搜档网
当前位置:搜档网 › MIPI video mode 和 command mode 的区别

MIPI video mode 和 command mode 的区别

MIPI video mode 和 command mode 的区别
MIPI video mode 和 command mode 的区别

首先来讲第一个话题LCD RAM

由来

最近魅族论坛和小米论坛最火的话题之一莫过于LCD RAM,当然小米最近后院起火,导致售后/投诉才是最火的.

何为LCD RAM?

LCD 是指字面意思是液晶显示屏(Liquid Crystal Display), 而RAM: 随机存取存储器(Random-Access Memory),两者完全是风马牛不相及的东西。

下图是一个标准的LCD的爆炸图(不含TP),请注意图中红色mark的地方:控制IC-- LCD的大脑。所谓的LCD RAM自然是指此大脑是否包含RAM.

题外话<不感兴趣的可以跳过此节>

这个小东西占整个模组<不含TP>的大约8%~15%,也就是说以目前单片4.5的720P的IPS价格大致为200左右,这个IC的价格大约为16~30之间。<这个只是我估算出来的,还有待考证>。占整个手机成本比例其实算是很低了只有1%左右。当然同规格的IC是否内置RAM,的确价格方面会有差异,但是不会相差太多。目前产品同质化的严重的条件下产品的竞争力更多的表现为企业的采购力

和成本控制能力。apple就是一个好的例子,最好的东西,最低的价格,当然一定是最大的量,甚至很多企业不惜亏本也要接apple的案子,原因有二:一是苹果能帮助企业一起提升制程能力,另外一方面,需要借助apple提升自己的形象。<不好意思扯的远了点>。

回到正题。

LCD是否需要RAM?

既然说到这里,我不得不澄清,这个狗血剧情并非新话题,其实在N久以前非高速产品就一直存在此现象.这就好比N版的神雕侠侣,剧情不变,每一版的主演都在变.想当初一个年轻力壮的RGB和妖艳冻人貌美如花的如花:CPU一起当然要上演些狗血的激情.而现今廉颇老矣,尚能饭的自然只有MIPI.当然MIPI一人扮两角,搞2P是是万万不可的.因为这个主演的MIPI是一家之主,有N多小妾,其中两个一个被称为DSI和DCS。

下面我来正式介绍以上几个联袂激情演出的主角.大家热烈欢迎.

手机的器件很多,但主体无非是屏幕,主板,电池,外壳,最为核心的自然是主板和屏幕,屏幕与主板处理器之间的必然会有接口才能交换数据,我们称之为interface(数据接口)。

时间回到07年Iphone一代发布以前,主流手机尺寸还是2.2,分辨率大致QVGA,普通非智能手机平台如MTK/英飞凌/高通等都只有CPU接口(也写成

MPU/MCU),若要采用RGB接口的大屏,则要添加一个CPU接口到LCD RGB 接口的转换芯片。除此以外还有SPI,VSYNC,MDDI,MIPI等;

我重点说下,MCU(CPU),RGB interface。因为这个才是关系RAM的存在与否的关键。

CPU和RGB是两种不同的接口,简单的来讲:

CPU模式下,LCD controller是直接内置于LCD屏中的,这是所谓的Smart Display Panel,驱动程序只通过MPU数据总线将Data送到LCD的RAM中,至于显示到LCD中就直接交给内置的controller吧.

RGB模式下,就必须使用外部的controller,一般是指(手机或其他外部处理

器)CPU自带,此时的LCD就是所谓的Dumb Display Panel(Dummy屏),数据必须通过点,行,帧时钟等由CPU自带controller去控制驱动数据显示到LCD上.

下面我简单用示意图来描述下这两者的差异.

速度上的较量:

这是两种不同的数据传输方式,一般来讲RGB接口传输数据要比CPU接口来的更快.因为对于LCD Driver IC而言,通过CPU interface,数据必须要先送至Driver IC内置的RAM,然后再由Driver IC内置的controller显示在LCD上.而相比之下RGB方式是通过接口直接往LCD上送data显示.说到底此两方案都需要一个RAM去暂存待发Data,只不过CPU是将GRAM做在Driver IC中,而RGB则需要接口转换IC(一般芯片中会集成此功能,内置GRAM.)但是不得不将这里所指的时间快慢只是以毫秒去计算的,人的感知根本无法对此作出判断.

优劣势的较量:

一般来说RGB更适用用以前所谓的大屏,QVGA/VGA,小屏(小于1.8寸)一般使用CPU interface.这个跟功耗基本上没有关系如果一定要扯到功耗比较,那么只能说同等驱动电压以及驱动尺寸下理论上CPU方式耗电更大,因为外置RAM的缘故.而CPU模式控制简单,无需时钟和同步信号,相比之下的RGB模式客制化程度更高.但是对开发端而言稍显复杂,并不是简单的下command的方式就能实现显示功能.

下面我们的故事进行到新版的狗血剧情中:MIPI阵营.(想了解MIPI的可以自行百度)MIPI好比大户人家,MIPI就是一家之主的地主黄世仁.下面有无数小

妾,DSI,DSC恰是其中两个.这两个各有所长,你可以认为,他们一个长的漂亮迷死了黄老爷,一个功夫厉害,爽死了黄老爷.总之结果就是和黄老爷搞上了.

以下内容来源网络。

DSI(Video Mode)视频模式.

这种工作模式与传统RGB接口相似,主机需要持续刷新显示器。由于不使用专用的数据信号传输同步信息,控制信号和RGB数据是以报文的形式通过MIPI

总线传输的。因为主机需要定期刷新显示器,显示器就不需要帧缓冲器。这才MX LCD不需要RAM的关键原因。

DCS(Command mode)命令模式

MIPI总线控制器使用显示命令报文来向显示器发送像素数据流。显示器应该有

一个全帧长的帧缓冲器来存储所有的像素数据。一旦数据被放在显示器的帧缓冲器中,定时控制器就从帧缓冲器中取出数据,并自动把它们显示在屏幕上。MIPI 总线控制器不需要定期刷新显示器。

两种模式的优缺点

在成本和功耗方面,每个工作模式都有优点和缺点。视频模式显示架构无须帧缓冲器。然而,主机定期以高速模式发送DSI视频报文却消耗了大量的平

均能量。

在理想情况,当显示内容不改变时(或不经常改变时),显示系统的中央处理器就应该切换到低功耗模式,而处理器和显示器之间的链路会在需要的时候激活。由于主机定期刷新的需要,部分中央处理器和存储器接口也需要保持激活状态,这可以使系统不会达到最好的功率预算。

另一方面,命令模式显示架构允许显示器直接对整个帧缓冲器进行自刷新。然而,在显示器中集成全帧长帧缓冲器总是需要成本的,特别是今天的大多数用户所需求的高分辨率显示器。这就要求接口芯片有更大的管芯尺寸。显示器制造商也不得不为每种显示分辨率提供具有特定容量帧缓冲器的显示控制器。

对于视频模式和命令模式显示架构,通常都需要对显示控制器的寄存器编程来设置相应的显示分辨率、外观比率和工作模式。MIPI并不定义任何标准协

议来访问这些内部寄存器,因此,不同的显示器制造商可以定制自己专用的命令集。

为了摆脱不同制造商专用显示命令之间的冲突,有些制造商更愿意让显示器能够自己进行初始化,以使显示器不需要MIPI主机控制器的配置就可以正常工作。在这种情况下,显示器通常有一个存储显示参数的PROM存储器。这是非常方便的,但PROM也占据了比较大的存储器空间。

看完上面这一段,应该会有人明白了。其实这只是两种方式而已,都是把手机处理器的数据传送到LCD上,并显示出来,结果都是一样。正如魅族工程师所言,目前的处理器完全能够应付,RAM是多次一举。

下面就部分网友提出的为何9100和IP4内置RAM的事情进行澄清.

首先是9100,我没有找到9100的资料,但我不相信9100上市产品在使用command mode,这样的方式虽然节省端口的数据量,但是存在刷新频率低,并且

这么高的分辨率以及亮度的产品,肯定会导致filker闪烁出现.并且以9100的处理器,同时为两块WVGA的产品video mode的刷新完全没有压力.

