搜档网
当前位置:搜档网 › 图像恢复的一种快速迭代正则化方法

图像恢复的一种快速迭代正则化方法

图像恢复的一种快速迭代正则化方法
图像恢复的一种快速迭代正则化方法

盲目图像复原算法研究背景意义现状及趋势

盲目图像复原算法研究背景意义现状及趋势 1图像复原算法的研究意义和背景 (1) 2盲目图像复原方法研究现状 (2) 3盲目图像复原方法发展趋势 (3) 1图像复原算法的研究意义和背景 数字图像处理这门学科的形成也是和社会生产力发展的需要分不开的。早期的图像处理是由于通讯方面的要求而发展起来的,这就是本世纪20年代传真技术的发明和发展。其后,由于宇宙探索方面的要求,需要处理大量在宇宙探测器上拍摄下来的不清楚的其他天体(如月球、火星等)以及地球本身的照片,这些需求大大的促进了数字图像处理技术的发展。到现在,图像处理技术的发展,己经远远突破了这两个领域,被广泛地应用到科学研究、工农业生产、军事技术、政府部门、医疗卫生等许多领域。图像复原算法的研究是数字图像处理中非常重要的一个领域,它的研究成果也被广泛地应用到各个研究和生产领域。在图像成像的过程中,图像系统中存在着许多退化源。一些退化因素只影响一幅图像中某些个别像素点的灰度;而另外一些退化因素则可以使一幅图像中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。此外还有数字化器、显示器、时间、彩色,以及化学作用引起的退化。总之,使图像发生退化的原因很多,如果我们把退化模型简化成真实图像与一个卷积算子卷积的结果,那么图像的复原过程就可以看成是一个反卷积的问题。反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。因此,由于采集图像受噪声的影响,最后对于图像的复原结果可能偏离真实图像非常远。由于以上的这些特性,盲图像复原的过程无论是理论分析或是数值计算都有特定的困难。但由于盲图像复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。随着多媒体技术的发展,计算机网络技术的广泛应用和宽带信息网络的建立,信息在人们的工作、学习和生活中发挥越来越重要的作用,其中最直接最主要的信息是图像信息,在各类图像系统中,由于图像的传送和转换,如成像、复制扫描、传输、显示等,总要造成图像的降质,典型的表现为图像模糊、失真、有噪声等,而在众多的应用领域中,又需要清晰的、高质量的图像。因此,改善图像质量,恢复图像具有非常重要的意义。

