搜档网
当前位置:搜档网 › 大肠杆菌总结

大肠杆菌总结

大肠杆菌总结
大肠杆菌总结

大肠杆菌发酵经验总结

首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。

其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。

第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。

第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。

根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。

大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。

一、代谢副产物-乙酸

乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。

预防乙酸产生的措施:

1、通过控制比生长速率来减少乙酸的产生:

比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。

2、透析培养:

在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。

3、控制葡萄糖的浓度:

葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。

常用的控制方法主要有:

恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。

恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。

二、温度

大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢副产物的产生和代谢热的产生。有时降低温度更有利于目的蛋白的正确折叠及表达。在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。

三、培养方式

微生物的培养方式主要有分批、连续和补料分批3种。大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。使微生物处于最佳的生长环境。这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。

生物技术研究者追求的两个主要目标,一是新型生物产品的开发,另一就是为传统的或新生生物产品,寻求更经济的生产方式。近十年来,利用遗传工程技术来生产一些重要的生物药物,是生物技术领域中迅速发展的一个重要方向。在这一研究领域里,如何创造更经济、更有效的方法,来提高生产过程的经济性和产品的市场竞争力,已经成为生物技术领域的科学家们所关注的焦点问题。

利用重组DNA技术生产重要的生物药物,在人类文明史上具有划时代的意义。由于生产成本和生产率的高低直接影响公司的生存,重组生物药物生产过程的优化已经成为一个重要问题。它包括以下六个方面∶(1)适宜宿主的选择;(2)重组蛋白积累位点(如可溶的胞内积累、胞内聚合积累、周质积累或胞外积累)的确定;(3)重组基因最大表达的分子策略;(4)细胞生长和生产环境的优化;

(5)发酵条件的优化;后处理过程的优化。只有这六个方面都以实现高生产率为目标,整个

生产过程的最优化才能实现。

(一)细胞生长环境的优化策略

要提高细胞密度和生产率,首先需要对微生物生长的物理和化学环境进行优化,包括生长培养基的组成,培养物理参数(pH、温度和搅拌)及产物诱导条件。优化这些参数的目的在于保证细胞生长处于最适的环境条件之下,避免营养物过量或不足、防止产物降解以及减少有毒产物的形成。1.培养基组成的优化

培养基中通常含有碳(能)源、氮源,以及微营养物如维生素和微量元素,这些营养物的浓度与比例,对实现生产重组微生物的高密度发酵是很重要的。例如,过量的Fe2+和CaCO3与相对低浓度的磷酸盐可促进黄曲霉生产L-苹果酸;链霉菌在60~80 mmol/L CO32-存在下,其丝氨酸蛋白酶生产能力可提高10倍之多;在重组微生物达到高细胞密度后,限制磷酸盐浓度可使抗生素和异源白介素β的产率显著提高。此外还发现,限制精氨酸的浓度虽然会抑制细胞的生长,但比起精氨酸充足时细胞生长优良的情况,其重组α-淀粉酶的产量可提高2倍。

培养基中复合氮源的种类对重组大肠杆菌的高密度发酵也非常重要。一般地,当流加培养基中含有酵母膏时,重组蛋白不稳定;而当流加培养基中含有蛋白胨时,大肠杆菌不能再利用其所产生的乙酸。将酵母膏和蛋白胨都加入流加培养基中,不但所生产的重组蛋白非常稳定,细胞还能再利用代谢合成的乙酸,这是一种非常有趣的代谢机制。

恒化技术可用于优化精氨酸营养缺陷型大肠杆菌X90的生长培养基。使该菌株以0.4 h-1的比生长速率在含精氨酸的基本培养基上生长,待培养达到稳定状态后,在恒化器内分别加入氨基酸、

维生素和微量元素来考察这些物质对菌体生长和精氨酸合成的影响。结果表明,由于氨基酸生物合成途径的末端产物抑制作用,加入某些氨基酸后,细胞生长反而受到抑制。加入NH4Cl后细胞量则出现了戏剧性的增长。而添加维生素对菌体生长基本上没有任何影响。通过计算生物量对每种基质的产率,最终可以确定高密度发酵培养基的组成,在此优化培养基上,大肠杆菌X90细胞密度可达到92 g/L,同时形成56 mg/L的胞外重组蛋白酶。