其次是IP4,IP4驱动IC的确内置RAM.但是却未使用在产品端.下面我来举证.

这是IP4/IP4S的测试开发板.

看图中,大家可以比对下网上的拆机图片,确认下是不是apple的模组?

此测试系统使用的是solomon SSD2825的MIPI芯片使用video mode点亮的.我拿到的datasheet并非正式版,(其实SSD2805完全可以驱动Apple的模组,只是必须以command mode,)因为此产品为3lane产品,而SSD2805只能支持2lane,最大带宽无法满足video mode,而SSD2825支持4lane,最高分辨率可以支持到1920*1200;

下面看我在SSD2825 Datasheet中的截图.

此IC同时支持Dumb display panel 和Smart display panel.而对我们MX 的处理器更不用说,其实**的处理完全支持(个人猜想),那么为什么**没有这样做呢.肯定是降低开发难度,不需要在LCD接口调试上花费太多精力,但缺点也显而易见,可能偶尔会出现屏幕延时的现象.

再来讨论下IP4为何内置LCD RAM,首先IP4内置RAM这个毋庸置疑,但是内置不代表他在使用,原因有二:一是对Apple这样走量的客户,订单随便都是上千万,这样的量,内置和不内置价格基本无异.二来,Apple是不做亏本生意的,那么RAM是干嘛用的,答案就是For工厂端的测试使用,众所周知,使用command mode的时候,对带宽要求较低,从某种意义上来讲,对LCD工厂端测试机的要求

相应也会降低.apple虽然是暴利企业,但是不得不说他很会供应商打成一片,帮助供应商一起降低成本,等于变相的降低自己的成本.

原帖地址:

https://www.sodocs.net/doc/1816589124.html,/viewthread.php?tid=3058847&page=1#pid51708144

颜色通常用三个相对独立的属性来描述,三个独立变量综合作用,自然就构成一个空间坐标,这就是颜色空间。而颜色可以由不同的角度,用三个一组的不同属性加以描述,就产生了不同的颜色空间。但被描述的颜色对象本身是客观的,不同颜色空间只是从不同的角度去衡量同一个对象。

颜色空间按照基本结构可以分两大类:基色颜色空间和色、亮分离颜色空间。前者的典型是RGB,还包括CMY、CMYK、CIE XYZ 等;后者包括YCC/YUV、Lab、以及一批“色相类颜色空间”。CIE XYZ 是定义一切颜色空间的基准,很奇妙的是,它即属于基色颜色空间,也属于色、亮分离颜色空间,是贯穿两者的枢纽。色、亮分离颜色空间中的子类型“色相类颜色空间”,是把颜色分成一个表亮属性,和两个表色属性,其中有一个表色属性是色相,而色相以外的两个属性可以选用不同的变量来定义,而色相的概念不变,因此就构成一族共同使用色相属性,另加表亮属性和表色属性各一个组成的颜色空间,它们是颜色空间中的一个家族,暂且统称为HSB 颜色空间。

RGB颜色空间是一种大的分类,具体而言RGB空间还包含多种空间,其中sRGB是HP 和Microsoft联合制定的标准RGB空间,除此之外还有Adobe RGB,Apple RGB,ColorMatch RGB等等,他们通过不同的方式表示RGB三种颜色,使得它们具有不同的色彩宽度,GAMMA 值也是不一样的(看下一篇文章),具体这几种RGB的不同,我会在另外的文章中描述。

例如,对Lab模式是这样描述的:

RGB模式是一种发光屏幕的加色模式,CMYK模式是一种颜色反光的印刷减色模式。而Lab模式既不依赖光线,也不依赖于颜料,它是CIE组织确定的一个理论上包括了人眼可以看见的所有色彩的色彩模式。Lab模式弥补了RGB和CMYK两种色彩模式的不足。

Lab模式由三个通道组成,但不是R、G、B通道。它的一个通道是亮度,即L。另外两个是色彩通道,用A和B来表示。A通道包括的颜色是从深绿色(底亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);B通道则是从亮蓝色(底亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种色彩混合后将产生明亮的色彩。

Lab模式所定义的色彩最多,且与光线及设备无关

RGB颜色空间

计算机色彩显示器显示色彩的原理与彩色电视机一样,都是采用R、G、B相加混色的原理,通过发射出三种不同强度的电子束,使屏幕内侧覆盖的红、绿、蓝磷光材料发光而产生色彩的。这种色彩的表示方法称为RGB色彩空间表示。在多媒体计算机技术中,用的最多的是RGB色彩空间表示。

根据三基色原理,用基色光单位来表示光的量,则在RGB色彩空间,任意色光F都可以用R、G、B三色不同分量的相加混合而成:

F=r [ R ] + g [ G ] + b [ B ]

RGB色彩空间还可以用一个

三维的立方体来描述。

我们可知自然界中任何一种色光都可由R、G、B三基色按不同的比例相加混合而成,当三基色分量都为0(最弱)时混合为黑色光;当三基色分量都为k(最强)时混合为白色光。任一色彩F是这个立方体坐标中的一点,调整三色系数r、g、b中的任一系数都会改变F的坐标值,也即改变了F的色值。RGB色彩空间采用物理三基色表示,因而物理意义很清楚,适合彩色显象管工作。然而这一体制并不适应人的视觉特点。因而,产生了其它不同的色彩空间表示法。

HSV颜色空间

HSV(hue,saturation,value)颜色空间的模型对应于圆柱坐标系中的一个圆锥形子集,圆锥的顶面对应于V=1。它包含RGB模型中的R=1,G=1,B=1三个面,所代表的颜色较亮。色彩H由绕V轴的旋转角给定。红色对应于角度0°,绿色对应于角度120°,蓝色对应于角度240°。在HSV颜色模型中,每一种颜色和它的补色相差180°。饱和度S取值从0到1,所以圆锥顶面的半径为1。HSV颜色模型所代表的颜色域是CIE色度图的一个子集,这个模型中饱和度为百分之百的颜色,其纯度一般小于百分之百。在圆锥的顶点(即原点)处,V=0,H和S无定义,代表黑色。圆锥的顶面中心处S=0,V=1,H无定义,代表白色。从该点到原点代表亮度渐暗的灰色,即具有不同灰度的灰色。对于这些点,S=0,H的值无定义。可以说,HSV模型中的V轴对应于RGB颜色空间中的主对角线。在圆锥顶面的圆周上的颜色,V=1,S=1,这种颜色是纯色。HSV模型对应于画家配色的方法。画家用改变色浓和色深的方法从某种纯色获得不同色调的颜色,在一种纯色中加入白色以改变色浓,加入黑色以改变色深,同时加入不同比例的白色,黑色即可获得各种不同的色调。

HSV颜色空间可以用一个圆锥空间模型来描述。

从RGB 到HSV 的转换

设(r, g, b) 分别是一个颜色的红、绿和蓝坐标,它们的值是在0 到1 之间的实数。设max等价于r, g和b中的最大者。设min等于这些值中的最小者。要找到在HSV 空间中的(h, s, v) 值,这里的h∈[0, 360)是角度的色相角,而s, v∈[0,1] 是饱和度和亮度,计算为:

max=max(R,G,B)

min=min(R,G,B)

if R = max, H = (G-B)/(max-min)

if G = max, H = 2 + (B-R)/(max-min)

if B = max, H = 4 + (R-G)/(max-min)

H = H * 60

if H < 0, H = H + 360

V=max(R,G,B)

S=(max-min)/max

h的值通常规范化到位于0 到360°之间。而h = 0 用于max = min的(就是灰色)时候而不是留下h未定义。

以下为相应的VC代码:

void Rgb2Hsv(float R, float G, float B, float& H, float& S, float&V)

{

// r,g,b values are from 0 to 1

// h = [0,360], s = [0,1], v = [0,1]

// if s == 0, then h = -1 (undefined)

float min, max, delta,tmp;

tmp = min(R, G);

min = min( tmp, B );

tmp = max( R, G);

max = max(tmp, B );

V = max; // v

delta = max - min;

if( max != 0 )

