搜档网
当前位置:搜档网 › 遗传算法实例

遗传算法实例

遗传算法实例
遗传算法实例

遗传算法实例.txt懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。遗传算法实例:

也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。

对于初学者,尤其是还没有编程经验的非常有用的一个文件

遗传算法实例

% 下面举例说明遗传算法 %

% 求下列函数的最大值 %

% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %

% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %

% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %

% %

%--------------------------------------------------------------------------------------------------------------%

%--------------------------------------------------------------------------------------------------------------%

% 编程

%-----------------------------------------------

% 2.1初始化(编码)

% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。

%遗传算法子程序

%Name: initpop.m

%初始化

function pop=initpop(popsize,chromlength)

pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,

% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值

% 2.2.1 将二进制数转化为十进制数(1)

%遗传算法子程序

%Name: decodebinary.m

%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制

function pop2=decodebinary(pop)

[px,py]=size(pop); %求pop行和列数

for i=1:py

pop1(:,i)=2.^(py-i).*pop(:,i);

end

pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)

% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),

% 参数1ength表示所截取的长度(本例为10)。

%遗传算法子程序

%Name: decodechrom.m

%将二进制编码转换成十进制

function pop2=decodechrom(pop,spoint,length)

pop1=pop(:,spoint:spoint+length-1);

pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值

% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

%遗传算法子程序

%Name: calobjvalue.m

%实现目标函数的计算

function [objvalue]=calobjvalue(pop)

temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数

x=temp1*10/1023; %将二值域中的数转化为变量域的数

objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值

%遗传算法子程序

%Name:calfitvalue.m

%计算个体的适应值

function fitvalue=calfitvalue(objvalue)

global Cmin;

Cmin=0;

[px,py]=size(objvalue);

for i=1:px

if objvalue(i)+Cmin>0

temp=Cmin+objvalue(i);

else

temp=0.0;

end

fitvalue(i)=temp;

end

fitvalue=fitvalue';

% 2.4 选择复制

% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。

% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:

% 1)在第 t 代,由(1)式计算 fsum 和 pi

% 2)产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum

% 3)求∑fi≥s 中最小的 k ,则第 k 个个体被选中

% 4)进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群

%遗传算法子程序

%Name: selection.m

%选择复制

function [newpop]=selection(pop,fitvalue)

totalfit=sum(fitvalue); %求适应值之和

fitvalue=fitvalue/totalfit; %单个个体被选择的概率

fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10] [px,py]=size(pop);

ms=sort(rand(px,1)); %从小到大排列

fitin=1;

newin=1;

while newin<=px

if(ms(newin))

newpop(newin)=pop(fitin);

newin=newin+1;

else

fitin=fitin+1;

end

end

% 2.5 交叉

% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置

% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:

% x1=0100110

% x2=1010001

% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:

% y1=0100001

% y2=1010110

% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。

% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。

%遗传算法子程序

%Name: crossover.m

%交叉

function [newpop]=crossover(pop,pc)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:2:px-1

if(rand

cpoint=round(rand*py);

newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];

newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];

else

newpop(i,:)=pop(i);

newpop(i+1,:)=pop(i+1);

end

end

% 2.6 变异

% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,

% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。

%遗传算法子程序

%Name: mutation.m

%变异

function [newpop]=mutation(pop,pm)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:px

if(rand

mpoint=round(rand*py);

if mpoint<=0

mpoint=1;

end

newpop(i)=pop(i);

if any(newpop(i,mpoint))==0

newpop(i,mpoint)=1;

else

newpop(i,mpoint)=0;

end

else

newpop(i)=pop(i);

end

end

% 2.7 求出群体中最大得适应值及其个体

%遗传算法子程序

%Name: best.m

%求出群体中适应值最大的值

function [bestindividual,bestfit]=best(pop,fitvalue)

[px,py]=size(pop);

bestindividual=pop(1,:);

bestfit=fitvalue(1);

for i=2:px

if fitvalue(i)>bestfit

bestindividual=pop(i,:);

bestfit=fitvalue(i);

end

end

% 2.8 主程序

%遗传算法主程序

%Name:genmain05.m

clear

clf

popsize=20; %群体大小

chromlength=10; %字符串长度(个体长度)

pc=0.6; %交叉概率

pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体

for i=1:20 %20为迭代次数

[objvalue]=calobjvalue(pop); %计算目标函数

fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度

[newpop]=selection(pop,fitvalue); %复制

[newpop]=crossover(pop,pc); %交叉

[newpop]=mutation(pop,pc); %变异

[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值

y(i)=max(bestfit);

n(i)=i;

pop5=bestindividual;

x(i)=decodechrom(pop5,1,chromlength)*10/1023;

pop=newpop;

end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])

hold on

plot(x,y,'r*')

[z index]=max(y); %计算最大值及其位置

x5=x(index)%计算最大值对应的x值

y=z

【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x 10*sin(5*x) 7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)

