搜档网
当前位置:搜档网 › Modeling and Simulation of Brushless DC Motor Control System for EPS

Modeling and Simulation of Brushless DC Motor Control System for EPS

Modeling and Simulation of Brushless DC Motor Control System for EPS
Modeling and Simulation of Brushless DC Motor Control System for EPS

Modeling a nd Simulation of Brushless DC Motor Control System for EPS

Applications

Xuewu Ji

State Key Laboratory of Automotive Safety and Energy

Tsinghua University

Beijing 100084, China

jixw@https://www.sodocs.net/doc/1b16935226.html,

Xuefeng Zhang

Wanxiang Qianchao Transmission

Shaft Co. Ltd

Hangzhou311215, China

zhangxf-007@https://www.sodocs.net/doc/1b16935226.html,

Yahui Liu

State Key Laboratory of Automotive

Safety and Energy

Tsinghua University

Beijing 100084, China

liuyh@https://www.sodocs.net/doc/1b16935226.html,

AbstractsüThis paper presents an advanced model of a brushless dc motor(BLDCM) control system for the electric power steering(EPS)applications considering the suppression of torque ripples. All modules of the EPS system with a BLDCM are modeled under the Matlab/Simulink environment. Among them, the DSP module and the back-EMF module are achieved by the C MEX S-function. The DSP module can output six PWM signals and commutation logic is just considered as a real DSP chip. Furthermore, all six PWM signal ports can be controlled independently, which is convenient in the suppression of commutation torque ripples.The back-EMF module can realize any waveform of back-EMF and the ADC module performs a sample-and-hold function. The model with all the modules considered highlights the consistency with the actual system, which can be used to study the suppression of the torque ripple of the BLDCM, as well as to provide an effective platform for the development of an EPS system with a BLDCM.

Keywords-modeling and simulation, brushless dc motor, electric power steering, C MEX S-function, torque ripple

I.I NTRUDUCTION

During recent two decades, the BLDCM is widely used as actuators for motion control applications due to its high torque-to-weight ratio, easy control, high efficiency and free of commutation maintenance. The above properties make this type of motors most suitable for use in vehicles. Considering the development efficiency and cost of manufacturing actual prototype, a simulation scheme of an EPS system with a BLDCM is desirable for rapid prediction of the motor drive system in the design process. It makes possible to vary and optimize components and subsystems designs and to predict the performance of the system for given goals and constraints.

Several simulation models have been proposed for the analysis of BLDCM drives under Matlab/Simulink environment [1-10]. In most of them, the motor is simplified as a machine of perfect trapezoidal back-EMF waveform [1-7],which is inconsistent with reality and may cause wrong simulation results. Furthermore, to reduce the cogging torque, the motor is designed mostly with skewed slots, which will further lead to the back-EMF waveform more like sinusoidal type.Therefore, Y. S. Jeon and R. A. Guinee use the FFT algorithm and M.

A. Jabbar uses Finite Element method to approximate the real back-EMF waveform[8-10].Although, these two modeling methods are quite precise, but the simulation speed may be significantly affected when the back-EMF module is embedded into the whole control system. On the other hand, in the field of suppression of torque ripples,plenty of research[11-13]has been conducted and some results are obtained, but the specific modeling approach is not yet given in details.The commutation torque ripple was considered in W. Hong’s research of modeling and simulation[3], but only the differences of commutation torque ripple between the trapezoidal and sinusoidal motors was analyzed,the suppression scheme of torque ripples can not be achieved using the model. Based on a motion control chip TMS320LF2407A, form the point of view of torque ripple suppression and its impact on the EPS system, this paper presents a simulation model focusing on the consistency with the actual system and gives the detail modeling process of an EPS system with a BLDCM including the Digital Signal Processor(DSP), PWM module, ADC trigger and sampling module, inverter, back-EMF and EPS test bench modules.To solve the problem of the impact of non-ideal back-EMF on the simulation speed of whole system, a C MEX S-function is adopted to improve the simulation accuracy and speed. Based on this model, much research work can be carried out such as optimization of torque ripple suppression algorithms, comparison of various PWM modes, the impact of torque ripples on the EPS system, PI parameter tuning, design of assist characteristics of EPS, the system response rate and etc.

___________________________________ 978-1-4673-0089-6/12/$26.00 ?2012 IEEE

II. EPS T EST B ENCH S YSTEM M ODEL

The EPS test bench system with a BLDCM is shown in Fig.1, which is mainly composed of the steering mechanism, a torque sensor, a BLDCM and an electronic control unit (ECU). The basic operation principle is that the signals of vehicle speed and torque sensor are detected by the ECU, which then controls the BLDCM to output proper assistant torque to help the driver ’s steering operation. As the part of the modeling of steering mechanism is relatively mature, only the modeling process of BLDCM and its control system are given here.

Fig.1 Schematic diagram of the EPS test bench

Fig.2 shows a BLDCM drive system model, the three-phase windings are Y-connected and supposed to be symmetrical. Here, R denotes the phase resistance, L stands for the sum of self- and mutual-inductance, and r for sampling resistance. The equations of terminal voltage and electromagnetic torque are as follows:

),,(c b a k V e dt

i d L

i R U no k k

k k

m c c b b a a e e i e i e i T Z /)(

Where k=a,b,c U , k =a,b,c e and k=a,b,c i represent the three-phase terminal voltages, back-EMF and currents respectively, V no the neutral voltage of the motor, T e the electromagnetic torque, and m ωthe angular velocity of rotor.

The mechanical part of BLDCM can be modeled as:

L m m m m e T B J T Z Z

Where J m and B m are inertia and damping ratio of the rotor respectively, T L is the load as well as the assistant effort of the motor during steering operations.