S = delta / max; // s

else

{

// r = g = b = 0 // s = 0, v is undefined

S = 0;

H = UNDEFINEDCOLOR;

return;

}

if( R == max )

H = ( G - B ) / delta; // between yellow & magenta

else if( G == max )

H = 2 + ( B - R ) / delta; // between cyan & yellow

else

H = 4 + ( R - G ) / delta; // between magenta & cyan

H *= 60; // degrees

if( H < 0 )

H += 360;

}

YUV颜色空间

YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL)。在现代彩色电视系统中,通常采用三管彩色摄影机或彩色CCD摄影机进行取像,然后把取得

的彩色图像信号经分色、分别放大校正后得到RGB,再经过矩阵变换电路得到亮度信号Y 和两个色差信号R-Y(即U)、B-Y(即V),最后发送端将亮度和色差三个信号分别进行编码,用同一信道发送出去。这种色彩的表示方法就是所谓的YUV色彩空间表示。采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V信号分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的相容问题,使黑白电视机也能接收彩色电视信号。

优点作用

YUV主要用于优化彩色视频信号的传输,使其向后相容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的频宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是透过RGB输入信号来建立的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面─色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB信号亮度值之同的差异。

采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV 空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的兼容问题,使黑白电视机也能接收彩色电视信号。

YUV与RGB相互转换的公式如下(RGB取值范围均为0-255)︰

Y = 0.299R + 0.587G + 0.114B

U = -0.147R - 0.289G + 0.436B

V = 0.615R - 0.515G - 0.100B

R = Y + 1.14V

G = Y - 0.39U - 0.58V

B = Y + 2.03U

camera调试工具

一、ISO12233 Camera Resolution Chart

ISO12233分辨率测试标板遵照ISO12233的标准“摄影-电子照相画面-衡量方法"。这个测试标板在1 X 大小的这个活动区域,测量20 cm 高度只有约

0.1毫米的误差。他具有几乎大部分解析度卡所具有的特征。是数码相机与

手机摄像头品质测试的必备工具。可以提供实际拍摄的垂直分辨率和水平分辨率等辅助测试,采取统一拍摄角度和拍摄环境,分辩率的计算可以使用了HYRes软件,分开垂直分辨率和水平分辨率两部分进行。

ISO12233测试卡有以下3种规格

一倍标准卡200 x 178mm

两倍标准卡400 x 711mm

四倍标准卡800 x 1422mm

[upload=jpg]UploadFile/2007-3/07328@52RD_SHOP_PHOTO_B_2971736 0894.jpg[/upload][/COLOR]

一、ColorChecker 24色卡

ColorChecker标板有24个纯色块,从左到右再从上到下,分别标记为1-24。

所以又叫24色卡。

用途:ColorChecker常用于色彩还原与白平衡测试

对于色彩与白平衡的测试,我们采用了标准色卡ColorChecker在不同的环境下使用相应的白平衡模式拍摄进行比较,一方面可以观察机型对各种色彩的还原情况,另一方面可以观察他们的白平衡准确度。

白平衡共有自动白平衡、日光白平衡、阴影白平衡、钨丝灯白平衡、荧光灯白平衡、手动白平衡等6种模式。[/COLOR]

三,14524 Camera Contrast Chart

14524 Camera Contrast Chart 有12个独立不同程度的灰阶,灰度范围由0.10到2.30. 14524 OECF测试标板的测试信息,描述了Camera如何将Sensor感应的照度在图像中数字量化。他可以测试出最大对比度和动态范围,还有白平衡是否正常,不同灰接的信噪比,Camera的ISO速度如何。

[/COLOR]

[upload=jpg]UploadFile/2007-3/07329@52RD_14524.jpg[/upload]

四、灰阶卡

灰阶卡21阶,反射密度从0.05到3.05按照每阶0.1密度递增,每阶代表着1/3EV的曝光量,用来量化测试曝光、反射密度的工具,

[upload=jpg]UploadFile/2007-12/071210@52RD_sd.jpg[/upload]

五、美国Judge II灯箱

Judge II采用GretagMacbeth七种磷粉专利灯管,色温准确稳定,最适合用来判断颜色。

Judge II提供四种光源及UV光源,除可观察色变外,尚可Check是否含有萤光剂。[/COLOR] [upload=jpg]UploadFile/2007-11/071113@52RD_j2.jpg[/upload]

六、日本DNP Color View灯箱

DNP Colour Viewer用来提供评估数码相机和视频摄像头所需的光源。Colour viewer灯箱拥有可靠的

高频荧光发光技术,保证你的拥有完美图像[/COLOR]

[upload=jpg]UploadFile/2007-11/071113@52RD_colorview.jpg[/upload]

七、Imatest图像测试软件

Imatest是美国Imatest LCC公司开发的专业数码影响评测软件,涵盖了MTF、SQF、SFR 、色彩还原、杂讯、动态范围等图像指标测试,兼用于数码相机、打印机、扫描仪等进行完整测试内容。软件系统建立于著名的工程数学运算平台Matalab,具有相当高的可靠性,制图内容相当有深度。[/COLOR]

第二章-半导体中的杂质和缺陷能级Word版

第二章 半导体中杂质和缺陷能级 引言 1.实际半导体和理想半导体的区别 理想半导体 实际半导体 原子不是静止在具有严格周期性的晶格的格点上,而在其平衡位置附近振动 原子静止在具有严格周期性的晶格的格点上 半导体不是纯净的,含有若干杂质 半导体是纯净的,不含杂质 晶格结构不是完整的,含若干缺陷 晶格结构是完整的,不含缺陷 2.杂质的种类 根据杂质能级在禁带中的位置将杂质分为两种 浅能级杂质:能级接近导电底Ec 或价带顶Ev ; 深能级杂质:能级远离导带底Ec 或价带顶Ev ; 3.缺陷的种类 点缺陷,如空位、间隙原子; 线缺陷,如位错; 面缺陷,如层错、多晶体中的晶粒间界等 §2.1硅、锗晶体中的杂质能级 一、杂质与杂质能级 杂质:半导体中存在的与本体元素不同的其它元素。杂质出现在半导体中时,产生的附加势场使严格的周期性势场遭到破坏。单位体积中的杂质原子数称为杂质浓度。 杂质能级:杂质在禁带中引入的能级。 二、替位式杂质、间隙式杂质 杂质原子进入半导体后,有两种方式存在: 1.间隙式杂质:杂质原子位于晶格原子间的间隙位置,形成该种杂质时,要求其杂质原子比晶格原子小; 2.替位式杂质:杂质原子取代晶格原子而位于晶格点处,形成该种杂质时,要求其原子的大小与被取代的晶格原子的大小比较接近,而且二者的价电子壳层结构也比较接近。 三、施主杂质、施主能级(举例Si 中掺P) 如图所示,一个磷原子占据了硅原子的位置。磷原子有5个价电 子,其中4个价电子与周围的4个硅原子形成共价键,还剩余一个价 电子。同时,磷原子所在处也多余一个正电荷+q ,称这个正电荷为正 电中心磷离子(P +)。所以磷原子替代硅原子后,其效果是形成一个正 电中心P +和一个多余的价电子。这个多余的价电子就束缚在正电中心 P +的周围。但是,这种束缚作用比共价键的束缚作用弱得多,只要有很少 间隙式杂质 替位式杂质 硅中的施主杂质