等式约束对病态问题的影响及约束正则化方法_谢建

第40卷第10期2015年10月武汉大学学报·信息科学版 Geomatics and Information Science of Wuhan University Vol.40No.10 Oct.2015 收稿日期:2013-12- 10项目来源:国家自然科学基金资助项目(41274010 )。第一作者:谢建,博士生,主要从事测量平差与测量数据处理研究。E-mail:xiej ian@csu.edu.cnDOI:10.13203/j.whugis20130764文章编号:1671-8860(2015)10-1344- 05等式约束对病态问题的影响及约束正则化方法 谢 建1 朱建军1 1 中南大学地球科学与信息物理学院,湖南长沙,410083 摘 要:有效利用参数间已知的等式约束信息能够提高最小二乘解的精度,消除秩亏,但是等式约束能否消除或减弱平差模型的病态性尚不明了, 由此提出了一种通过消除部分参数将等式约束病态问题转化为无约束问题的方法。然后分析了等式约束对病态问题的影响,用简单实例证明了加入约束后,系统可能呈现良态或病态,它的性态由原设计阵和等式约束共同决定,并提出了求解等式约束病态问题的诊断-正则化两步方法。最后用一个数值实例验证了该方法的可行性。关键词:等式约束;秩亏;病态;影响分析;正则化中图法分类号:P207.2 文献标志码:A 大地测量数据处理中, 常出现秩亏和病态等现象。解决秩亏问题的常用方法是增加参数间坐标基准的加权等式约束或参数的加权二次范数最小准则, 求出特定基准下的最小范数最小二乘解[ 1] 。解病态问题也是附加参数间的加权二次范数约束, 使观测残差和参数范数间达到平衡而获得稳定的正则化解[2] 。可见,上述不适定问题都 是通过增加约束信息来得到适定的解。这种信息有参数的一次式, 即参数间的线性等式约束,也有参数的二次式,即参数的二次范数。 对于秩亏数为d的无约束平差问题,是附加 d个线性无关的等式约束消除秩亏[1] 。若秩亏问 题本身有s个线性无关的约束, 那么只要添加d-s 个等式约束[3] 。病态问题的正则化准则是对所有的参数施加二次约束,通过压缩解的长度来 减弱最小二乘解的不稳定性。但已有文献对等式约束是否减弱病态性少有研究,侧重于研究含有线性等式约束的病态问题的算法。Sarkar在约束最小二乘解前面乘以一个压缩因子,以减小病 态约束问题的方差[4] ;Jürg en在约束最小二乘解的基础上,将最小二乘解用Sarkar解代替,解的形式和约束最小二乘解相同,但是计算非常复 杂[5] ;钟震利用椭圆约束的方法得到了约束病态问题的有偏估计[6] ;谢建等用正则化的思想得到 了附等式约束病态问题的正则化解,其形式与附 加椭圆约束的有偏估计相同[ 7] 。但是,上述方法是对所有的参数施加二次范数约束,都没有讨论等式约束本身能否消除或者减弱系统的病态性, 以及附加等式约束后模型的病态程度与哪些因素有关。本文首先将等式约束的病态问题通过消除部分参数转化为无约束问题, 分析无约束问题设计阵的病态性,然后给出了等式约束病态问题求解的方法。 1 等式约束对秩亏问题的影响 经典的测量平差函数模型和随机模型为 [8] : L=AX+Δ(1 )E(L)=AX,D(L)=σ20 P- 1(2)式中,L、Δ分别表示n维观测向量和误差向量; X为u维参数向量;A为n×u设计矩阵;σ2 0为单位权方差;P为观测权矩阵。根据设计矩阵A的性质,可以分为设计阵良态、秩亏和病态三种情况。下面对前两种情况的求解进行分析。1.1 设计阵A是良态矩阵的最小二乘解 观测方程(1 )相应的误差方程式为[8] :V=A^X-L (3 ) 当设计阵A是良态矩阵时, 若观测误差服从正态分布,在最小二乘准则φmin(V)=VTPV下,不需增加额外的信息,可以直接得到唯一且稳定的 最小二乘解[ 8] :^XLS=N-1 w(4 )式中,N=ATPA,w=ATPL, 分别表示法方程矩阵

迭代阈值法

数字图像处理的目的之一是图像识别, 而图像分割是图像识别工作的基础。图像分割是指把图像分解成具有特性的区域并提取出感兴趣目标的技术和过程,是计算机视觉领域的一个重要而且基本的问题,分割结果的好坏将直接影响到视觉系统的性能。因此从原理,应用和应用效果的评估上深入研究图像分割技术具有十分重要的意义。 本课题主要介绍了图像分割的基本知识。图像分割的算法有阈值分割法,边缘检测法,区域分割等,本设计重点介绍了基于最小点阈值方法,基于最优阈值分割方法,基于迭代图像分割方法,最大类间方差法(OTSU)的图像分割法的原理和他们的MATLAB的实现代码与运行结果。 关键词:图像分割;MATLAB;阈值分割;

1 课程设计目的 (3) 2 课程设计要求 (3) 3 相关知识 (3) 3.1 图像分割的概述 (3) 3.2 阈值分割的基本原理 (4) 3.3 阈值分割方法的分类 (5) 3.3.1 基于点的全局阈值方法 (6) 3.3.2 基于区域的全局阈值方法 (6) 3.3.3 局部阈值法和多阈值法 (6) 4 程设计分析 (6) 4.1 基于迭代的方法实现图像切割 (6) 4.2 最大类间方差的方法实现图像切割 (7) 5 程序设计 (8) 5.1 程序简单介绍 (8) 5.2 程序代码 (8) 6 结果与分析 (11) 结束语 (13) 参考文献 (14)

迭代阈值法 1 课程设计目的 本设计的课题任务是掌握图像阈值分割算法研究,实现对图像的分割。了解图像分割的应用及基本方法,理解阈值化图像分割原理,理解三类典型的阈值化分割算法,并利用之进行图像分割,给出实验结果并做出分析。 2 课程设计要求 ⑴查阅相关资料; ⑵理解基于各像素值的阈值分割算法,基于区域性质的阈值分割算法, 基于坐 标位置的阈值分割算;软件编程实现利用基于各像素值的阈值分割算法进行图像分割,要求完成如下内容:包括极小值点阈值、最优阈值、迭代阈值,基于最大方差的阈值,基于最大熵的阈值等方法,利用之实现图像分割,这里的图像可以针对核磁共振图像 ⑶用MATLAB实现,并观察各算法之间的区别。 3 相关知识 3.1 图像分割的概述 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,