III. M ODEL OF BLDCM C ONTROL S YSTEM

An EPS system is actually a torque following system and only needs a current control loop. In most simulation of BLDCM speed control, the current hysteresis controller is commonly used. However, it involves high cost and switching noise in actual implementation. Moreover, it does not match the actual conditions using dedicated control DSP chip and PWM control strategies. In this paper, an increment digital PID controller is adopted to achieve close loop control of the motor current. The whole BLDCM control system simulation model includes a BLDCM, a three-phase inverter, a DSP unit and a PWM&ADC module. The specific modeling process of each module is given in the following sections.

A. BLDCM Module

The BLDCM module consists of three parts shown in Fig.3. One is the electrical part which produces the electromagnetic torque and current of the motor. Another is a mechanical part which represents the revolution of rotor. And the last one is the back-EMF part which generates the back-EMF waveforms according to the speed and angle of the rotor. The electrical part is composed of basic resistance and inductance units in the Simulink/PSB toolbox to imitate the equivalent resistance and inductance of the stator, therefore, the commutation process is conducted automatically by the Simulink according to the commutation logic just as an actual operation of the motor. The back-EMF part is achieved using C MEX S-functions and the input signals include motor speed and angular displacement. It can output any back-EMF waveform in terms of the rotor speed and angular displacement signals without influence on the simulation speed.

Fig.3 Simulink Diagram of BLDCM

Electrical part

Back-EMF part

Mechanical part

+- +-

+- a

b

c

no

V Fig.2 BLDCM and Inverter Equivalent Circuit

Battery

Steering Wheel BLDCM

EPS Controller

Load Spring

Rack and Pinion

Torque Sensor

B. Three-p hase Inverter Module

The inverter module is composed of IGBT and Diode units in the Simulink/PSB toolbox in accordance with the topological structure of actual inverters including the power source and the dc-linked sampling resistor shown in Fig.4. Parameters of all power components can be set the same as an actual system.

C. DSP Module

The DSP module consists of DSP algorithms, Drive Signals and PWM&ADC modules as shown in Fig.5. A C MEX S-function is adopted to achieve the control algorithms, which is the central controller of an EPS system to carry out the main functions of the system such as sampling and processing the signals of steering torque, vehicle speed, motor current and position, regulating PI parameters, and controlling the motor to output corresponding assistant effort.

The Drive Signals module acts as a PWM function on a real DSP chip. The commutation logic and the duty signal are combined into PWM drive signals to control the motor. The power switching device is ON as long as its gate signal is greater than zero and OFF while less than or equals to zero. Therefore, if there is only one pin for each channel, then only two drive states exit-PWM and off. This can not satisfy the need of analysis for a variety of PWM modes. In this paper, for one drive signal, the DSP module outputs two signals of pin 1 and pin 2. The signal of pin 1 is multiplied by a PWM signal and added to pin 2 connected to the gate of one power device. Thus, if each drive signal has three states, then several PWM modes can be achieved. For example, the channel of Ha can output three states-ON, PWM and OFF, pin 1 and pin 2 only need to output (0,1), (1,0) and (0,0), respectively.

There are two kinds of counting modes for actual DSP General Timers: continuous increase counting mode and increase/decrease counting mode. To improve the control precision, continuous increase counting mode is usually adopted. Under this mode, a comparative interrupt is needed to trigger the ADC module to sample the current pass through the dc-linked resistor. With this function, the details of PWM&ADC module is shown in Fig.6, which is composed of Repeating Sequence, Switch, Pulse, Delay and Triggered Subsystems.

The Duty signal from the DSP algorithms module on

the one hand is compared with a saw-tooth waveform signal and the result is linked to a Switch module to output a desired PWM signal. On the other hand, it is also connected to a Delay module to lag the Pulse signal with half duty value as a triggering signal to sample the dc-link current. The source of the Triggered Subsystem is the dc-current which is sampled and held, and its output is connected to the DSP algorithms module. It is the ADC function that realizes the interrupting and sampling process of the dc-current at the midpoint of PWM-ON intervals. Such a feature also can be achieved through setting the C MEX S-function to a variable time sampling mode. However, the control duty calculated at present interruption only will be activated in the next PWM circle

Subsystem

Fig.6 Simulink modules of PWM and ADC

PWM&ADC Drive signals

Fig.5 the DSP Module

C

E

E

C

E

C

E

C

E

C

E

+

-+

-

Fig.4 Simulink diagram of inverter

in an actual DSP chip. To reflect simultaneously this characteristics and the comparative interrupt sampling function mentioned above, two sampling mode should be set in the C MEX S-function. However, the time point of comparative interrupt sampling is variable, and its implementation is difficult. The PWM&ADC module proposed in this paper avoids the process through the C MEX S-function to complete the comparative interrupt sampling function, and needs only set a periodic interrupt to read all the information needed, which is consistent with an actual DSP in functions, while reducing the number of calls to S-functions during the simulation.

IV. S IMULATION M ODEL OF EPS S YSTEM WITH A

BLDCM

Fig.7 shows the full simulation model of an EPS test bench system equipped with a BLDCM. The input is the driver ’s torque acting on the steering wheel, and the two transfer function modules are dynamic models of steering wheel and rack subsystem, respectively. The alignment force is substituted by a spring load system. The assistant motor control system is composed of three parts: DSP, which is the controller just like an actual DSP chip; Inverter, the power device; and the assistant Motor, which involves the mechanical and the electrical parts. Since the extra torque ripples results from lower position accuracy of the Hall position sensors, a high resolution position sensor is usually used in an EPS system. In this paper, the positional signal is directly connected to the DSP module. Table 1 gives the specific parameters of the mechanical steering system.