22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm 结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10*sin(5*x)+7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2 )))+22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282; %适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm 结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

遗传算法求解实例

yj1.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值 0.2)*10sin()(+=x x x f π,∈x [-1, 2] 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9, 最大遗传代数为25 译码矩阵结构:?????????? ??????? ???? ?=ubin lbin scale code ub lb len FieldD 译码矩阵说明: len – 包含在Chrom 中的每个子串的长度,注意sum(len)=length(Chrom); lb 、ub – 行向量,分别指明每个变量使用的上界和下界; code – 二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码, code(i)=0则为格雷编码; scale – 二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术 刻度,scale(i)=1则为对数刻度; lbin 、ubin – 二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或 ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界; 注:增加第22行:variable=bs2rv(Chrom, FieldD);否则提示第26行plot(variable(I), Y, 'bo'); 中variable(I)越界 yj2.m :目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中,De Jong 函数的表达式为: ∑ == n i i x x f 1 2 )(, 512512≤≤-i x 这里n 是定义问题维数的一个值,本例中选取n=20,求解 )(min x f ,程序主要变量: NIND (个体的数量):=40; MAXGEN (最大遗传代数):=500; NV AR (变量维数):=20; PRECI (每个变量使用多少位来表示):=20; GGAP (代沟):=0.9 注:函数objfun1.m 中switch 改为switch1,否则提示出错,因为switch 为matlab 保留字,下同! yj3.m :多元多峰函数的优化实例,Shubert 函数表达式如下,求)(min x f 【shubert.m 】

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

遗传算法实例

遗传算法实例.txt懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py

遗传算法经典MATLAB代码

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

第七章遗传算法应用举例

第七章 遗传算法应用举例 遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。 7.1 简单一元函数优化实例 利用遗传算法计算下面函数的最大值: ()sin(10) 2.0[1,2]f x x x x π=?+∈-, 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MA TLAB 代码。 figure(1); fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 % 定义遗传算法参数 NIND= 40; % 个体数目(Number of individuals) MAXGEN = 25; % 最大遗传代数(Maximum number of generations) PRECI = 20; % 变量的二进制位数(Precision of variables) GGAP = 0.9; % 代沟(Generation gap) trace=zeros (2, MAXGEN); % 寻优结果的初始值 FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群 gen = 0; % 代计数器 variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值 while gen < MAXGEN, FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择 SelCh = recombin ('xovsp',SelCh,0.7); % 重组 SelCh = mut(SelCh); % 变异 variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换 ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加 % 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号 [Y,I]=max(ObjV),hold on; plot (variable (I),Y , 'bo'); trace (1,gen)=max (ObjV); %遗传算法性能跟踪

(实例)matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B], 如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

遗传算法程序示例

遗传算法程序示例 %% I. 清空环境变量 %optimtool solver 中选择GA %添加gaot工具箱 clear all clc %% II. 绘制函数曲线 x = 0:0.01:9; y = x + 10*sin(5*x)+7*cos(4*x); figure plot(x, y) xlabel('自变量') ylabel('因变量') title('y = x + 10*sin(5*x) + 7*cos(4*x)') grid %% III. 初始化种群 initPop = initializega(50,[0 9],'fitness'); %种群大小;变量变化范围;适应度函数的名称 %看一下initpop 第二列代表适应度函数值 %% IV. 遗传算法优化 [x endPop bpop trace] = ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,... 'normGeomSelect',0.08,'arithXover',2,'nonUnifMutation',[2 25 3]); %变量范围上下界;适应度函数;适应度函数的参数;初始种群;精度和显示方式;终止函数的名称; %终止函数的参数;选择函数的名称;选择函数的参数;交叉函数的名称;交叉函数的参数;变异函数的 %名称;变异函数的参数 % X 最优个体endpop 优化终止的最优种群bpop 最优种群的进化轨迹trace 进化迭代过程中 %最优的适应度函数值和适应度函数值矩阵 %% V. 输出最优解并绘制最优点 x hold on plot (endPop(:,1),endPop(:,2),'ro')

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

使用MATLAB遗传算法工具实例(详细) (1)【精品毕业设计】(完整版)

最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。 本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。 8.1 遗传算法与直接搜索工具箱概述 本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。 8.1.1 工具箱的特点 GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。 使用语句 type function_name 就可以看到这些函数的MATLAB代码。我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。 工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。 遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。 遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。 8.1.1.1 功能特点 遗传算法与直接搜索工具箱的功能特点如下: 图形用户界面和命令行函数可用来快速地描述问题、设置算法选项以及监控进程。 具有多个选项的遗传算法工具可用于问题创建、适应度计算、选择、交叉和变异。 直接搜索工具实现了一种模式搜索方法,其选项可用于定义网格尺寸、表决方法和搜索方法。 遗传算法与直接搜索工具箱函数可与MATLAB的优化工具箱或其他的MATLAB程序结合使用。 支持自动的M代码生成。 8.1.1.2 图形用户界面和命令行函数 遗传算法工具函数可以通过命令行和图形用户界面来使用遗传算法。直接搜索工具函数也可以通过命令行和图形用户界面来进行访问。图形用户界面可用来快速地定义问题、设置算法选项、对优化问题进行详细定义。 133

