL383 ATMEL ATMLU713 DIP AT24C16A-10PU-2.7 ATMEL ATMLU714 DIP AT24C16A-10TI-1.8 ATMEL ATMLU715 DIP AT24C16AN-10SU-2.7 ATMEL ATMLU716 DIP AT24C16BN-SH-B ATMEL ATMLU717 DIP AT24C256B-10PU-1.8 ATMEL ATMLU718 DIP AT24C256BN-10SU-1.8 ATMEL ATMLU719 DIP

SDRAM的相关时序参数设置(精)

在我们一般用的什么 SRAM 啊, PSRAM 啊, RAM 啊, 一般而言都是有多少根地址线, 然后可以算出寻址空间, 比如有 11根地址线, 那寻址空间就是 2的 11次方减 1。但是 SDRAM 是分列地址和行地址的, 行、列地址线是复用的, 所以有时候我们看到说寻址空间有多大多大,但是看看地址线怎么就那么几根啊,呵呵。SDRAM 一般还有 2根 BANK 的线,分成 4个 BANK ,在有的处理器的 SDRAM 控制模块中,这两根线可能映射到地址线的某两根去。一般芯片常按照以下方式写芯片的配置,比如 4Meg x 4 x 16,那这个芯片就是 256Mbits 。其中 16指数据线是 16根,中间一个 4是只分 4个 BANK , 每个 BANK 是 4Meg 。 SDRAM CAS Latency Time(内存 CAS 延迟时间可选项:2, 3。内存 CAS (Column Address Strobe, 列地址选通脉冲延迟时间控制 SDRAM 内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。在 133MHz 频率下,品质一般的兼容内存大多只能在 CAS=3下运行,在 CAS=2下运行会使系统不稳定、丢失数据甚至无法启动。 CAS 延迟时间是一个非常重要的内存参数,对电脑性能的影响比较大, Intel 与 VIA 就 PC133内存规范的分歧也与此参数有关, Intel 认为 PC133内存应能稳定运行于 133MHz 频率、 CAS=2下, 而 VIA 认为 PC133内存能稳定运行于 133MHz 频率即可, 并未特别指定 CAS 值, 因此 Intel 的规范更加严格, 一般只有品牌内存才能够满足此规范,所以大家感觉 Intel 的主板比较挑内存。 SDRAM Cycle Time Tras/Trc(内存 Tras/Trc时钟周期可选项:5/7, 7/9。该参数用于确定 SDRAM 内存行激活时间和行周期时间的时钟周期数。 Tras 代表 SDRAM 行激活时间(Row Active Time ,它是为进行数据传输而开启行单元所需要的时钟周期数。 Trc 代表 SDRAM 行周期时间(Row Cycle Time ,它是包括行单元开启和行单元刷新在内的整个过程所需要的时钟周期数。出于最佳性能考虑可将该参数设为5/7,这时内存的速度较快,但有可能出现因行单元开启时间不足而影响数据传输的情况,在 SDRAM 内存的工作频率高于 100MHz 时尤其是这样,即使是品牌内存大多也承受不了如此苛刻的设置。

相关主题