2.特殊营养物的添加

在某些情况下,向培养基中添加一些营养物质能提高生产率。这些营养物的作用有可能是作为产物的前体,也有可能是阻止产物的降解,例如,在培养重组大肠杆菌生产氯霉素乙酰转移酶(一种由许多芳香族氨基酸组成的蛋白)时添加苯丙氨酸,可将酶的比活力提高大约2倍;在培养重组枯草芽孢杆菌生产β-内酰胺酶的培养基中添加60 g/L的葡萄糖和100 mmol/L的磷酸钾能使重组蛋白的稳定性显著提高。其原因可能是由于宿主细胞产生的多种胞外蛋白酶的活性被抑制,从而防止了重组蛋白的降解。

在生长培养基中添加特殊物质有时还能以一种未知的机制提高生产率。例如,在摇瓶培养Micro monospora cbersina时添加碘化钠可使dynemicin A的产量提高35倍,但在小型反应器中却无法重复这一结果。

3.限制代谢副产物的积累

培养条件的控制对代谢副产物的形成影响甚大。在分批或流加培养中,某些营养物的浓度过高均会导致Crabtree效应的产生。在这种效应下,酿酒酵母会产生乙醇,大肠杆菌则会产生过量乙酸,一旦生成乙酸,细胞生长及重组蛋白的生产均会受到抑制。大肠杆菌形成乙酸的速度依赖于细胞的生长速度和培养基的组成。业已确证,如果在培养基中添加复合营养物(如大豆水解物),则会增加乙酸的积累量。针对如何减轻由于乙酸积累而产生的负面影响,众多研究者进行了大量工作,如利用循环发酵技术来限制乙酸在重组大肠杆菌高密度培养中的积累。近来也有研究表明,添加某些氨基酸能减轻乙酸的抑制作用。如在培养基中添加10 mg/L的甘氨酸能显著促进大肠杆菌合成重组α-淀粉酶和β-内酰胺酶,并能刺激酶从周质向培养基中释放,但此时仍有乙酸伴随生成。

(二)培养模式

由于许多营养物在高浓度下对细胞有抑制作用,而为了达到高细胞密度,又必须供给大量的营养物质,因此,浓缩营养物必须以与其消耗速率成比例的速度加入反应器中。为此产生了多种形式的补料策略,它可以简单到线性补料,也可以复杂到利用数学模型计算得出的策略来控制补料速率。具体来说,培养模式的选择主要依赖于以下三个因素∶(1)所培养细胞的具体代谢行为;(2)利用抑制性底物合成目的产物的潜力;(3)诱导条件以及测量细胞培养各项参数的能力。

1.大肠杆菌流加发酵策略

大肠杆菌是迄今为止遗传背景最清楚的菌株,广泛用于基因工程的研究中。大肠杆菌高密度培养时最关键的问题是如何尽量减少乙酸的产生,因为高浓度葡萄糖或高比生长速率带来的高浓度乙酸会严重抑制细胞生长和重组蛋白的生产。研究发现,即使葡萄糖浓度只有0.25~0.5 g/L,大肠杆菌仍会产生乙酸。因此,高细胞密度发酵所采用的流加策略必须按照一定的算法制定,以保持反应器中底物浓度处于较低的水平。营养物最好以它们的消耗速率加入反应器中,这样不仅可以防止底物积累到毒性水平,也不会使细胞处于饥饿状态。

近年来已经报道了多种控制大肠杆菌流加培养中流加速率的方法,其中大多数是将流加速率与一种物理参数间接耦合(如溶氧、pH或CO2释放速率)。有学者将溶氧控制在一个预定值上以保证较低的生长速率,结果乙酸产生很少,最终细胞干重达到110 g/L,并发现较低的比生长速率还有利于重组蛋白的高表达。在另一个控制低比生长速率的高细胞密度培养中,研究者采用先指数流加葡萄糖、铵盐和无机盐,后采用广义线性流加的培养策略,有效地防止了乙酸的积累,重组大肠杆菌的细胞密度达到66 g/L,通过温度诱导可在胞内形成19.2 g/L的活性重组蛋白。

如果将葡萄糖浓度控制在一个不致于产生毒性的足够低的水平上,也可以使细胞在不存在限制性基质的情况下迅速生长到高细胞密度。这种控制策略对仪器的要求较高。Kleman等采用在线葡萄糖分析仪,以微生物对葡萄糖的需求来决定葡萄糖和其它营养物的流加速率,这一算法能够在产物诱导阶段中根据细胞生长的变化自动调整流加速率。培养携带质粒的大肠杆菌MV1190,其质粒中带有编码1,5-二磷酸核酮糖羧化酶的基因,最终细胞干重达到39 g/L,产生1.7 g/L