图像复原方法综述

图像复原方法综述 1、摘要 图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。 由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。 图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外

沈阳理工大学迭代阈值法图像分割程序设计

成绩评定表 学生姓名高冰钰班级学号1303030402 专业 电子信息工程课程设计题目 基于最大类间方差法图 像分割程序设计 —迭代阈值法 评 语 组长签字: 成绩 日期2016年7月18日

课程设计任务书 学院信息科学与工程专业电子信息工程 学生姓名高冰钰班级学号1303030402 课程设计题目基于最大类间方差法图像分割程序设计—迭代阈值法实践教学要求与任务: 本设计要求利用Matlab进行编程及仿真,仿真内容为基于最大类间方差法图像分割程序设计——迭代阈值法。利用所学数字图象处理技术知识,在Matlab软件系统上来实现图像分割,并且对程序进行测试。要求如下: (1)掌握课程设计的相关知识、概念、思路及目的。 (2)程序设计合理、能够正确运行且操作简单,可实施性强。 (3)掌握图像分割的方法。 (4)能够利用迭代阈值法进行图像分割。 工作计划与进度安排: 第一阶段(1-2)天:熟悉matlab编程环境,查阅相关资料; 第二阶段(2-3)天:算法设计; 第三阶段(2-3)天:编码与调试; 第四阶段(1-2)天:实验与分析; 第五阶段(1-2)天:编写文档。 指导教师: 2016年7月3日专业负责人: 2016年7月4日 学院教学副院长: 2016年7月4日

摘要 数字图像处理的目的之一是图像识别,而图像分割是图像识别工作的基础。图像分割是从图像预处理到图像识别和分析、理解的关键步骤,在数字图像处理中占据重要的位置。图像分割的目的是将图像分成一些有意义的区域并对这些区域进行描述。 图像分割的方法主要有点相关分割、区域相关分割、阈值法、界限检测法、匹配法、跟踪法等。本设计主要采用阈值分割法中的迭代阈值法,利用MATLAB 软件中的图像处理函数将图像导入,然后对图像进行灰度变换,通过迭代法求图像最佳分割阈值,根据该阈值对图像进行分割,从而产生二值化后的图像。仿真结果表明,通过迭代法选取的阈值是比较准确的,可以采用此阈值对图像进行分割。 关键词:图像分割;迭代阈值法;MATLAB

基于MATLAB的图像恢复算法研究

中北大学 课程设计说明书 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 基于MATLAB的图像恢复算法研究 指导教师:职称: 年月日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 课程设计题目:信息处理综合实践: 于MATLAB的图像恢复算法研究起迄日期: 课程设计地点:电子信息科学与技术专业实验室 指导教师: 系主任: 下达任务书日期: 年月日

目录 摘要: (6) 1.图像复原的概念 (6) 1.1图像复原的定义 (6) 1.2 图象恢复与图象增强的异同 (6) 1.3 图象退化的原因 (6) 1.4 维纳滤波的研究历史 (6) 1.5图象退化举例 (7) 2.退化模型 (8) 2.1图象退化模型概述 (8) 2.2连续函数退化模型 (8) 2.3离散函数退化模型 (8) 3.图象复原技术 (9) 3.1无约束恢复 (9) 3.2逆滤波 (9) 3.3 维纳(Wiener)滤波器基本原理 (10) 3.4维纳滤波复原法 (11) 3.5图像复原例图 (12) 4.图像复原的MATLAB实现实例 (13) 5.结束语 (14) 参考文献: (14) 附录: (14) (1).维纳滤波复原源代码: (14) (2).规则化滤波复原程序源代码: (15) (3).Lucy-Richardson复原滤波源代码: (15) (4).盲目去卷积复原源代码: (15)