五种计算机语言的特点与区别

php语言,PHP(PHP: Hypertext Preprocessor的缩写,中文名:“PHP:超文本预处理器”)是一种通用开源脚本语言。语法吸收了C语言、Java和Perl的特点,入门门槛较低,易于学习,使用广泛,主要适用于Web开发领域。 特性:PHP 独特的语法混合了C、Java、Perl 以及PHP 自创新的语法;PHP可以比CGI 或者Perl更快速的执行动态网页——动态页面方面,与其他的编程语言相比,PHP是将程序嵌入到HTML文档中去执行,执行效率比完全生成htmL标记的CGI要高许多,PHP具有非常强大的功能,所有的CGI的功能PHP都能实现;PHP支持几乎所有流行的数据库以及操作系统;最重要的是PHP可以用C、C++进行程序的扩展。 Java语言,Java是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由Sun Microsystems公司于1995年5月推出的Java程序设计语言和Java平台(即JavaSE, JavaEE, JavaME)的总称。 Java 技术具有卓越的通用性、高效性、平台移植性和安全性,广泛应用于个人PC、数据中心、游戏控制台、科学超级计算机、移动电话和互联网,同时拥有全球最大的开发者专业社群。在全球云计算和移动互联网的产业环境下,Java更具备了显著优势和广阔前景。 Java的优势,与传统程序不同,Sun 公司在推出Java 之际就将其作为一种开放的技术。全球数以万计的Java 开发公司被要求所设计的Java软件必须相互兼容。“Java 语言靠群体的力量而非公司的力量”是Sun公司的口号之一,并获得了广大软件开发商的认同。这与微软公司所倡导的注重精英和封闭式的模式完全不同。 Sun 公司对Java 编程语言的解释是:Java 编程语言是个简单、面向对象、分布式、解释性、健壮、安全与系统无关、可移植、高性能、多线程和动态的语言。 python语言,是一种面向对象、直译式计算机程序设计语言,Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。 常见的一种应用情形是,使用python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写。 Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。 Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard

域名解析教程

域名解析详细教程 域名解析是把域名指向网站空间IP,让人们通过注册的域名可以方便地访问到网站一种服务。域名解析也叫域名指向、服务器设置、域名配置以及反向IP登记等等。说得简单点就是将好记的域名解析成IP,服务由DNS服务器完成,是把域名解析到一个IP地址,然后在此IP地址的主机上将一个子目录与域名绑定。 英文名:DNSR(domain name system resolution) 在域名注册商那里注册了域名之后如何才能看到自己的网站内容,用一个专业术语就叫“域名解析”。在相关术语解释中已经介绍,域名和网址并不是一回事,域名注册好之后,只说明你对这个域名拥有了使用权,如果不进行域名解析,那么这个域名就不能发挥它的作用,经过解析的域名可以用来作为电子邮箱的后缀,也可以用来作为网址访问自己的网站,因此域名投入使用的必备环节是“域名解析”。 域名解析(17张) 我们知道域名是为了方便记忆而专门建立的一套地址转换系统,要访问一台互联网上的服务器,最终还必须通过IP地址来实现,域名解析就是将域名重新转换为IP 地址的过程。一个域名对应一个IP地址,一个IP地址可以对应多个域名;所以多个域名可以同时被解析到一个IP地址。域名解析需要由专门的域名解析服务器(DNS)来完成。解析过程,比如,一个域名为:***.com,是想看到这个现HTTP服务,如果要访问网站,就要进行解析,首先在域名注册商那里通过专门的DNS服务器解析到一个WEB服务器的一个固定IP上:211.214.1.***,然后,通过WEB服务器来接收这个域名,把***.com这个域名映射到这台服务器上。那么,输入***.com这个域名就可以实现访问网站内容了.即实现了域名解析的全过程;人们习惯记忆域名,但机器间互相只认IP地址,域名与IP地址之间是对应的,它们之间的转换工作称为域名解析,域名解析需要由专门的域名解析服务器来完成,整个过程是自动进行的。域名解析协议(DNS)用来把便于人们记忆的主机域名和电子邮件地址映射为计算机易于识别的IP地址。DNS是一种c/s的结构,客户机就是用户用于查找一个名字对应的地址,而服务器通常用于为别人提供查询服务。

真理的定义和特点以及谬误的区别

、真理的定义和特点以及谬误的区别 定义:真理是人们对客观事物及其规律的正确反映。 特点:1、真理具有客观性。真理的内容是客观的;检验真理的标准是客观的。 2、真理具有价值性。真理的价值性是指真理对人类实践活动的功能性,它揭示了客观真理具有能满足主体需要、对主体有用的属性。 9.资本循环和资本周转(资本循环的三个阶段三大职能,两大前提条件;资本周转的定义,影响周转的因素) 资本循环指产品资本从一定的形式出发,经过一系列形式的变化,又回到原来出发点的运动。产品资本在循环过程中要经历三个不同的阶段,于此相联系的是资本依次执行三种不同的职能: 第一个阶段是购买阶段,即生产资料与劳动力的购买阶段。它属于商品的流通过程,在这一阶段,产业资本执行的是货币资本的职能。 第二个阶段是生产阶段,即生产资料与劳动者相结合生产物质财富并使生产资本得以增值,执行的是生产资本的职能。 第三个阶段是售卖阶段,即商品资本向货币资本的转化阶段。在此阶段产业资本所执行的是商品资本的职能,通过商品买卖实现商品的价值,满足人们的需要。 资本循环必须具备两个基本前提条件: 一是产业资本的三种职能形式必须在空间上同时并存,也就是说,产业资本必须按照一定比例同时并存于货币资本、生产资本和商品资本三种形式中。 二是产业资本的三种职能形式必须在时间上继起,也就是说,产业资本循环的三种职能形式必须保持时间上的依次连续性。 资本周转是资本反复不断的循环运动所形成的周期性运动。 影响资本周转最重要的两个要素是:一是资本周转的时间;二是生产资本的固定资本和流动资本的构成。要加快资本周转的时间,获得更多的剩余价值,就要缩短资本周转时间,加快流动资本周转速度。 第五章 2.垄断条件下竞争的特点 竞争目的上,垄断竞争是获取高额利润,并不断巩固和扩大自己的垄断地位和统治权力;竞争手段上,垄断组织的竞争,除采取各种形式的经济手段外,还采取非经济手段,使经济变得更加复杂、更加激烈; 在竞争范围上,国际市场的竞争越来越激烈,不仅经济领域的竞争多种多样,而且还扩大到经济领域范围以外进行竞争。 总之,垄断条件下的竞争,不仅规模大、时间长、手段残酷、程度更加激烈,而且具有更大的破坏性。 3.金融寡头如何握有话语权 金融寡头在经济领域中的统治主要通过“参与制”实现。所谓参与制,即金融寡头通过掌握

实验一 半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 当腐蚀条件为铬酸腐蚀剂时,<100>晶面上呈正方形蚀坑,<110>晶面上呈菱形或矩形蚀坑,<111>晶面上呈正三角形蚀坑。(见图1)。

二晶体结构缺陷

1、说明下列符号的含义: V Na,V Na’,V Cl?,.(V Na’V Cl?),CaK?,CaCa,Cai?? 2、写出下列缺陷反应式: (1)NaCl溶入CaCl2中形成空位型固溶体; (2)CaCl2溶人NaC1中形成空位型固溶体; (3)NaCl形成肖脱基缺陷; (4)AgI形成弗仑克尔缺陷(Ag+进入间隙)。 3、MgO的密度是3.58克/厘米3,其晶格参数是0.42nm,计算单位晶胞MgO的肖脱基缺陷数。 4、(a)MgO晶体中,肖脱基缺陷的生成能为6eV,计算在25℃和1600℃时热缺陷的浓度。 (b)如果MgO晶体中,含有百万分之一摩尔的A12O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。 5、MgO晶体的肖特基缺陷生成能为84kJ/mol,计算该晶体在1000K和1500K的缺陷浓度。 6、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值。 7、非化学计量缺陷的浓度与周围气氛的性质、压力大小相关,如果增大周围氧气的分压,非化学计量化合物Fe1-X O及Zn1+X O的密度将发生怎么样的变化?增大还是减小?为什么? 8、对于刃位错和螺位错,区别其位错线方向、柏氏矢量和位错运动方向的特点。 9、图2.1是晶体二维图形,内含有一个正刃位错和一个负刃位错。 (a)围绕两个位错柏格斯回路,最后得柏格斯矢量若干? (b)围绕每个位错分别作柏氏回路,其结果又怎样? 10、有两个相同符号的刃位错,在同一滑移面上相遇,它们将是排斥还是吸引? 11、晶界对位错的运动将发生怎么样的影响?能预计吗? 12、晶界有小角度晶界与大角度晶界之分,大角度晶界能用位错的阵列来描述吗? 13、试述影响置换型固溶体的固溶度的条件。