可溶的活性蛋白。

2.重组酵母的流加发酵

酵母中广泛用于遗传工程研究的菌株是酿酒酵母。但采用酿酒酵母作为重组宿主也有以下缺点∶(1)重组蛋白生产的水平较低;(2)质粒不稳定;(3)生成乙醇。其中生成乙醇是研究者最不希望出现的,因为这会抑制重组蛋白的形成。近来研究表明,其它酵母,如巴斯德毕赤氏酵母也具有作为重组宿主的潜力。Clare等比较了重组巴斯德毕赤氏酵母和酿酒酵母在高细胞密度状态下表达和分泌鼠表皮生长因子的能力。培养每基因组含有19个拷贝数的巴斯德毕赤氏酵母,最终可获得447 mg/L胞内重组蛋白;而培养酿酒酵母所获得的最高水平仅6~7 mg/L。

通过先指数流加,后采用基于CO2释放和RQ值的线性流加控制方式可使重组巴斯德毕赤氏酵母的细胞干重达到80~90 g/L,并分泌高水平的重组人血清蛋白。而培养酿酒酵母,细胞干重和重组蛋白的产量仅分别为25 g/L和20 mg/L。即使将酿酒酵母的生长速率维持在0.12~0.18 h-1,也将形成10~13 g/L的乙醇,因而导致产率降低。但酿酒酵母产乙醇也并不是不可控制的。Shimizu等采用一个复杂的流加系统,将酵母的生长速率控制在0.3 h-1,可使谷胱甘肽(G SH)的生产最大而乙醇的生成最小。

3.流加培养的控制

一个好的流加控制系统必须避免两种倾向∶一是流加过量,补料组分在反应器中积累从而对细胞生长和产物形成产生抑制;二是流加不足,这可能会导致细胞必需营养物的缺乏。计算机技术的迅猛发展,为流加培养的控制提供了更有效的手段。近年来,应用计算机技术来监测和控制发酵过程的研究屡见报道。由于现代计算机技术的帮助,人们能够采用多种生长参数和数学模型来控制流加培养中营养物的添加,从而使复杂的控制系统得以实现。在各种人工智能技术中,模糊推理(fuzzy reasoning)是应用最广的一种。模糊逻辑控制(fuzzy logic control)部分依赖于数学生长模型,也采用“语言定义的规则系统”(linguistic ally defined rules system)来帮助系统响应发酵过程的非线性和动态行为。Alfafara等在流加培养酿酒酵母生产谷胱甘肽的研究中,采用一个模糊逻辑控制系统来控制葡萄糖的流加速度,对系统进行优化后谷胱甘肽的比产生速率达到6.2 h-1。目前,在流加培养中应用模糊逻辑控制技术的最大问题在于如何减少底物和产物浓度振荡所需的调整次数。自适应模糊逻辑控制算法的发展可望对此有所帮助。

(三)诱导策略

对于许多带有诱导型启动子的重组微生物,只有将生长期和产物形成期分开才能获得最大生产率。在流加培养中,这两段时期的分离可以通过延迟诱导直至细胞生长已达到高密度来实现。此外,如果质粒稳定并且产物对培养物无毒,那么可以用重复补料分批培养系统来提高生产率。有学者采用重复补料分批培养技术培养酿酒酵母,每24 h更换50%的培养基,持续30 d,其产物(hirudin)的产量可比连续培养系统提高3倍。

如果诱导物和产物对细胞都有毒性,那么应当人为地将诱导期和生长期分开。对于这种情况,两级连续培养是最适宜的培养方式。控制第一罐的条件,使细胞生长处于最适状态之下,而诱导与产物形成则发生在第二罐中。例如,在恒化器中培养一株能产β-内酰胺酶的重组大肠杆菌,将第一罐的发酵液导入第二罐中,构成一个两级培养系统。第二罐中添加营养物以及IPTG作为诱导物。结果获得300 mg活性β-内酰胺酶(相当于总蛋白的25%),其中90%分泌至胞外。这一系统至少可以稳定运行50 d。另一相似的系统被用于培养大肠杆菌生产重组蛋白A-EcoRI蛋白融合体。培养在恒浊器中进行,对第二罐进行热诱导,结果获得了比分批发酵高6倍的比生产率。

研究者还尝试将生产重组蛋白的两级连续培养系统与亲和色谱柱相组合,试图实现重组蛋白生产和纯化的连续化。但由于技术上的一些原因,这种组合还未得到成功。

比生长速率对细胞生长和产物形成均有重要作用。经常会遇到的情况是,最适于细胞生长的比生长速率却并不适于产物的形成或其它特性的实现。我们在培养面包酵母时发现,比生长速率为0.