摘要: 图像复原是图象处理的一个重要课题。图像复原也称图象恢复,是图象 处理中的一大类技术。它的主要目的是改善给定的图像质量。当给定了一幅 退化了的或者受到噪声污染了的图像后,利用退化现象的某种先验知识来重 建或恢复原有图像是复原处理的基本过程。可能的退化有光学系统中的衍 射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,大气湍流的 扰动效应,图像运动造成的模糊及几何畸变等等。噪声干扰可以由电子成像 系统传感器、信号传输过程或者胶片颗粒性造成。各种退化图像的复原都 可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行 处理,以便恢复出原图像。文章介绍了图象退化的原因,几种常用的图像滤 波复原技术,以及用MATLAB实现图像复原的方法。 1.图像复原的概念 1.1图像复原的定义 图像复原也称图象恢复,是图象处理中的一大类技术。所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可在空间域,也可在频域进行。 1.2 图象恢复与图象增强的异同 相同点:改进输入图像的视觉质量。 不同点:图象增强目的是取得较好的视觉结果(不考虑退化原因);图象恢复根据相应的退化模型和知识重建或恢复原始的图像(考虑退化原因)。 1.3 图象退化的原因 图象退化指由场景得到的图像没能完全地反映场景的真实内容,产生了失真等问题。其原因是多方面的。如: 透镜象差/色差 聚焦不准(失焦,限制了图像锐度) 模糊(限制频谱宽度) 噪声(是一个统计过程) 抖动(机械、电子) 1.4 维纳滤波的研究历史 维纳是著名的数学家,后来被誉为信息理论家。维纳的著作不仅是一个很好的创见,而且具有结合工程的实际意义,是线性滤波理论研究的一个重要的开端. 在第二次世界大战中,由于雷达的发明以及防空炮火控制的任务,把大量有修养的数学家和物理学家都动员到信息科学这个研究领域中来了,这个时候人们活跃于这个领域,并有许多重大的科学创造。数学家维纳对于滤波理论的研究成果,就是这时候重大的科学创见之一。

图像分割阈值选取技术综述

图像分割阈值选取技术综述 中科院成都计算所刘平2004-2-26 摘要 图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域.本文是在阅读大量国内外相关文献地基础上,对阈值分割技术稍做总结,分三个大类综述阈值选取方法,然后对阈值化算法地评估做简要介绍. 关键词 图像分割阈值选取全局阈值局部阈值直方图二值化 1.引言 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交地区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显地不同[37].简单地讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理.图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用地图像分割方法,也不存在一种判断是否分割成功地客观标准. 阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域,例如,在红外技术应用中,红外无损检测中红外热图像地分割,红外成像跟踪系统中目标地分割;在遥感应用中,合成孔径雷达图像中目标地分割等;在医学应用中,血液细胞图像地分割,磁共振图像地分割;在农业项目应用中,水果品质无损检测过程中水果图像与背景地分割.在工业生产中,机器视觉运用于产品质量检测等等.在这些应用中,分割是对图像进一步分析、识别地前提,分割地准确性将直接影响后续任务地有效性,其中阈值地选取是图像阈值分割方法中地关键技术. 2.阈值分割地基本概念 图像阈值化分割是一种最常用,同时也是最简单地图像分割方法,它特别适用于目标和背景占据不同灰度级范围地图像[1].它不仅可以极大地压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前地必要地图像预处理过程.图像阈值化地目地是要按照灰度级,对像素集合进行一个划分,得到地每个子集形成一个与现实景物相对应地区域,各个区域内部具有一致地属性,而相邻区域布局有这种一致属性.这样地划分可以通过从灰度级出发选取一个或多个阈值来实现. 阈值分割法是一种基于区域地图像分割技术,其基本原理是:通过设定不同地特征阈值,把图像像素点分为若干类.常用地特征包括:直接来自原始图像地灰度或彩色特征;由原始灰度或彩色值变换得到地特征.设原始图像为f(x,y>,按照一定地准则在f(x,y>中找到特征值T,将图像分割为两个部分,分割后地图像为 若取:b0=0<黑),b1=1<白),即为我们通常所说地图像二值化. <原始图像)<阈值分割后地二值化图像) 一般意义下,阈值运算可以看作是对图像中某点地灰度、该点地某种局部特性以及该点在图像中地位置地一种函数,这种阈值函数可记作 T(x,y,N(x,y>,f(x,y>> 式中,f(x,y>是点(x,y>地灰度值;N(x,y>是点(x,y>地局部邻域特性.根据对T地不同约束,可以得到3种不同类型地阈值[37],即 点相关地全局阈值T=T(f(x,y>> (只与点地灰度值有关> 区域相关地全局阈值T=T(N(x,y>,f(x,y>> (与点地灰度值和该点地局部邻域特征有关> 局部阈值或动态阈值T=T(x,y,N(x,y>,f(x,y>> (与点地位置、该点地灰度值和该点邻域特征有关> 图像阈值化这个看似简单地问题,在过去地四十年里受到国内外学者地广泛关注,产生了数以百计地阈值选取方法[2-9],但是遗憾地是,如同其他图像分割算法一样,没有一个现有方法对各种各样地图像都能得到令人满意地结果,甚至也没有一个理论指导我们选择特定方法处理特定图像. 所有这些阈值化方法,根据使用地是图像地局部信息还是整体信息,可以分为上下文无关(non-