功能和特点的区别Excel的主要功能和特点

功能和特点的区别Excel的主要功能和特点 Excel的主要功能和特点 Excel电子表格是office系列办公软的-种,实现对日常生活、工作中的表格的数据处理。它通过友好的人机界面,方便易学的智能化操作方式,使用户轻松拥有实用美观个性十足的实时表格,是工作、生活中的得力助手。 一、Excel功能概述; 1、功能全面:几乎可以处理各种数据 2、操作方便:菜单、窗口、对话框、工具栏 3、丰富的数据处理函数 4、丰富的绘制图表功能:自动创建各种统计图表 5、丰富的自动化功能:自动更正、自动排序、自动筛选等 6、运算快速淮确: 7、方便的数据交换能力 8、新增的Web工具 二、电子数据表的特点Excel 电子数据表软工作于Windows平台,具有Windows环境软的所有优点。而在图形用户界面、表格处理、数据分析、图表制作和网络信息共享等方面具有更突出的特色。工.图形用户界面Excel 的图形用户界面是标准的Windows的窗口形式,有控制菜单、最大化、最小化按钮、标题栏、菜单栏等内容。其中的

菜单栏和工具栏使用尤为方便。菜单栏中列出了电子数据表软的众多功能,工具栏则进一步将常用命令分组,以工具按钮的形式列在菜单栏的下方。而且用户可以根据需要,重组菜单栏和工具栏。在它们之间进行复制或移动操作,向菜单栏添加工具栏按钮或是在工具栏上添加菜单命令,甚至定义用户自己专用的菜单和工具栏。当用户操作将鼠标指针停留在菜单或工具按钮时,菜单或按钮会以立体效果突出显示,并显示出有关的提示。而当用户操作为单击鼠标右键时,会根据用户指示的操作对象不同,自动弹出有关的快捷菜单,提供相应的最常用命令。为了方便用户使用工作表和建立公式,Excel 的图形用户界面还有编辑栏和工作表标签。. 2.表格处理 Excel的另-个突出的特点是采用表格方式管理数据,所有的数据、信息都以二维表格形式(工作表)管理,单元格中数据间的相互关系一目了然。从而使数据的处理和管理更直观、更方便、更易于理解。对于曰常工作中常用的表格处理操作,例如,增加行、删除列、合并单元格、表格转置等操作,在Excel中均只需询单地通过菜单或工具按钮即可完成。此外Excel还提供了数据和公式的自动填充,表格格式的自动套用,自动求和,自动计算,记忆式输入,选择列表,自动更正,拼写检查,审核,排序和筛选等众多功能,可以帮助用户快速高效地建立、编辑、编排和管理各种表格。

实验一 半导体材料的缺陷显示及观察资料讲解

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 仅供学习与交流,如有侵权请联系网站删除谢谢2

易名域名解析教程

设置域名解析?(www和泛解析) 登陆ID后,可以通过“管理中心——用户菜单——域名管理——域名管理——(请输入条件查询信息)——列出所有域名——(找到对应域名)——[管理]——解析管理”进入“域名控制面板”操作设置。 1)登录ID,进入管理中心“用户菜单——域名管理”。 2)在输入条件查询信息中输入关键字,通过“域名类型”“注册模版”“域名分类”“域名状态”等多种方式或选择其中一种后,点击“查询”来查找域名。(注:可以直接点击“查询”列出所有域名)

3)查找到需要解析的域名后,点击域名后的[管理]按钮,即可进行相应操作。 4)在域名管理页面中选择“解析管理”进入域名解析操作界面。

5)按照图示进行设定之后,点击新增一条,即可完成域名解析。 例如域名:https://www.sodocs.net/doc/1816589124.html,,主机名设置*(泛解析),类型A,IP地址即为您主机的IP,设置后即可以任何前缀+域名进行访问,如 https://www.sodocs.net/doc/1816589124.html,或https://www.sodocs.net/doc/1816589124.html,等等;主机名为空(没有填写任何字符),类型A,IP地址即为您主机的IP,设置后是以域名直接访问;如 https://www.sodocs.net/doc/1816589124.html, 主机名为www,类型A,IP地址即为您主机的IP,设置后是以www+域名进行访问,如https://www.sodocs.net/doc/1816589124.html,。

如何设置别名记录(CNAME)? 登录ID后,可以通过“管理中心——用户菜单——域名管理——域名管理——(请输入条件查询信息)——列出所有域名——(找到对应域名)——[管理]——解析管理”进入“域名控制面板”操作设置别名记录。 1)登录ID,进入管理中心“用户菜单——域名管理”。

2)在输入条件查询信息中输入关键字,通过“域名类型”“注册模版”“域名分类”“域名状态”等多种方式或选择其中一种后,点击“查询”来查找域名。(注:可以直接点击“查询”列出所有域名) 3)查找到需要设置别名记录的域名后,点击域名后的[管理]按钮,即可进入域名管理页面。

各类格式的特点区分

在用各类软件设计时相信大家肯定存在着这样的问题,各种各样的格式让大家很是迷惑。没关系,福利来了,这里就给大家介绍了各种格式的特点应用。 TIFF格式 标签图像文件格式(Tagged Image File Format,简写为TIFF) 是一种主要用来存储包括照片和艺术图在内的图像的文件格式。它最初由Aldus公司与微软公司一起为PostScript 打印开发.TIFF文件格式适用于在应用程序之间和计算机平台之间的交换文件,它的出现使得图像数据交换变得简单。 TIFF是最复杂的一种位图文件格式。TIFF是基于标记的文件格式,它广泛地应用于对图像质量要求较高的图像的存储与转换。由于它的结构灵活和包容性大,它已成为图像文件格式的一种标准,绝大多数图像系统都支持这种格式。用Photoshop 编辑的TIFF文件可以保存路径和图层。 应用广泛 (1)TIFF可以描述多种类型的图像;(2)TIFF拥有一系列的压缩方案可供选择;(3)TIFF 不依赖于具体的硬件;(4)TIFF是一种可移植的文件格式。 可扩展性 在TIFF 6.0中定义了许多扩展,它们允许TIFF提供以下通用功能:(1)几种主要的压缩方法;(2)多种色彩表示方法;(3)图像质量增强;(4)特殊图像效果;(5)文档的存储和检索帮助。 格式复杂 TIFF文件的复杂性给它的应用带来了一些问题。一方面,要写一种能够识别所有不同标记的软件非常困难。另一方面,一个TIFF文件可以包含多个图像,每个图像都有自己的IFD 和一系列标记,并且采用了多种压缩算法。这样也增加了程序设计的复杂度。 文档图像中的TIFF TIFF格式是文档图像和文档管理系统中的标准格式。在这种环境中它通常使用支持黑白(也称为二值或者单色)图像的CCITT Group IV 2D压缩。在大量生产的环境中,文档通常扫描成黑白图像(而不是彩色或者灰阶图像)以节约存储空间。A4大小200dpi(每英寸点数分辨率)扫描结果平均大小是30KB,而300dpi的扫描结果是50KB。300dpi比200dpi更