Fig.7 Simulink model of a full BLDCM EPS system

Table 1. Parameters of machinery steering system Items Description Value Unit

T

h

Steering torque 3 N m J c

Steering wheel inertia 0.025 kg m2

B c Steering wheel damping 0.361 N m/(rad/s) K s Torsion bar stiffness 115 N m/rad K a Assistant gain 5.5 r p Pinion radius 0.007 m K r Load spring rate

91060

N/m

M r Mass of rack, spring and the guide rod 20 kg B r Rack damping 653.2 N/(m/s) G Reduction gear ratio

16.5

K m

Motor and gearbox rotational stiffness

125 Nm/rad

V. S IMULATION R ESULTS AND A NALYSIS

Based on the above model, a torque step-input is exerted as the steering effort of the driver, the assistant process is carried out to study the influence of torque ripples on the system and suppression schemes due to the commutation and non-ideal back-EMF. The output of the torque sensor and the dc-link current are measured. Parameters of the BLDCM employed are given in Table 2, and the sampling frequency of the DSP module is set to be 50P s just the same as actual system. The simulation results are shown in Fig. 9 to Fig.13.

Table 2. Parameters of the BLDCM

Description Value

Unit

Pairs of the poles 3 Rated voltage 12 V Rated speed

1200 rpm Phase resistance

0.035 Ohm Self inductance 0.53 mH Mutual inductance 0.0014 mH Back-EMF coefficient 0.0352 V/rad/s Inertia

3.208h 104

kg m 2

Fig.9 shows the sampling process of the dc-link current. The thin solid line 1 denotes the waveform of the current on the dc-linked resistor. During the PWM-OFF intervals of the gate signal, the current will not flow through the resistor, only in the PWM-ON intervals is the current visible. The dotted line 2 is the current sample-and-hold

value of the ADC module, the sampling point is just at the midpoint of PWM-ON intervals and the sampling value of the current is held until the next sampling point. The

thick solid line 3 shows the current value of the DSP

module sampled during its periodic interrupt intervals,

which achieves real-time sampling functions well just like the actual system.

Motor control system

Fig.9 Currrent sampling

Fig.10 gives the phase current and phase back-EMF

waveforms during the whole power steering simulation course. Fig.10(a) shows the motor ’s sinusoidal phase back-EMF, and Fig.10(b) the relevant phase current amended according to its back-EMF waveforms.

Fig.11 is the simulation results without torque ripple suppression schemes. Fig.11(a) is the output electromagnetic torque of the motor, Fig.11(b) is the torque signal measured though the torque sensor and Fig.11(c) the motor speed.

Fig.12 shows the simulation results with torque ripple suppression schemes, the torque pulsation on the sensor is reduced effectively. Specific torque suppression algorithms and experiment results can be found in literature [14] and [15].

Fig.10 Phase back-EMF and current (a) phase back-EMF and (b) phase current

Fig.13 gives the simulation results after using the torque signal phase compensation and torque ripple suppression schemes simultaneously, the system oscillation (0-1s) in the Fig.11(b) and Fig.12(b) is reduced. Comparison of Fig.11(b) and Fig.12(b) shows that the EPS system is sensitive to the torque ripple under lower operation speed of the steering wheel. At middle or high motor speed, the impact of torque ripple on the system is negligible due to the system ’s filter effect.

Fig.14 shows compensation results of commutation currents. Fig.14(a) is the three-phase currents without any control and Fig.14(b) with a direct PWM control algorithm[14]. During the commutation intervals, the electromagnetic torque of the motor is proportional to the un-commutated phase current, which directly reflects the torque ripple of the motor. The dip of un-commutated phase current is compensated effectively.

The above simulation results demonstrate that torque ripple suppression schemes can be easily performed on the

proposed model. Furthermore, the control strategies such as torque signal phase compensation, friction compensation and inertia compensation, fuzzy control and alignment control at a system level can also be implemented on the DSP mode, and the EMF module can achieve sinusoidal, trapezoidal or any other back-EMF waveforms using the FFT method.

Fig.11 Simulation results without torque ripple suppression schemes (a) electromagnetic torque, (b) torque sensor output without

any scheme to suppress the torque ripple and (c) motor speed

Fig.13 Torque sensor output with torque signal phase compensation and torque ripple suppression schemes

0.5

1

1.5

2

2.5

3

3.5

Time t/s

T o r q u e T s /N m

50

100

Time t/s M o t o r s p e e d ωm /r a d /s

(c)

Time t/s

01234

0.5

1

1.5

T o r q u e T e /N m

-1

01234Time t/s

T o r s i o n s h a f t o u t p u t T s /N m

01

234Time t/s (a)

P h a s e E M F e a /

V

01

234

Time t/s P h a s e c u r r e n t i a /A

(b)

C u r r e n t i /A

Time t/s

1

23

1

2

x 10

-4

246810

Fig.12 Simulation results with torque ripple suppression schemes

(a) electromagnetic torque, (b) torque sensor output with suppressing the torque ripple and (c) Motor speed

Fig.14 Compensation of commutation currents

(a) phase currents without any control and (b) phase currents with a

direct PWM control algorithm

VI. C ONCLUSIONS

Based on foundational Simulink modules and C MEX S-functions, a simulation model of a BLDCM based EPS test bench system is proposed. All simulation results show that the model reflects real characteristics of the motor precisely and features a high simulation speed. It is convenient to carry out the study on torque ripple suppression schemes and various system control algorithms for BLDCM employed in an EPS system.