正则化方法

3.2正则化方法的概念 从数学角度来分析,CT 中的有限角度重建问题相当于求解一个欠定的代数方程组,属于不适定问题研究范畴,解决这类问题通常需要引入正则化方法]27,26[。 3.2.1不适定的概念 设算子A 映X x ∈为P p ∈,X 与P 分别为某类赋范空间,记 P Ax = (3.9) 在经典意义下求解(3.9),就存在下述问题: (1)(3.9)式的解是否存在; (2)(3.9)式的解如果存在,是否唯一; (3)(3.9)式的解是否稳定或者说算子A 是否连续:对于右端的P 在某种意义下作微小的变动时,相应的解童是不是也只作微小的变动。 只要这些问题中有一个是否定的,就称(3.9)的解是不适定的。 3.2.2正则化方法概念的引入 设算子A 映X x ∈为P p ∈,X 与P 分别为某类赋范空间,二者满足(3.9)式。设A 的逆算子1-A 不连续,并假定当右端精确值为r p 时,得到经典意义下的解为r x ,即满足 r r P Ax = (3.10) 现在的问题是,如果右端受到扰动后变为δp ,且二者满足关系 δδ≤-r p p (3.11) 其中,?为某范数。则由于1-A 的不连续性,我们显然不能定义r p 对应的解为: δδp A x 1-= (3.12)

因此,必须修改该逆算子的定义。 定义:设算子),(αp R 映p 成x ,且依赖一个参数α,并具有如下性质: (1)存在正数01>δ,使得对于任意0>α,以及r p 的)(1δδδ≤邻域中的p ,即满足 10,δδδ≤<≤-p p r (3.13) 的p ,算子R 有定义。 (2)若对任意的0>ε,都存在),0(1δδ∈及依赖于δ的参数)(δαα=,使得算子),(αp R 映r p 的δ邻域到r x 的ε领域内,即 εδαδδ≤-=r x x x p R ,))(,( (3.14) 则称),(αp R 为方程(3.14)中A 的正则逆算子;δx 称为方程(3.14)的正则解,当0→δ时,正则解可以逼近我们所要求的精确解;α称为正则化参数。这样的求解方法就称为正则化方法。

基于MATLAB的数字图像分割的研究与实现

本科毕业论文(设计) 题目:基于MATLAB的数字图像分割的研究与实现 学院:计算机与信息工程学院 学生: 学号: 专业: 年级: 完成日期: 2012年04月 指导教师:

基于MATLAB的数字图像分割的研究与实现 摘要:视觉和听觉是我们认识和感知外部世界的主要途径,而视觉又是其中最重要的,因此要想更细致、全面地把握这些图像信息就需要对其进行必要的处理。在数字图像处理的研究和应用中很多时候我们只对图像的某些部分和特征感兴趣,此时就需要利用图像分割技术将所需的目标与图片的其他部分区分开,以供我们对图像进一步研究和分析。图像分割即通过一些必要的算法把图像中有意义的部分或特征提取出来,将图像分为若干有意义的区域,使得这些区域对应图像中的不同目标,进而能够对所感兴趣的区域进行研究。基于图像分割技术在图像处理之中的重要性,本研究在此对图像分割的一些经典算法进行了学习和对比,并通过MATLAB对其进行了实验,通过不同的算法对不同的图片进行处理,分析其优缺点,以便在进行图像分割时可以根据图片的特征选择合适的算法。 关键字:数字图像;分割;MATLAB