半导体晶体缺陷

半导体晶体缺陷 创建时间:2008-08-02 半导体晶体缺陷(crystal defect of semiconductor) 半导体晶体中偏离完整结构的区域称为晶体缺陷。按其延展的尺度可分为点缺陷、线缺陷、面缺陷和体缺陷,这4类缺陷都属于结构缺陷。根据缺陷产生的原因可分为原生缺陷和二次缺陷。从化学的观点看,晶体中的杂质也是缺陷,杂质还可与上述结构缺陷相互作用形成复杂的缺陷。一般情况下,晶体缺陷是指结构缺陷。 点缺陷(零维缺陷)主要是空位、间隙原子、反位缺陷和点缺陷复合缺陷。 空位格点上的原子离开平衡位置,在晶格中形成的空格点称为空位。离位原子如转移到晶体表面,在晶格内部所形成的空位,称肖特基空位;原子转移到晶格的间隙位置所形成的空位称弗兰克尔空位。 间隙原子位于格点之间间隙位置的原子。当其为晶体基质原子时称为自间隙原子,化合物半导体MX晶体中的白间隙原子有Mi、Xi两种。 反位缺陷化合物半导体晶体MX中,X占M位,或M占X位所形成的缺陷,记作M X ,X M 。 点缺陷的复合各种点缺陷常可形成更复杂的缺陷,空位或间隙原子常可聚集成团,这些团又可崩塌成位错环等。例如硅单晶中有:双空位、F中心(空位-束缚电子复合体),E中心(空位-P原子对),SiO 2团(空位-氧复合体),雾缺陷(点缺陷-金属杂质复合体)。 硅单晶中主要点缺陷有空位、自间隙原子、间隙氧、替位碳、替位硼、替位铜,间隙铜等。 化合物如GaAs单晶中点缺陷有镓空位(v Ga )、砷空位(V As )、间隙镓(G ai ),间隙砷(A Si )、镓占砷位(As Ga )、 砷占镓位(Ga As )等,这些缺陷与缺陷、缺陷与杂质之间发生相互作用可形成各种复合体。 GaAs中的深能级。砷占镓位一镓空位复合体(As Ga v Ga )、镓占砷位一镓空位复合体(Ga As v Ga )在GaAs中形 成所谓A能级(0.40eV)和B能级(0.71eV)分别称作HB 2、HB 5 ,它们与EL 2 是三个GaAs中较重要的深能级, 这些深能级与某类缺陷或缺陷之间反应产物有关,EL 2是反位缺陷AsGa或其复合体As Ga v Ga V As 所形成,为非 掺杂半绝缘GaAs单晶和GaAs VPE材料中的一个主要深能级,能级位置是导带下0.82eV(也可能由一族深能级所构成),其浓度为1016cm-3数量级,与材料的化学配比和掺杂浓度有关。 线缺陷(一维缺陷)半导体晶体中的线缺陷主要是位错。晶体生长过程中由于热应力(或其他外力)作用,使晶体中某一部分(沿滑移面)发生滑移,已滑移区与未滑移区的分界线叫位错线,简称为位错。以位错线与其柏格斯矢量的相对取向来区分位错的类型,两者相互垂直叫刃型位错,两者平行的叫螺型位错,否则叫混合位错。混合位错中较常见的有60℃位错,30℃位错。 滑移了一个原子间距所形成的位错又叫全位错,否则叫不全位错。 由于形成直线位错所需能量较高,因此晶体中的位错大都是位错环;位错环又分棱柱位错环和切变位错环两种。

产品特性与过程特性的区别

产品特性与过程特性得区别 如果说产品特性从安全、法规、性能、尺寸、外观、装配等方面考虑,过程特性仅从产品形成过程中得参数(温度、压力、电压、电流)等考虑就是不就是很准确呢??欢迎大家讨论,敬请指教! 简单得讲,产品特性就是随着产品走,如过程加工中产品得尺寸、材料等,?过程特性就是在过程上不随产品走得东西,如工艺参数温度、压力等、 我一般就是作这样得区分、 产品特性能做spc,过程特性不能 产品特性一般就是指产品工程规范得要求;过程特性可以指工艺(过程)参数 过程特性保证产品特性 虽然大家说得都对,但就是怎样确定产品与过程得特殊特性呢?就是不就是特殊特性都要采用SPC控制或100%控制或防差错系统? ?通过fmea来确定得!根据过程得风险以及顾客得呼声来确定控制方法! 特性矩阵分析-初始特殊特性清单-FMEA-控制计划? 还就是:特性矩阵分析-FMEA-初始特殊特性清单--控制计划? 第一阶段: 确定初始过程特殊特性清单FMA分析 第二阶段?样件控制计划产品与过程特殊特性 第三阶段 特性矩阵图试生产控制计划PFMEA?第四阶段:?控制计划 产品特性,随着产品走,就是在过程中形成得,而过程特性不随产品走,我们只有通过过程特性来控制产品特性。而控制产品特性包括人、机、法、环、测与过程规范,故这些都就是过程特性;产品特性可以从料、技术要求、技术规范进行考虑。谁有更深层次得讨论,请指教。 更正一下。?初始特殊特性清单-特性矩阵分析-PFMEA-控制计划先有特殊特性,才有特性矩阵分析。体现特性与过程之间得相互关系及特性之间得影响。 产品特性与过程特性得区别:用过程特性去保证产品特性啊!产品特性就是要带到最总顾客得手里啊!而过程特性就是在过程中为保证产品得特性而对过程设置得特性,过程控制主要控制“过程特性啊” 特殊特性释义? 以下就是我对特殊特性得一些见解,希望能够得到大家得评论!也就是为了“特殊特性清单就是越来越长还就是越来越短”得讨论而作 特殊特性就是APQP得核心。无论就是QS9000还就是TS16949,其实对于特殊特性得解释与理解就是一样得。不同得就是QS9000着重阐明了通用、福特、克莱斯勒三大车厂得特殊要求。如对特性得等级分类以及特性符号标记。而TS16949则体现得就是大众化得,灵活得,可根据顾客而定得特性要求。?现在就以TS16949体系中对于特殊特性得理解来展开说明,一直推广到QS9000中得特殊要求。 TS16949中特殊特性得出处说明!? TS16949有两处地方出现过特殊特性。 第一处: 7.2.1、1顾客指定得特殊特性?组织必须在特殊特性得指定、文件化、与控制方面符合客户得所有要求。 解释:也就就是说凡就是客户指定得特殊特性,应在相关文件中体现。?相关文件有:设计FMEA、过程FMEA、控制计划、作业指导书、检验规范等 在上述文件中应作特殊特性符号得标记。

消息与通讯的特点与区别

消息与通讯的特点与区别 1、消息的特点 什么是消息。消息主要告诉人们发生什么事情(包括新的情况、经验、问题等),往往只报道事情的概貌而不讲详细的经过和情节,是以简要的语言文字迅速传播新近事实的新闻体裁,也是最广泛、最经常采用的新闻基本体裁。 消息按事实性质分类,可分为事件性新闻和非事件性新闻;按报道内容分,可以分为经济新闻、社会新闻、人物新闻和政治新闻;按写作特点分,可分为特写式消息、目击新闻、解释性报道和背景报道;按篇幅长短分,可分为简讯、一句话新闻、标题新闻;按写作形式分,可以分为动态消息、经验性消息、综合消息和述评性消息;其他的消息形式还有公报式消息,答记者问等。 消息体裁的特征: 一是比较短,多为几百字,内容简明扼要,文字干净利落; 二是常有一段导语,开门见山,吸引读者(听众、观众); 三是叙事朴实,实在,通常一事一报,讲究用事实说话; 四是时间性强,注重时效,报道快速及时; 五是基本表达方法是叙述,而且多为概括的叙述,但不能概念化。 六是结构严密,层次分明。一般是按照事物的内在联系,把最重要、最新鲜的事实写在最前面,然后再写次要的,更次要的;也可以依照事物的产生、发展、变化的顺序来写,但要突出主要部分。 七是交代必要的背景。写清楚被报道事物的历史背景,事件发生、发展、变化的环境,条件以及与其它事物的联系。目的是通过比较、衬托,更鲜明的阐述事物的意义。 在写作过程中,经验性消息实用价值比较大。经验性消息是反映某地区或某单位在执行党和国家路线、方针政策中,所取得的典型经验、成功做法及其显著效果的一种新闻体裁。它是典型报道的一种,用以推动全局,指导工作。 2、通讯的特点 通讯也是一种常用的新闻体裁,是对新闻事件、人物和各种见闻的比较详尽的生动报道。它不仅告诉人们发生了什么事,而且交待事情的来龙去脉,以及情节、细节和有关的环境气氛。 通讯常分为人物通讯、事件通讯、工作通讯、风貌通讯等。我们用得较多的是人物通讯和工作通讯。人物通讯是写先进工作者、劳动模范以影响大家带动大家的一种通讯,工作通讯是反映并指导实际工作的一种通讯,它通过事实的报道,分析当前