R EFERENCES

[1] P. Pillay and R. Krishnan. “Modeling, simulation, and analysis of

permanent-magnet motor drives, part ?: the brushless DC motor drive ”, IEEE Trans. Ind. Appl., vol.25, no.2, pp. 274-279, 1989. [2] N. A. Demerdash and T. W. Nehl. “Dynamic modeling of

brushless dc motors for aerospace actuation ”, IEEE Trans. Aerosp, Electron. Syst., Vol. AES-16, No.6, pp. 811-821, Nov. 1980.

[3] W. Hong, W. Lee and B. K. Lee. “Dynamic simulation of brushless

dc motor drives considering phase commutation for automotive applications”, IEEE International Electric Machines & Drives Conference, 2007. IEMDC 2007. pp.1377-1383, 3-5 May 2007. [4] A. Halvaei Niasar, H. Moghbelli and A. Vahedi. “Modeling,

simulation and implement of four-switch, brushless dc motor drive based on switching functions ”, EUROCON '09, IEEE, pp. 682-687,2009.

[5] Hui Zhang, Jinhong Liu, Jing Ren, Yuzhi Zhang and Yongjun Gao.

“Research on Electric power steering with bldc drive system ”. IPEMC'09, pp. 1065-1069, 2009.

[6] Liu Ping, Liu Gang and Zhang Qingrong. “Sim ulation method and

experiment analysis of BLDC motor system for magnetically suspended flywheel”, Aerospace Control, Vol. 25, No. 1, pp. 56-61, Feb. 2007. (In Chinese)

[7] Zhang Qingrong, Liu Ping and Yang Chunfan. “Application of

DSP in simulation of BLDC control system ”, Journal of System Simulation, Vol.18, Suppl.2, pp. 817-820, Aug. 2006. (In Chinese) [8] Y. S. Jeon, H. S. Mok, G. H. Choe, D. K. Kim, and J. S. Ryu. “A

new simulation model of bldc moto r with real back emf waveform”, COMPEL.2000, pp. 217- 220, 2000.

[9] R. A. Guinee and C. Lyden. “A novel modulated single fourier

series time function for mathematical modeling and simulation of natural sampled pulse width modulation in high performance brushless motor drives ”, Proceedings of the 42nd IEEE Conference on Decision and Control. Hawaii, pp. 6230-6235, June 2003.

[10] M. A. Jabbar, H. N. Phyu, Zhejie Liu and Chao Bi. “Modeling and

numerical simulation of a brushless permanent-magnet dc motor in dynamic conditions by time-stepping technique”, IEEE Trans. on Industry Applications, Vol. 40, No. 3, pp. 763-770, May/J une 2004.

[11] Haifeng Lu, Lei Zhang and Wenlong Qu. “A new torque control

method for torque ripple minimization of BLDC motors with un-ideal back EMF ”, IEEE Trans. Power Electron., vol.23, no.2, pp. 950-958, Mar. 2008.

[12] oong-Ho Song and Ick Choy. “C ommutation torque ripple

reduction in brushless DC motor drives using a single DC current sensor”, I EEE Trans. Power Electron., vol.19, no.2, pp.312-319, Mar. 2004.

[13] C.K. Lee, N.M. Kwok. “Torque ripple reduction in BLDC motor

velocity control systems using an optimal controller”, Sixth International Conference on Electrical Machines and Drives, Sep. pp.600-605, 1993.

[14] Gao Feng, Zhang XueFeng and Ji Xuewu. “Suppression of torque

ripple due to phase commutation in brushless DC motor drives considering the stator resistance ”, ELECTRIC MACHINES AND CONTROL, vol.14, no.10, pp.26 -31, Oct. 2010. (In Chinese)

[15] Xuefeng Zhang, Xuewu i and Feng Gao. “Torque Ripple

Suppression of Brushless DC Motors with Non-Ideal Back EMF for EPS Applications ”. Advanced Materials Research, 2011,

201-203: 1198-1205

1

2

3

Time t/s T o r q u e T e /N m

Time t/s T o r s i o n s h a f t o u t p u t T s /N m

Time t/s M o t o r s p e e d ωm R a d /s

(c)

高考文科数学模拟试卷及答案

高考文科数学模拟试卷 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z满足(2﹣i)2?z=1,则z的虚部为() A.B.C.D. 2.已知集合A={x|x2=a},B={﹣1,0,1},则a=1是A?B的() A.充分不必要条件B.必要不充分条 C.充要条件D.既不充分也不必要条件 3.设单位向量的夹角为120°,,则|=() A.3 B. C.7 D. 4.已知等差数列{a n}满足a6+a10=20,则下列选项错误的是() A.S15=150 B.a8=10 C.a16=20 D.a4+a12=20 5.一几何体的三视图如图所示,则该几何体的体积为() A.B.C.4﹣πD. 6.双曲线=1的顶点到其渐近线的距离为() A. B.C. D. 7.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则 f(2014)+f(2015)=() A.0 B.1 C.2 D.3

8.已知x,y满足约束条件,则z=2x+y的最大值为() A.2 B. C.4 D. 9.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=() A.B.C.D. 10.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=,则 下列结论正确的是() A.xf(x)在(0,+∞)单调递增B.xf(x)在(1,+∞)单调递减 C.xf(x)在(0,+∞)上有极大值 D.xf(x)在(0,+∞)上有极小值 二、填空题:本大题共5小题,每小题5分,共25分. 11.右面的程序框图输出的S的值为. 12.在区间[﹣2,4]上随机取一个点x,若x满足x2≤m的概率为,则m= .13.若点(a,9)在函数的图象上,则a= . 14.已知x>0,y>0且2x+y=2,则的最小值为.