matlab基本遗传算法应用实例

基本遗传算法应用实例。用基本遗传算法求下面函数的最大值 10090060)(23++-=x x x x f 300≤≤x 个体数目取50,最大进化代数取100,离散精度取0.001,杂交概率取0.9,变异概率取0.004 1、在editor 中建立基本遗传算法函数:GA 程序如下: function[xv,fv]=GA(fitness,a,b,NP,NG,pc,pm,eps) %待优化的目标函数:fitness %自变量下界:a %自变量上界:b %种群个体数:NP %最大进化代数:NG %杂交概率:pc %自变量概率:pm %自变量离散精度:eps %目标函数取最小值时的自变量值:xm %目标函数的最小值:fv L=ceil(log2((b-a)/eps+1)); %根据离散精度,确定二进制编码需要的码长 x=zeros(NP,L); for i=1:NP x(i,:)=Initial(L);%种群初始化 fx(i)=fitness(Dec(a,b,x(i,:),L)); %个体适应值 end for k=1:NG sumfx=sum(fx); %所有个体适应值之和 px=fx/sumfx; %所有个体适应值的平均值 ppx=0; ppx(1)=px(1); for i=2:NP %用于轮盘赌策略的累加 ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; %根据轮盘赌策略确定的父亲 break; end end Selmother=floor(rand()*(NP-1))+1; %随机选择母亲 posCut=floor(rand()*(L-2))+1; %随机选择交叉点 r1=rand(); if r1<=pc %交叉

遗传算法基本理论实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序.. (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的

遗传算法 (2)

用遗传算法优化BP神经网络的Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premn mx(XX); YY=premn mx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-');

遗传算法

湖南理工学院 人工智能课程论文 题目:遗传算法及其应用 课程名称:人工智能及其应用 院系:计算机学院 专业班级:计科13 - 2 BJ 姓名:李中文 学号: 14132404129 课程论文成绩: 指导教师:廖军 2015 年 6 月30 日

遗传算法及其应用 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,非常适用于处理传统搜索方法难以解决的复杂和非线性问题。遗传算法是基于达尔文进化论,在计算机上模拟生命进化机制而发展起来的一门新学科。它根据适者生存,优胜劣汰等自然进化规则来进行搜索计算和问题求解。遗传算法具有通用、并行、稳健、简单与全局优化能力强等突出优点,适用于解决复杂、困难的全局优化问题。遗产算法以其广泛的适应性渗透到研究与工程的各个领域,例如:组合优化、机器学习、自适应控制、规划设计和人工生命等,是21世纪有关智能计算中的重要技术之一。 文章的第一部分介绍了遗传算法的基本概念。第二部分介绍了遗传算法的原理。第三部分着重介绍具体实现,以及简单实例,主要体现遗传算法的实现过程。第四部分介绍了一个具体问题,如何用遗传算法来解决,以及实现时的一些基本问题。 文章在介绍遗传算法的原理以及各种运算的同时,还分析了一些应用中出现的基本问题,对于我们的解题实践有一定的指导意义。 关键词:遗传算法,遗传,群体

Genetic algorithm and its application Abstract: genetic algorithm genetic algorithms (GA) is a kind of reference biology natural selection and genetic mechanism of random search algorithm, is very suitable for the complex and non-linear problems that are difficult for traditional search methods. Genetic algorithm is a new subject based on Darwin's theory of evolution, which is developed on the computer simulation of life evolution. It is based on the survival of the fittest, the survival of the fittest natural evolution rule to search algorithm and solve problems. Genetic algorithm has the advantages of general, parallel, robust, simple and global optimization, which is suitable for solving complex and difficult global optimization problems. Inheritance algorithm with its extensive adaptability penetrated into various fields of research and engineering, for example: combinatorial optimization, machine learning, adaptive control, planning and design and artificial life, is one of the most important technologies in the 21st century the intelligent calculation. The first part of the article introduces the basic concepts of genetic algorithm. The second part introduces the principle of genetic algorithm and three kinds of operations: selection, exchange, variation. The third part focuses on the specific implementation of the three operations, as well as a simple example, the main embodiment of the genetic algorithm to achieve the process. In the fourth part, the two parts are introduced, which are all the problems of NP-, how to use genetic algorithms to solve the problems, and some basic problems in the implementation of the problem. In the introduction of the principle of genetic algorithm and various operations, it also analyzes the basic problems that arise in some applications. Key words: genetic algorithm, genetic variation, population

遗传算法的MATLAB程序实例讲解学习

遗传算法的M A T L A B 程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

相关主题