[试论秘书工作的性质和特点] 性质和特点的区别

[试论秘书工作的性质和特点] 性质和特点 的区别 秘书工作的性质、特点和作用是个旧题。自秘书学诞生以来,接连问世的论著几乎都要论及,相关的单篇论文亦屡见不鲜。但时至今日,旧题缘何新做呢?首先,是性质同特点两个概念重叠混淆,它们的关系没有作出科学的阐释。 再者,性质、特点与作用相关的提法,也有重叠之感。 出现上述现象的原因何在呢?1.用日常概念或直观感性经验来代替科学的理论概念。 2.从秘书部门的单项任务去相应地提出单个的性。这是一种就事论事的思想方法,缺乏必要的概括和抽象,其结果,秘书工作的性自然很多了。3.对性质、特点的联系和区别及其相互关系缺乏科学的理解,甚至出现了本末倒置的现象。这里有两个问题,其一,是性质决定特点,还是特点决定性质?其二,承办事务是秘书工作的基本性质吗?4.作者的主观随意性,移植管理科学的有关概念,缺乏必要的正确的阐释。 二、旧题新做的基本依据1.考察秘书工作的性质、特点和作用要以行政组织法为指导。 2.从国家行政机关的系统性宏观地考察秘书工作的性质、特点和作用。3.要把日常观念或直观经验概念提炼上升为科学的理论概念。 三、旧题新做之我见秘书工作的性质、特点和作用属

于秘书学的基本概念,而基本概念正是奠定概念体系的理论基础。 本质和特点是既有联系又有区别的两个概念:本质概括了事物特点的主要方面,而特点是事物某一方面的本质表现。是本质决定特点而不是特点决定本质,对于秘书工作的特点,我以为提以下四个就可以了: 1.政策性。2.综合性。3.服务性。 4.机要性。上述四个主要特点,都是从辅助性那个主要的东西派生出来,既与本质相通,又是某一方面的本质反映。

产品特性与过程特性的区别

产品特性和过程特性的区别如果说产品特性从安全、法规、性能、尺寸、外观、装配等方面考虑,过程特性仅从产品形成过程中的参数(温度、压力、电压、电流)等考虑是不是很准确呢? 欢迎大家讨论,敬请指教! 简单的讲, 产品特性是随着产品走,如过程加工中产品的尺寸.材料等, 过程特性是在过程上不随产品走的东西,如工艺参数温度.压力等. 我一般是作这样的区分. 产品特性能做spc, 过程特性不能产品特性一般是指产品工程规范的要求;过程特性可以指工艺(过程)参数过程特性保证产品特性 虽然大家说的都对,但是怎样确定产品和过程的特殊特性呢?是不是特殊特性都要采用SPC 控制或100% 控制或防差错系统? 通过fmea 来确定的!根据过程的风险以及顾客的呼声来确定控制方法! 特性矩阵分析-初始特殊特性清单-FMEA- 控制计划? 还是:特性矩阵分析-FMEA- 初始特殊特性清单--控制计划? 第一阶段: 确定初始过程特殊特性清单FMA 分析 第二阶段 样件控制计划产品和过程特殊特性 第三阶段 特性矩阵图试生产控制计划PFMEA 第四阶段: 控制计划产品特性,随着产品走,是在过程中形成的,而过程特性不随产品走,我们只有通过过程特性来控制产品特性。而控 制产品特性包括人、机、法、环、测和过程规范,故这些都是过程特性;产品特性可以从料、技术要求、技术规范进行考虑。 谁有更深层次的讨论,请指教。 更正一下。 初始特殊特性清单-特性矩阵分析-PFMEA- 控制计划先有特殊特性,才有特性矩阵分析。体现特性和过程之间的相互关系及特性之间的影响。产品特性和过程特性的区别:用过程特性去保证产品特性啊!产品特性是要带到最总顾客的手里啊!而过程特性是在过程中为保证产品的特性而对过程设置的特性,过程控制主要控制“过程特性啊” 特殊特性释义 以下是我对特殊特性的一些见解,希望能够得到大家的评论!也是为了“特殊特性清单是越来越长还是越来越短”的 讨论而作 特殊特性是APQP 的核心。无论是QS9000 还是TS16949 ,其实对于特殊特性的解释和理解是一样的。不同的是 QS9000 着重阐明了通用、福特、克莱斯勒三大车厂的特殊要求。如对特性的等级分类以及特性符号标记。而TS16949 则体现的是大众化的,灵活的,可根据顾客而定的特性要求。 现在就以TS16949 体系中对于特殊特性的理解来展开说明,一直推广到QS9000 中的特殊要求。 TS16949 中特殊特性的出处说明! TS16949 有两处地方出现过特殊特性。 第一处: 7.2.1.1 顾客指定的特殊特性组织必须在特殊特性的指定、文件化、和控制方面符合客户的所有要求。 解释:也就是说凡是客户指定的特殊特性,应在相关文件中体现。 相关文件有:设计FMEA、过程FMEA、控制计划、作业指导书、检验规范等在上述文件中应作特殊特性符号的标记。 第二处: 7.3.2.3 特殊特性组织必须应用适当的方法确定特殊特性。

半导体结晶学-典型晶体结构及电子材料-06

第五章 典型半导体材料及电子材料晶体 结构特点及有关性质 5.1 典型半导体材料晶体结构类型 5.2 半导体材料晶体结构与性能 5.3 电子材料中其他几种典型晶体结构 5.4 固溶体晶体结构 5.5 液晶的结构及特征 5.6 纳米晶体的结构及特征 2013-12-81

5.1.1 金刚石型结构 硅 Si:核外电子数14,电子排布式方式为 1s2 2s22p6 3s23P2 锗Ge:核外电子数32,电子排布式方式为 1s2 2s22p6 3s23p63d104s24p2 在Si原子与Si原子,Ge原子与Ge原子相互作用构成Si、Ge晶体时,由于每个原子核对其外层电子都有较强的吸引力。又是同一种原子相互作用,因此原子之间将选择共价键方式结合。 电负性:X Si= X Ge=1.8,⊿X = 0, ∴形成非极性共价键 2013-12-83

为了形成具有8个外层电子的稳定结构,必然趋于与邻近的四个原子形成四个共价键。由杂化理论可知,一个s轨道和三个p轨道杂化,结果产生四个等同的sp3杂化轨道,电子云的方向刚好指向以原子核为中心的正四面体的四个顶角,四个键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11所示。 图5.1.1 SP3杂化轨道方向 2013-12-84

每个原子都按此正四面体键,彼此以共价键结合在一起,便形成如图5.1.2和图5.1.3所示的三维空间规则排列结构—金刚石性结构。金刚石型结构的晶体具有Oh群的高度对称性。(对称中心在哪里? 答案 ) 2013-12-85

5.1.2 闪锌矿结构 化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以GaAs为例介绍其结构特点。 Ga 的原子序数 31,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 电负性:X Ga =1.6,X As=2.0,电负性差⊿X=0.4 <1.5。 ∴形成共价键(极性共价键) 。 2013-12-86

服务和商品的四个特性区别

服务与商品的区别在于下面所讲的四个服务特征: [服务无形性] 指服务在被购买之前是看不见、尝不到、抓不着、听不到也闻不出的。例如,人们在做美容手术之前是看不见成效的,航空公司的乘客除了一张飞机票和安全到达目的地的承诺之外什么也没有。 为了降低不确定性,购买者纷纷寻找服务质量的“标志”。他们的结论得自于他们所能看到的场所、人员、设备和通信状况。因此,服务提供者的任务是使服务在一个或几个方面有形化。与产品营销人员努力在增加有形产品的无形成分正好相反,服务营销人员努力增加的是无形产品的有形成分。 有形产品通过生产,然后存储、销售,最终被消费掉。与此形成对比的是,服务是先被销售,然后同时被生产和消费。 [服务不可分性] 指服务不能与服务提供者分离,不管这些提供者是人还是机器。如果服务人员提供了服务,那么这位服务人员便是服务的一部分。由于顾客在服务进行时也在场,所以提供者和顾客之间的相互作用成为服务营销的一大特色。提供者和顾客都会影响到服务的结果。 [服务可变性(或不一致性、易变性)] 指服务的质量取服务的人员,以及时间、地点和方式。例如一些饭店,比如香格里拉饭店,因提供较好的服务而著称。还有,即使是在同一家香格里拉饭店中,一位登记台服务人员可能笑容可掬、效率很高,而离他几英尺远的一位服务人员可能正心情不佳,效率也很低。甚至同一个香格里拉服务人员的服务也会因他或她在接待顾客时心情的好坏而导致服务质量大不相同。 [服务没有存货性] 因为服务是一行动或一次表演,而不是顾客可以保留的一件有形的物品,所以它是“易腐的”和不能被储存的。当然,必要的场地、设备和劳动能够被事先准备好以创造服务,但这些仅仅代表生产能力,而不是产品本身。 在服务企业中拥有未被使用的能力就像水流进水槽却没有塞子:除非顾客(或需要服务的物体)在那里接水,否则水就被浪费了。当需求超过能力时,顾客会失望地离开,因为没有存货提供支持。因此,服务营销人员的一项重要任务就是要找到平衡需求水平的方法,以适应服务的供应能力