圆梦2015·高三年级理科数学仿真模拟试题(3)精美word版

第 1 页 共 10 页 图 1 图2 圆梦2015·高三数学(理)仿真模拟三 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知函数lg y x =的定义域为A ,{} 01B x x =≤≤,则A B =( ) A .()0,+∞ B .[]0,1 C .(]0,1 D .[)0,1 2.设i 为虚数单位,若复数() ()2231i z m m m =+-+-是纯虚数,则实数m =( ) A .3- B .3-或1 C .3或1- D .1 3 .设函数sin 2y x x =的最小正周期为T ,最大值为A ,则( ) A .T π= ,A = B . T π=,2A = C .2T π= ,A = D .2T π=,2A = 4.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是 中心角为60?的扇形,则该几何体的体积为( ) A . 3 π B .23π C .π D .2π 5.给定命题p :若20x ≥,则0x ≥; 命题q ::已知非零向量,,a b 则 “⊥a b ”是“-+=a b a b ”的充要条件. 则下列各命题中,假命题的是( ) A .p q ∨ B . ()p q ?∨ C .()p q ?∧ D .()()p q ?∧? 6.已知函数()222,02,0 x x x f x x x x ?+≥=?-)的比值a b ,称这些比值中的最小值为这个 数表的“特征值”.当2n =时, 数表的所有可能的“特征值”最 大值为( ) A .3 B . 43 C .2 D .32

模拟数字电路基础知识

第九章 数字电路基础知识 一、 填空题 1、 模拟信号是在时间上和数值上都是 变化 的信号。 2、 脉冲信号则是指极短时间内的 电信号。 3、 广义地凡是 规律变化的,带有突变特点的电信号均称脉冲。 4、 数字信号是指在时间和数值上都是 的信号,是脉冲信号的一种。 5、 常见的脉冲波形有,矩形波、 、三角波、 、阶梯波。 6、 一个脉冲的参数主要有 Vm 、tr 、 Tf 、T P 、T 等。 7、 数字电路研究的对象是电路的输出与输入之间的逻辑关系。 8、 电容器两端的电压不能突变,即外加电压突变瞬间,电容器相当于 。 9、 电容充放电结束时,流过电容的电流为0,电容相当于 。 10、 通常规定,RC 充放电,当t = 时,即认为充放电过程结束。 11、 RC 充放电过程的快慢取决于电路本身的 ,与其它因素无关。 12、 RC 充放电过程中,电压,电流均按 规律变化。 13、 理想二极管正向导通时,其端电压为0,相当于开关的 。 14、 在脉冲与数字电路中,三极管主要工作在 和 。 15、 三极管输出响应输入的变化需要一定的时间,时间越短,开关特性 。 16、 选择题 2 若一个逻辑函数由三个变量组成,则最小项共有( )个。 A 、3 B 、4 C 、8 4 下列各式中哪个是三变量A 、B 、C 的最小项( ) A 、A B C ++ B 、A BC + C 、ABC 5、模拟电路与脉冲电路的不同在于( )。 A 、模拟电路的晶体管多工作在开关状态,脉冲电路的晶体管多工作在放大状态。 B 、模拟电路的晶体管多工作在放大状态,脉冲电路的晶体管多工作在开关状态。 C 、模拟电路的晶体管多工作在截止状态,脉冲电路的晶体管多工作在饱和状态。 D 、模拟电路的晶体管多工作在饱和状态,脉冲电路的晶体管多工作在截止状态。 6、己知一实际矩形脉冲,则其脉冲上升时间( )。 A 、.从0到Vm 所需时间 B 、从0到2 2Vm 所需时间 C 、从0.1Vm 到0.9Vm 所需时间 D 、从0.1Vm 到 22Vm 所需时间 7、硅二极管钳位电压为( ) A 、0.5V B 、0.2V C 、0.7V D 、0.3V 8、二极管限幅电路的限幅电压取决于( )。 A 、二极管的接法 B 、输入的直流电源的电压 C 、负载电阻的大小 D 、上述三项 9、在二极管限幅电路中,决定是上限幅还是下限幅的是( ) A 、二极管的正、反接法 B 、输入的直流电源极性 C 、负载电阻的大小 D 、上述三项 10、下列逻辑代数定律中,和普通代数相似是( ) A 、否定律 B 、反定律 C 、重迭律 D 、分配律

2018年高三数学模拟试题理科

黑池中学2018级高三数学期末模拟试题理科(四) 一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}2,101,, -=A ,{} 2≥=x x B ,则A B =I A .{}2,1,1- B.{ }2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为 A .第一象限 B.第二象限 C.第三象限 D.第四象限 3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是 A .2x y = B .y x = C .y x = D .2 1y x =-+ 4.函数 y=cos 2(x + π4 )-sin 2(x + π4 )的最小正周期为 A. 2π B. π C. π2 D. π 4 5. 以下说法错误的是 ( ) A .命题“若x 2 -3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2 -3x+2≠0” B .“x=2”是“x 2 -3x+2=0”的充分不必要条件 C .若命题p:存在x 0∈R,使得2 0x -x 0+1<0,则﹁p:对任意x∈R,都有x 2 -x+1≥0 D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S = A .80 B .40 C .31 D .-31 7.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+ C .π8+ D .π48+ 8.二项式6 21()x x +的展开式中,常数项为 A .64 B .30 C . 15 D .1 9.函数3 ()ln f x x x =-的零点所在的区间是 A .(1,2) B .(2,)e C . (,3)e D .(3,)+∞ 10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 3 开始 10n S ==, S p