The Research and Implementation of Digital Image Segmentation Based on the MATLAB Abstract :Vision and auditory are the main ways which we use to understand and perceive the world outside, while vision is the most important. Therefore, it's require to process the image data to grasp them more painstaking and completely. In digital image processing of research and application we are only interested to some parts of the image and characteristic in many times, then you need to use the image segmentation technology to separate the goal and the picture for other parts for our further research and analysis of the image.Image segmentation is dividing the image into some significant areas through some necessary algorithms, then make these areas corresponding to different goals and we can do some research about the areas we are interested to. Based on the importance of image segmentation technology in image processing, I compared several classical algorithms of image segmentation. In the meanwhile, I used the MATLAB to do some research and to process the various images with different algorithms so that it's convinent to find the advantages of these algorithms. Then, I can base on the characteristics of the images to choose the suitable algorithms when to make some digital image segmentation. Key words : D igital Image; Segmentation; MATLAB

图像处理-图像复原算法-20110536-周延文

安徽财经大学 (《图像处理》课程论文)图像复原算法研究 学院:管理科学与工程学院专业:电子信息工程 姓名:周延文 学号:20110536 任课教师:许晓丽 论文成绩: 2014年10月

图像复原算法研究 摘要:随着社会生产力的发展,图像处理技术己经远远突破了早期的应用领域,被广泛地应用到科学研究、工农业生产、军事技术、政府部门、医疗卫生等许多领域。图像处理技术包括对图像进行数字化、编码、分析等各种处理,当然模糊图像复原也是数字图像处理中非常重要的一个研究领域,他的研究成果正被广泛地应用到以上所述的各个领域。 在此论文中,研究了几种经典图像复原算法,在已知系统退化模型的情况下,对观测图像分别使用逆滤波、维纳滤波、有约束的最小二乘方滤波算法进行复原,在这几种算法的参数选取上得到了丰富的经验数据,并对实验结果进行了分析总结。 关键词:图像复原;逆滤波;维纳滤波;有约束的最小二乘方滤波 Research of Algorithms for Image Restoration With the development of society's productivity, image processing technology has already far broken through the early application, widely applied to a lot of fields, such as scientific research, industrial and agricultural production, military technology, government department, health care, etc. The image processing technology includes various kinds of processing, for example, carrying on the digitization, coding, analyzing to the image etc. ,Certainly the degraded image processing is a very important research field in digital image processing, its research results are being widely applied

正则化简介

正则化(regularization) 正则化(regularization)在线性代数理论中,不适定问题通常是由一组线性代数方程定义的,而且这组方程组通常来源于有着很大的条件数的不适定反问题。大条件数意味着舍入误差或其它误差会严重地影响问题的结果。反问题有两种形式。最普遍的形式是已知系统和输出求输入,另一种系统未知的情况通常也被视为反问题。许多反问题很难被解决,但是其他反问题却很容易得到答案。显然,易于解决的问题不会比很难解决的问题更能引起人们的兴趣,我们直接解决它们就可以了。那些很难被解决的问题则被称为不适定的。一个不适定问题通常是病态的,并且不论是简单地还是复杂地改变问题本身的形式都不会显著地改善病 态问题。另一方面,病态问题不一定是不适定的,因为通过改变问题的形式往往可以改善病态问题。在严格的数学意义上,我们通常不可能对不适定问题进行求解并得到准确解答。然而,通过使用我们的先验知识,我们通常有希望能够得到一个接近准确解答的答案。 求解不适定问题的普遍方法是:用一族与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法。如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容。通常的正则化方法有基于变分原理的Tikhonov 正则化、各种迭代方法以及其它的一些改进方法,这些方法都是求解不适定问题的有效方法,在各 类反问题的研究中被广泛采用,并得到深入研究。 正则化:Normalization,代数几何中的一个概念。 通俗来说,就是给平面不可约代数曲线以某种形式的全纯参数表