2 h-1时细胞产率最高,而比生长速率为0.178 h-1时酵母发酵活力最佳。针对这一现象我们提出了一个两阶段控制比生长速率的流加培养策略,结果在一个反应器中实现了高发酵活力与高细胞产率的统一。(四)细胞循环发酵从反应器角度来考虑获得高细胞密度,通常采用的是细胞循环生物反应器。这种反应器利用一种切向流或中空纤维过滤器从醪液中分离细胞,细胞返回容器,无细胞醪液则以给定速率连续转移,同时代之以新鲜培养基。利用细胞循环技术,可使细胞保留在反应器中并达到高细胞密度,而毒性废产物和胞外产物则不断转移,这可以延迟或防止由细胞生长或产物形成引起的反馈抑制。细胞循环生物反应器能够适用于多种机体和生产系统,但它的应用也存在许多限制,主要包括∶(1)作用于进入过滤单元的细胞的剪应力太大;(2)系统的放大存在许多实际困难。

操作细胞循环生物反应器时必须考虑两个因素,一是稀释率(流速/体积);二是循环速率(指通过过滤系统的培养基速率)。稀释率的大小影响细胞的生长速率,不同的实验目的对稀释率的要求也不同;高的循环速率可使组分混合均匀,特别适用于细胞容易凝聚或成团的情况。但循环速率过高会使作用在细胞上的剪切力过高,也会导致过滤单元膜的迅速损坏。因此,很难同时确定合适的稀释率与循环速率,这也是限制细胞循环技术应用的一个重要因素。

细胞循环技术可望获得高的体积生产率,这对产物的提取非常有利。近年来循环发酵技术已广泛用于生产细胞代谢物,如燃料酒精和有机酸(如丁酸)及2,3-丁二醇。Lee和Chang采用细胞循环发酵技术,重组大肠杆菌细胞干重达到145 g/L,其重组青霉素酰化酶生产率比分批培养提高了近10倍。对于活细胞即为所希望的产物的培养,细胞循环发酵也能发挥作用。如在食品工业中,为生产牛奶,奶酪和酸乳酪需培养不同的乳杆菌,采用细胞循环生物反应器可以很容易地提高这些生物体的的密度。

在多种控制手段的帮助下,目前人们已经能很容易地获得超过100 g/L的细胞密度。但已有的研究结果表明,与最适生物量形成所对应的生长条件通常会导致较低的比生产率。例如,用细胞循环反应器生产2,3-丁二醇,生物量提高了大约6倍,但体积生产率只提高了2~3倍。同样,流加培养可以使链霉菌的细胞干重达到43 g/L,但蛋白酶活为零,而当细胞干重为18 g/L时蛋白酶活却高达3500 U/mL。我们在研究中也经常遇到类似问题。要解决这一问题,一方面应当研究如何促进重组蛋白的高效表达和提高重组菌株的稳定性,另一方面要研究与高细胞密度相关联的高水平产物的形成条件。

引言:高密度培养技术(High—cell—density cultivation,HCDC),也就是高密度发酵技术,提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)不仅可以减少培养体积、强化下游分离提取,还可以缩短生产周期、减少设备投资从而降低生产成本,能极大地提高产品在市场上的竞争力。这一目的的实现,除了重组菌本身的表达性质外,还必须赋予重组菌生长和产物表达的最适环境条件,包括适宜的培养基组成、合适的培养温度、pH、稳定的比生长速率、适宜的溶解氧以及营养物的合理流加等。重组大肠杆菌高密度发酵成功的关键技术是补料策略,也就是根据重组菌的生长特点及产物的表达方式采取合理的营养物流加方式。碳源和氮源是两种常用的限制性基质,葡萄糖因细菌利用快且价廉易得,已广泛用作重组菌高密度发酵的限制性基质。大肠杆菌在过量葡萄糖或缺氧的条件下会发生“葡萄糖效应”,积累大量有机酸而影响重组菌的生长和外源蛋白的有效表达。因此大肠杆菌高密度发酵中,合理流加碳源使葡萄糖效应降低,是成功的关键。