高考文科数学模拟试题

高考文科数学模拟题 一、选择题: 1.已知集合{}{} 12,03A x x B x x =-<=<<,则A B =() A .{} 13x x -<”是“0<

高考数学模拟试题

高考数学模拟试题 (第一卷) 一、选择题:(每小题5分,满分60分) 1、已知集合A={x|x 2+2ax+1=0}的真子集只有一个,则a 值的集合是 A .(﹣1,1); B .(﹣∞,﹣1)∪[1,+∞]; C .{﹣1,1}; D .{0} 2、若函数y=f(x)的反函数y=f -1(x)满足f -1(3)=0,则函数y=f(x+1)的图象必过点: A .(0,3); B .(-1,3); C .(3,-1); D .(1,3) 3、已知复数z 1,z 2分别满足| z 1+i|=2,|z 2-3-3i|=3则| z 1-z 2|的最大值为: A .5; B .10; C .5+13; D .13 4、数列 ,4 3211,3211,211++++++ ……的前n 项和为: A .12+n n ; B .1+n n ; C .222++n n ; D .2+n n ; 5、极坐标方程ρsin θ=sin2θ表示的曲线是: A .圆; B .直线; C .两线直线 D .一条直线和一个圆。 6、已知一个复数的立方恰好等于它的共轭复数,则这样的复数共有: A .3个; B .4个; C .5个; D .6个。 7、如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 是异面直 线AC ,A 1D 的公垂线,则EF 和ED 1的关系是: A . 异面; B .平行; C .垂直; D .相交。 8、设(2-X)5=a 0+a 1x+a 2x+…+a 5x 5, 则a 1+a 3+a 5的值为: A .-120; B .-121; C .-122; D .-243。 9、要从一块斜边长为定值a 的直角三角形纸片剪出一块圆形纸片,圆形纸片的最大面积为: A .2 πa 2; B .24223a π-; C .2πa 2; D .2)223(a π- 10、过点(1,4)的直线在x,y 轴上的截距分别为a 和b(a,b ∈R +),则a+b 的最小值是: A .9; B .8; C .7; D .6; 11、三人互相传球,由甲开始发球并作为第一次传球。经过5次传球后,球仍回到甲手中,则不同的传球方式共有: A .6种; B .8种; C .10种; D .16种。 12、定义在R 上的偶函数f(x)满足f(x+2)=f(x -2),若f(x)在[﹣2,0]上递增,则 A .f(1)>f(5.5) ; B .f(1)

模拟电子技术基础知识点总结

模拟电子技术复习资料总结 第一章半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6.杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。 7. PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性 二. 半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

2) 等效电路法 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

2020高考理科数学模拟试题精编

2020高考理科数学模拟试题精编 (考试用时:120分钟 试卷满分:150分) 注意事项: 1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 3.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设全集Q ={x |2x 2-5x ≤0,x ∈N},且P ?Q ,则满足条件的集合P 的个数是( ) A .3 B .4 C .7 D .8 2.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1z =( ) A .i B .-i C .2i D .-2i 3.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( ) A .80 B .85 C .90 D .95 4.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( ) A.34 B.23 C.12 D.13 5.已知以下三视图中有三个同时表示某一个三棱锥,则不是.. 该三棱锥的三视图的是( ) 6.已知p :a =±1,q :函数f (x )=ln(x +a 2+x 2)为奇函数,则p 是q 成立的( )

2020年高考文科数学模拟试卷及答案(共三套)

2020年高考文科数学模拟试卷及答案(共三套) 2020年高考文科数学模拟试卷及答案(一) 一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求) 1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+

高考理科数学模拟试题

高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题, 共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,, 则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位, 复数z 满足()12i z i +=, 则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴, 直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点, 则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中, 含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示, 则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减, 则a 的取值范围是( ) A. 11<<

2018高考文科数学模拟试题

2018高考文科数学模拟试题 一、选择题: 1.已知命题,,则是成立的( )条件. A .充分不必要 B .必要不充分 C .既不充分有不必要 D .充要 2.已知复数,,,是虚数单位,若是实数,则( ) A . B . C . D . 3.下列函数中既是偶函数又在上单调递增的函数是( ) A . B . C . D . 4.已知变量,之间满足线性相关关系 ,且,之间的相关数据如下表所示:则( ) A .0.8 B .1.8 C .0.6 D .1.6 5.若变量,满足约束条件,则的最大值是( ) A .0 B .2 C .5 D .6 6.已知等差数列的公差和首项都不为,且成等比数列,则( ) A . B . C . D . 7.我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的 :12p x -<<2:log 1q x

人教版2020年高考数学仿真模拟试题 文1新人教版

2019年高考数学仿真模拟试题 本试卷共6页。考试结束后,将本试卷和答题卡一并交回。 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准 确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的 签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域 书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠,不要弄破、弄皱。不准使用涂改液、修正带、 刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选 项中,只有一项是符合题目要求的。 1.已知集合{}3,2,1=A ,{} Z x x x x B ∈<--= ,0322 ,则=B A Y A .{}2,1 B .{}3,2,1,0 C .[]2,1 D .[]3,0 2.复数 i i 212-+的共轭复数的虚部是 A .53- B .53 C .1- D .1 3.下列结论正确的是 A .若直线⊥l 平面α,直线⊥l 平面β,且βα,不共面,则βα// B .若直线//l 平面α,直线//l 平面β,则βα// C .若两直线21l l 、与平面α所成的角相等,则21//l l D .若直线l 上两个不同的点B A 、到平面α的距离相等,则α//l 4.已知34cos sin = -αα,则=?? ? ??-απ4cos 2 A. 91 B. 92 C. 94 D. 9 5 5.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于B A 、两点,