示。 即对于PC^2中的不可约代数曲线C,寻找一个紧Riemann面C*和一个全纯映射σ:C*→PC^2,使得σ(C*)=C 严格的定义如下: 设C是不可约平面代数曲线,S是C的奇点的集合。如果存在紧Riemann面C*及全纯映射σ:C*→PC^2,使得 (1) σ(C*)=C (2) σ^(-1)(S)是有限点集 (3) σ:C*\σ^(-1)(S)→C\S是一对一的映射 则称(C*,σ)为C的正则化。不至于混淆的时候,也可以称C*为C 的正则化。 正则化的做法,实际上是在不可约平面代数曲线的奇点处,把具有不同切线的曲线分支分开,从而消除这种奇异性。[1] 正则化方法 Regularization Method 正则化算子 regularizing operator 物理学中,尤其是量子场论,正则化(regularization)是一项处理无限大、发散以及一些不合理表示式的方法,其方法透过引入一项辅助性的概念——正则化因子(regulator)。举例来说,若短距离物理效应出现发散,则设定一项空间中最小距离来解决这情形。正确的物理结果是让正则化因子消失(此例是) 的极限情形,不过正则化因子的用意就在于当它是有限值,理论结果也是有限值的。正则化是将数学中的发散级数的可和性方法(summability methods)用在物理学问题上。

基于迭代法的图像二值化

基于迭代法的图像二值化 一、实验要求: ①运用迭代法求最佳阈值 ②根据所求阈值对灰度图进行二值化处理 ③使用matlab实现上述功能,并显示各步骤处理结果 二、主要原理: 图像的二值化最常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。 迭代法求阈值:预先设置一个阈值T,对图像中灰度值>T的像素点求出灰度平均值T1,图像中灰度值

四、程序及简单分析: %迭代法图像分割,迭代思想是将每次基于阈值获得的两部分灰度值的均值之差是否小于预先设定的极限,若不小于,则继续迭代,否则迭代停止 clear Init=imread('lena.jpg'); Im=rgb2gray(Init); subplot(1,3,1),imhist(Im),title('直方图') subplot(1,3,2),imshow(Im) , title('原始图像') [x,y]=size(Im); % 求出图象大小 b=double(Im); zd=double(max(max(Im))) % 求出图象中最大的灰度 zx=double(min(min(Im))) % 最小的灰度 T=double((zd+zx))/2; % T赋初值,为最大值和最小值的平均值 count=double(0); % 记录几次循环 while 1 % 迭代最佳阈值分割算法 count=count+1; S0=0.0; n0=0.0; %为计算灰度大于阈值的元素的灰度总值、个数赋值 S1=0.0; n1=0.0; %为计算灰度小于阈值的元素的灰度总值、个数赋值 for i=1:x for j=1:y if double(Im(i,j))>=T S1=S1+double(Im(i,j)); %大于阈域值图像点灰度值累加 n1=n1+1; %大于阈域值图像点个数累加 else S0=S0+double(Im(i,j)); %小于阈域值图像点灰度值累加 n0=n0+1; %小于阀域值图像点个数累加 end end end T0=S0/n0; %求小于阀域值均值 T1=S1/n1; %求大于阀域值均值 if abs(T-((T0+T1)/2))<0.1 %迭代至前后两次阀域值相差几乎为0时停止迭代。 break; else T=(T0+T1)/2; %在阈值T下,迭代阈值的计算过程end end count %显示运行次数