产品特性与过程特性的区别

产品特性和过程特性的区别 如果说产品特性从安全、法规、性能、尺寸、外观、装配等方面考虑,过程特性仅从产品形成过程中的参数(温度、压力、电压、电流)等考虑是不是很准确呢? 欢迎大家讨论,敬请指教! 简单的讲,产品特性是随着产品走,如过程加工中产品的尺寸.材料等, 过程特性是在过程上不随产品走的东西,如工艺参数温度.压力等. 我一般是作这样的区分. 产品特性能做spc,过程特性不能 产品特性一般是指产品工程规范的要求;过程特性可以指工艺(过程)参数 过程特性保证产品特性 虽然大家说的都对,但是怎样确定产品和过程的特殊特性呢?是不是特殊特性都要采用SPC控制或100%控制或防差错系统? 通过fmea来确定的!根据过程的风险以及顾客的呼声来确定控制方法! 特性矩阵分析-初始特殊特性清单-FMEA-控制计划? 还是:特性矩阵分析-FMEA-初始特殊特性清单--控制计划? 第一阶段: 确定初始过程特殊特性清单FMA分析 第二阶段 样件控制计划产品和过程特殊特性 第三阶段 特性矩阵图试生产控制计划PFMEA 第四阶段: 控制计划 产品特性,随着产品走,是在过程中形成的,而过程特性不随产品走,我们只有通过过程特性来控制产品特性。而控制产品特性包括人、机、法、环、测和过程规范,故这些都是过程特性;产品特性可以从料、技术要求、技术规范进行考虑。 谁有更深层次的讨论,请指教。 更正一下。 初始特殊特性清单-特性矩阵分析-PFMEA-控制计划先有特殊特性,才有特性矩阵分析。体现特性和过程之间的相互关系及特性之间的影响。 产品特性和过程特性的区别:用过程特性去保证产品特性啊!产品特性是要带到最总顾客的手里啊!而过程特性是在过程中为保证产品的特性而对过程设置的特性,过程控制主要控制“过程特性啊” 特殊特性释义 以下是我对特殊特性的一些见解,希望能够得到大家的评论!也是为了“特殊特性清单是越来越长还是越来越短”的讨论而作 特殊特性是APQP的核心。无论是QS9000还是TS16949,其实对于特殊特性的解释和理解是一样的。不同的是QS9000着重阐明了通用、福特、克莱斯勒三大车厂的特殊要求。如对特性的等级分类以及特性符号标记。而TS16949则体现的是大众化的,灵活的,可根据顾客而定的特性要求。 现在就以TS16949体系中对于特殊特性的理解来展开说明,一直推广到QS9000中的特殊要求。 TS16949中特殊特性的出处说明! TS16949有两处地方出现过特殊特性。

网站域名绑定和域名解析详细讲解

域名绑定和域名解析详解 如何获得IP地址? 微企点后台系统为您随机分配主机空间IP地址: 上图右侧红色框框里面那串数字就是IP地址,这个IP地址是随机分配的,请以你看到的IP地址为准。 1、什么是域名绑定? 域名绑定之后并且做完域名解析,浏览者就可以直接通过设置好的域名直接访问了, 例如:在微企点后台中点击“添加域名”,填写.wqdian.,设置之后就可以直接通过该域名访问到您的。 域名绑定在微企点后台完成 2、什么是域名解析? 域名解析是把域名指向IP,让人们通过注册的域名可以方便地访问到一种服务。IP地址是网络上标识站点的数字地址, 为了方便记忆,采用域名来代替IP地址标识站点地址。域名解析就是域名到IP地址的转换过程。域名的解析工作由DNS服务器完成。 域名解析在域名注册商后台或解析服务后台完成 提示:对于先绑定域名还是先域名解析,并没有定论,但建议先进行域名绑定操作。 3、如何设置解析域名? 这里以万网、易名、新网、西部数码、时代互联为例。 特别提醒:www和不带www的网址需要分别解析 一、记录类型「A记录」(要将域名指向主机服务商提供的IP地址,请选择「A记录」)

1、万网 1)首先登录,进入会员中心,点击左侧“我的域名”,选择对应域名后方的“解析”,进入域名解析界面 2)域名解析界面,点击“进入高级设置” 3)进入域名解析高级设置界面 第1步:点击“添加解析” 第2步:选择记录类型“A”记录,设置主机记录为所需容. 第3步:填写记录值 (该IP是微企点为您提供的主机空间IP地址,方法请见上方文章顶端)

完成以上3项后,点击“保存”。一般10分钟到两个小时便可以解析完成。最长不超过6个小时。 备注:TTL指各地DNS缓存您域名记录信息的时间,默认为10分钟(600)。 2、易名 1)、首先登录,点击左上角的“用户名”进入管理中心。 2)、点击管理中心左侧的“域名管理”,点击对应域名后的“解析”

产品特性与过程特性的区别

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 产品特性和过程特性的区别 如果说产品特性从安全、法规、性能、尺寸、外观、装配等方面考虑,过程特性仅从产品形成过程中的参数(温度、压力、电压、电流)等考虑是不是很准确呢? 欢迎大家讨论,敬请指教! 简单的讲,产品特性是随着产品走,如过程加工中产品的尺寸.材料等, 过程特性是在过程上不随产品走的东西,如工艺参数温度.压力等. 我一般是作这样的区分. 产品特性能做spc,过程特性不能 产品特性一般是指产品工程规范的要求;过程特性可以指工艺(过程)参数 过程特性保证产品特性 虽然大家说的都对,但是怎样确定产品和过程的特殊特性呢?是不是特殊特性都要采用SPC控制或100%控制或防差错系统? 通过fmea来确定的!根据过程的风险以及顾客的呼声来确定控制方法! 特性矩阵分析-初始特殊特性清单-FMEA-控制计划? 还是:特性矩阵分析-FMEA-初始特殊特性清单--控制计划? 第一阶段: 确定初始过程特殊特性清单FMA分析 第二阶段 样件控制计划产品和过程特殊特性 第三阶段 特性矩阵图试生产控制计划PFMEA 第四阶段: 控制计划 产品特性,随着产品走,是在过程中形成的,而过程特性不随产品走,我们只有通过过程特性来控制产品特性。而控制产品特性包括人、机、法、环、测和过程规范,故这些都是过程特性;产品特性可以从料、技术要求、技术规范进行考虑。 谁有更深层次的讨论,请指教。 更正一下。 初始特殊特性清单-特性矩阵分析-PFMEA-控制计划先有特殊特性,才有特性矩阵分析。体现特性和过程之间的相互关系及特性之间的影响。 产品特性和过程特性的区别:用过程特性去保证产品特性啊!产品特性是要带到最总顾客的手里啊!而过程特性是在过程中为保证产品的特性而对过程设置的特性,过程控制主要控制“过程特性啊” 特殊特性释义 以下是我对特殊特性的一些见解,希望能够得到大家的评论!也是为了“特殊特性清单是越来越长还是越来越短”的讨论而作 特殊特性是APQP的核心。无论是QS9000还是TS16949,其实对于特殊特性的解释和理解是一样的。不同的是QS9000着重阐明了通用、福特、克莱斯勒三大车厂的特殊要求。如对特性的等级分类以及特性符号标记。而TS16949

相关主题