模拟电路基础知识大全

模拟电路基础知识大全 一、填空题:(每空1分共40分) 1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 2、漂移电流是(反向)电流,它由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 3、所谓理想二极管,就是当其正偏时,结电阻为(零),等效成一条直线;当其反偏时,结电阻为(无穷大),等效成断开; 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。 6、当温度升高时,晶体三极管集电极电流Ic(增大),发射结压降(减小)。 7、三极管放大电路共有三种组态分别是(共集电极)、(共发射极)、(共基极)放大电路。 8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。 9、负反馈放大电路和放大倍数AF=(A/1+AF),对于深度负反馈放大电路的放大倍数AF= (1/F )。 10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl ), (1+AF )称为反馈深度。

11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。 12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。 13、OCL电路是(双)电源互补功率放大电路; OTL电路是(单)电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数(近似于1 ),输入电阻(大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。 15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。 16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载流信号)。 17、模拟乘法器输出与输入的关系式是U0=(KUxUy ) 1、1、P型半导体中空穴为(多数)载流子,自由电子为(少数)载流子。 2、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 3、反向电流是由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、当温度升高时,三极管的等电极电流I(增大),发射结压降UBE(减小)。

高考数学模拟试题(文科)及答案

凹凸教育高考文科数学模拟题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,U R =且{}{} 2|12,|680, A x x B x x x =->=-+<则()U C A B I 等于 (A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)- 2.已知i z i 32)33(-=?+(i 是虚数单位),那么复数z 对应的点位于复平面内的 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列有关命题的说法正确的是 (A )命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. (B )“1x =-”是“2560x x --=”的必要不充分条件. (C )命题“x R ?∈,使得210x x ++<”的否定是:“x R ?∈, 均有210x x ++<”. (D )命题“若x y =,则sin sin x y =”的逆否命题为真命题. 4.某人骑自行车沿直线匀速旅行,先前进了a 千米,休息了一段时间,又沿原路返回b 千米()a b <,再前进c 千米,则此人离起点的距离s 与时间t 的关系示意图是 (A ) (B ) (C ) (D ) 5.已知(31)4,1()log ,1a a x a x f x x x -+

2019年高考数学模拟试题含答案

F D C B A 2019年高考数学模拟试题(理科) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回。 一.选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中只有一项是符合题目要求的 1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ?)(= A .}3,2{ B .}4,3,2{ C .}2{ D .φ 2.已知i 是虚数单位,i z += 31 ,则z z ?= A .5 B .10 C . 10 1 D . 5 1 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为 A .3 B .4 C .5 D .6 (第3题) (第4题) 4.如图,ABCD 是边长为8的正方形,若1 3 DE EC =,且F 为BC 的中点,则EA EF ?=

A .10 B .12 C .16 D .20 5.若实数y x ,满足?? ???≥≤-≤+012y x y y x ,则y x z 82?=的最大值是 A .4 B .8 C .16 D .32 6.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+ C .32216+ D .32216516++ 7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A . 101 B .51 C .103 D .5 4 8.设n S 是数列}{n a 的前n 项和,且11-=a ,11++?=n n n S S a ,则5a = A . 301 B .031- C .021 D .20 1 - 9. 函数()1ln 1x f x x -=+的大致图像为 10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥 ABCD P -的外接球体积最小值是

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案) 本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号. 3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回. 第Ⅰ卷 (选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2 {1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I (A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数1 1i z = +,则||z = (A) 2 (B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2 ()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)2 4. 已知单位向量12,e e 的夹角为 2π 3 ,则122e e -= (A)3 (B)7 5. 已知双曲线22 221(0,0)x y a b a b -=>>的渐近线方程为3y x =±,则双曲线的离心率是 (B) 3 (C)10 (D)10 9 6. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的

密接式车钩缓冲装置检修作业指导书

作业指导书 密接式钩缓装置检修

密接式钩缓装置检修岗位作业要领 标准化密接式钩缓检修岗位安全风险提示 1.工作时必须穿戴防砸皮鞋,防止车轮碾伤或铁屑扎伤; 2.必须戴安全帽、防护眼镜,防止异物溅入眼睛; 3.检修时要轻拿轻放,检修、搬运、存放时均不得落地; 4.使用升降小车取钩时,注意安装牢固后再分解车钩。

目次 1.工前准备 (1) 2.密接式车钩装置与车体分离 (2) 3.分解钩缓装置 (3) 4.零部件检修 (7) 5.密接钩装置组装及试验 (14) 6.密接钩装车 (18) 7.钩高调整 (20) 8.完工清理 (22)

钩缓装置检修作业指导书类别:A2、A3级检修系统:车钩缓冲装置部件:密接式钩缓装置 密接式钩缓装置检修作业指导书适用车型:25T 作业人员:车辆钳工3-4名(岗位合格证)作业时间:6小时/个 工装工具:1.钢卷尺; 2.钩缓升降车; 3.活动扳手、手锤、钩引、力矩扳手; 4.托盘。作业材料:砂轮片、护目镜、扫帚、簸箕、拖布、平板调整垫 作业场所:辅库 环境要求:通风、自然采光良好 操作规程:钩缓升降车技术操作规程

参考资料: 1.《铁路客车段修规程(试行)》.(铁总运〔2014〕349号). 2.《车辆钳工》.中国铁道出版社.2011 3.《车辆处转发中国铁路总公司运输局关于印发客车常见故障专项整治方案的通知》(辆函〔2015〕240号) 4.《中国铁路总公司运输局关于印发客车检修规程勘误的通知》(运辆客车函〔2016〕137号) 安全防护及注意事项: 1.——徒手搬运配件时,防止掉落,避免伤及人员; 2.——打磨配件时,注意力集中,避免伤及人员。 基本技术要求: 1.车钩缓冲装置整体分解下车,清除锈垢,可见部位外观检查须良好,探伤部件须露出金属本色。回转机构、连 挂系统分解检修,缓冲器、钩体、安装座状态检查,表面无裂纹。橡胶件A2修状态不良时更新,A3修时更新。 2.探伤件经热处理、调修后或经过焊修、机械加工的探伤部位须复探。 3.有力矩要求的防松螺母均须按表一标准用扭力扳手检查,其余螺母、螺栓可参考执行。 4.所有组装配件须是合格品。