层析反演中的正则化方法研究

李辉,王华忠,张兵.层析反演中的正则化方法研究[J].石油物探,2015,54(5):569 - 581Li Hui,Wang Huazhong,Zhang Bing.The study of regularization in tomography[J].Geophysical Prospecting for Petroleum,2015,54(5):569 - 581收稿日期:2014-11-24;改回日期:2015-02- 26。作者简介:李辉(1985—) ,男,博士,现从事射线类偏移与反演的研究工作。基金项目:国家自然科学基金(41374117)、国家重点基础研究发展计划(973计划)项目(2011CB201002) 、国家科技重大专项项目(2011ZX05003-003,2011ZX05005-005-008HZ,2011ZX05006-002)和中国石化地球物理重点实验室开放基金项目(33550006-14- FW2099- 0026)共同资助。层析反演中的正则化方法研究 李 辉1,2,王华忠1,张 兵1, 3 (1.同济大学海洋与地球科学学院波现象与反演成像研究组,上海200092;2.青凤致远应用地球物理研究所,上海200093;3.中国石油化工股份有限公司石油物探技术研究院,江苏南京211103 )摘要:正则化可显著降低层析反演解的非唯一性,提高层析反演结果的质量。主要研究了模型参数正则化和数据正则化。地下介质参数之间的关联性如何加入模型正则化是讨论的问题之一;观测数据之间的关联性加入数据正则化的方法则是另一个主要议题。此外,讨论了Tikhonov正则化和预条件两种模型正则化实现策略,指出前者理论比较直观,后者计算效率更高,并证明了两者在理论上的等价性。模型正则化通过构造各向异性光滑算子加入地质构造特征,数据正则化则通过在层析矩阵中加入预先构造的数据预条件矩阵来实现。通过层析偏移速度分析给出了模型正则化和数据正则化的具体实现策略。理论分析和层析偏移速度分析的数值实验说明本文的模型正则化和数据正则化可显著提高层析反演的质量。 关键词:层析偏移速度分析;模型正则化;数据正则化;预条件;地质构造约束中图分类号:P631 文献标识码:A 文章编号:1000-1441(2015)05-0569-13  DOI:10.3969/j .issn.1000-1441.2015.05.010The study  of regularization in tomographyLi Hui 1,Wang Huazhong1,Zhang  Bing1,2 (1.Wave Phenomena and Inversion Imaging Group(WPI),Tongji University,Shanghai 200092,China;2.Qingfeng- zhiyuan Applied Geophysics Institute,Shanghai 200093,China;3.Sinopec Geophysical Research Institute,Nanjing211103,China) Abstract:Regularization in tomography is able to weaken the non-uniqueness of tomography to improve the inversion result-The discussion of regularization in this paper includes model-regularization and data-regularizationModel parameters are not i-solated,how to add the relationship of these parameters into tomography is one of the missions hereSimilarly,considering da-tum relationship in tomography is another problemThe so-called“straightforward regularization”and the“precondition regu-larization”are focused,and we achieve that the former is intuitionistic and the latter is more efficiencyAlso,we point out thatthe above two algorithms are equivalent to each other,and this will be shown in this paperThe geological structure character-istics of the medium can be integrated into the tomography using the model-regularization with anisotropic smooth matrix.The data-regularization is realized with another smooth operator which will be integrated into the tomographic matrix.Themodel-regularization and data-regularization are tested with tomographic migration velocity analysis(MVA)algorithm.Theresults of theory and numerical experiments with tomographic MVA show that the proposed model-regularization and the da-ta-regularization are both able to improve the quality of tomography  obviously.Key words:tomographic MVA,model-regularization,data-regularization,precondition,geological structure constraint 随着勘探地震技术的发展以及石油工业需求 的提高,叠前深度偏移逐渐成为工业应用中偏移技 9 65第54卷第5期2015年9月石 油 物 探 GEOPHYSICAL PROSPECTING FOR  PETROLEUMVol.54, No.5Sep.,2015

正则化和反问题

正则化和反问题 正则化(regularization)在线性代数理论中,不适定问题通常是由一组线性代数方程定义的,而且这组方程组通常来源于有着很大的条件数的不适定反问题。大条件数意味着舍入误差或其它误差会严重地影响问题的结果。反问题有两种形式。最普遍的形式是已知系统和输出求输入,另一种系统未知的情况通常也被视为反问题。许多反问题很难被解决,但是其他反问题却很容易得到答案。显然,易于解决的问题不会比很难解决的问题更能引起人们的兴趣,我们直接解决它们就可以了。那些很难被解决的问题则被称为不适定的。一个不适定问题通常是病态的,并且不论是简单地还是复杂地改变问题本身的形式都不会显著地改善病态问题。另一方面,病态问题不一定是不适定的,因为通过改变问题的形式往往可以改善病态问题。在严格的数学意义上,我们通常不可能对不适定问题进行求解并得到准确解答。然而,通过使用我们的先验知识,我们通常有希望能够得到一个接近准确解答的答案。 求解不适定问题的普遍方法是:用一族与原不适定问题相"邻近"的适定问题的解去逼近原问题的解,这种方法称为正则化方法。如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容。通常的正则化方法有基于变分原理的Tikhonov正则化、各种迭代方法以及其它的一些改进方法,这些方法都是求解不适定问题的有效方法,在各类反问题的研究中被广泛采用,并得到深入研究。 正则化:Normalization,代数几何中的一个概念。 通俗来说,就是给平面不可约代数曲线以某种形式的全纯参数表示。 即对于PC^2中的不可约代数曲线C,寻找一个紧Riemann面C*和一个全纯映射σ:C*→PC^2,使得σ(C*)=C 严格的定义如下: 设C是不可约平面代数曲线,S是C的奇点的集合。如果存在紧Riemann 面C*及全纯映射σ:C*→PC^2,使得

相关主题