2019高考文科数学模拟试卷(文科)一

2019高考文科数学模拟试卷 一、选择题 1. 已知集合{ } 2 230A x N x x =∈+-≤,则集合A 的真子集个数为 (A )31 (B )32 (C )3 (D )4 2. 若复数()()21z ai i =-+的实部为1,则其虚部为 (A )3 (B )3i (C ) 1 (D )i 3.设实数2log 3a =,12 13b ??= ??? ,13 log 2c =,则有 (A )a b c >> (B )a c b >> (C )b a c >> (D )b c a >> 4.已知1 cos()43 π α+ =,则sin2α= (A )79- (B )79 (C )22± (D )79 ± 5. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,右图是源于其思想的一个程序框图,若输入的,a b 分别为5,2,则输出的n 等于 (A )2 (B )3 (C )4 (D )5 6.如图,AB 为圆O 的一条弦,且4AB =,则OA AB =u u u r u u u r g (A )4 (B )-4 (C )8 (D )-8 7.以下命题正确的个数是 ①函数()f x 在0x x =处导数存在,若0:()0p f x '=;0:q x x =是()f x 的极值点, 则p 是q 的必要不充分条件 ②实数G 为实数a ,b 的等比中项,则G ab =± ③两个非零向量a r 与b r ,若夹角0a b

模拟电路(基本概念和知识总揽)

模拟电路(基本概念和知识总揽) 1、基本放大电路种类(电压放大器,电流放大器,互导放大器和互阻放大器),优缺点,特别是广泛采用差分结构的原因。 2、负反馈种类(电压并联反馈,电流串联反馈,电压串联反馈和电流并联反馈);负反馈的优点(降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用) 3、基尔霍夫定理的内容是什么? 基尔霍夫定律包括电流定律和电压定律。 电流定律:在集总电路中,任何时刻,对任一节点,所有流出节点的支路电流代数和恒等于零。电压定律:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于零。 4、描述反馈电路的概念,列举他们的应用? 反馈,就是在电子系统中,把输出回路中的电量输入到输入回路中去。 反馈的类型有:电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。负反馈的优点:降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用。 电压(流)负反馈的特点:电路的输出电压(流)趋向于维持恒定。 5、有源滤波器和无源滤波器的区别? 无源滤波器:这种电路主要有无源元件R、L和C组成 有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。 集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 6、基本放大电路的种类及优缺点,广泛采用差分结构的原因。 答:基本放大电路按其接法的不同可以分为共发射极放大电路、共基极放大电路和共集电极放大电路,简称共基、共射、共集放大电路。 共射放大电路既能放大电流又能放大电压,输入电阻在三种电路中居中,输出电阻较大,频带较窄。常做为低频电压放大电路的单元电路。 共基放大电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射放

全国高考文科数学模拟试题及答案

2017年普通高等学校招生全国统一模拟考试 文科数学 考场:___________座位号:___________ 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。满分150分,考试时间120分 钟. 第I 卷(选择题共60分) 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =,则集合 () U A B 中的元素共有( ) (A) 3个 (B ) 4个 (C )5个 (D )6个 (2)(2) 复数 3223i i +=-( ) (A )1 (B )1- (C )i (D)i - (3)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( ) (A )17- (B )17 (C )1 6 - (D )16 (4)已知tan a =4,cot β=1 3 ,则tan(a+β)=( ) (A)711 (B)711- (C) 713 (D) 713 - (5)已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则=a ( ) A. 2 B. 26 C. 2 5 D. 1 (6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f ( ) (A )0 (B )1 (C )2 (D )4

(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π + =x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为( ) A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几 何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 (9)若0tan >α,则( ) A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3 π 中心对称,那么φ的最小值为( ) (A) 6π (B) 4π (C) 3π (D) 2 π (11)设,x y 满足24, 1,22,x y x y x y +≥?? -≥??-≤? 则z x y =+ ( ) (A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值 (12)已知椭圆2 2:12 x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。若3FA FB =,则AF =( ) (A) (B) 2 (C) (D) 3 第Ⅱ卷(非选择题 共90分)

湖南省高考数学仿真模拟考试试题 文

湖南省2015届高三高考仿真数学(文)试题 注意事项: 1.答题前,考生务必将自己的姓名、准考证号写在答题卡和本试题卷的封面上,并认真核对答题卡条形码上的姓名、准考证号和科目。 2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上答题无效。考生在答题卡上按如下要求答题: (1)选择题部分请按题号用2 B 铅笔填涂方框,修改时用橡皮擦干净,不留痕迹; (2)非选择题部分请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效; (3)请勿折叠答题卡。保持字体工整、笔迹清晰、卡面清洁。 3.本试题卷共6页。如缺页,考生须及时报告监考老师,否则后果自负。 4.考试结束后,将本试题卷和答题卡一并交回。 本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合A={x|x>-2),B={x|-3-2} B.{ x|2->-3} D.{ x|-3<.x<3} 2.不等式1成立的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 3.为了调查学生每天零花钱的数量(钱数取整数元),以便引 导学生树立正确的消费观.样本容量1 000的频率分布直 方图如图所示,则样本数据落在[6,14)内的频数为 A. 780 B .680 C .648 D .460 4.输入x=l 时,运行如图所示的程序,输出的x 值为 A. 4 B. 5 C. 7 D. 9 5.已知Z+3y=2,则3x+27y 的最小值为 2 B .4 C .3 3 D .6

相关主题