首先对重组Escherichia coli的高密度培养一文进行重点推荐https://www.sodocs.net/doc/1e4400518.html,/read.php?t

id-2728-toread-1.html

该文从高密度培养过程中培养基成份及作用、高密度培养的过程控制参数、底物补料方式的种类及特点对重组Escherichia coli高密度培养进行了概述;并阐述了乙酸的生成机制和控制乙酸生成的策略;最后对重组Escherichia coli高密度培养及外源蛋白高表达进行了研究。知识点全,阐述细致全面,不愧为大肠杆菌培养者和学习者的不错选择,版主在此进行重点推荐

其次有很多会员对培养的相关问题进行了讨论,具体讨论话题及内容总结如下:

问:请问大肠杆菌发酵中C:N怎么来控制啊?

答:如果是在分批补料发酵中C含量控制在0.35-0.5%,N含量控制在0.07-0.15% ,经验之谈

问:请教大肠杆菌摇瓶发酵用的化学合成培养基都有哪些?

答:LB,SOB,SOC等,具体可以查阅分子克隆!

讨论1:大肠杆菌是否能利用乙酸作为碳源的问题讨论

问题:发酵过程中大肠杆菌在葡萄糖等碳源消耗完的情况下,能否利用其代谢产生的代谢副产物乙酸作为碳源?

回答1:不能啊,乙酸又不能进入TCA循环

回答2:大肠杆菌就怕产生乙酸影响代谢。

回答3:能利用其代谢产生的代谢副产物乙酸作为碳源,没有问题的。不知道楼上两位怎么会说不能利用。但是过高的乙酸对菌体生长不利

回答4:乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。

看到过以乙酸作碳源进行大肠杆菌发酵的,但不是高密度发酵,且直接以乙酸作碳源(不加入任何其它碳源),而不是以代谢产生的乙酸为碳源。乙酸是不能直接进入TCA循环的,必须是被氧化后才能被利用。3楼的说能够利用其代谢副产物乙酸作为碳源,我也愿听其详,望不吝赐教!

除TCA循环外,还牵涉到乙醛酸途径和磷酸戊糖途径。但一般的大肠杆菌都是进行TCA循环,除了一些特殊菌种如lpdA基因敲除突变E.coli当TCA循环被抑制就会进行乙醛酸途径和磷酸戊糖途径。

回答5:我做的是大肠杆菌的基因工程菌,就是不能利用乙酸,要防止乙酸的产生,对于整个代谢有很大影响。

回答6:这个问题呢大肠杆菌绝对是可以利用乙酸的。因为我做的就是关于大肠杆菌产乙酸的课题。当以葡萄糖为碳源时,大肠杆菌回产生乙酸。而当葡萄糖被消耗光以后,大肠杆菌就可以利用乙酸来提供能量。这一点是肯定的

我在实验过程中还同时补加乙酸和葡萄糖,实验数据表面是可以利用乙酸的。

但是由于乙酸的可以影响大肠杆菌的生长和外源基因的表达,所以在以葡萄糖为碳源时,都采用限制流加方式来补料。

但实际上大肠杆菌是可以利用乙酸的。

回答7:具体的利用途径是乙酸首选被转化成乙酰辅酶A,然后可以进入TCA循环,同时也可以利用糖异生途径来和成其他氨基酸的前体。具体的途径可以查一下NCBI上面的文献。

回答8:可以吧,没有碳源的情况下,适量的乙酸应该还可以有利于生长的,所以发酵中,诱导前可以空耗一段时间。

讨论2:做大肠杆菌的高密度发酵时,以甘油作为碳源进行补料流加存在什么问题?

问题:通常以甘油作为碳源进行大肠杆菌的高密度发酵产生乙酸量少,比较容易获得高密度。除了生长速率较慢、菌体收率低,及甘油成本较之葡萄糖高之外,还有什么缺点吗?希望做过这方面研究或有这方面知识的朋友进来一起讨论。

回答1:做基因工程菌发酵,我们采用的是葡萄糖做为唯一的碳源,进行流加补料,如果采用甘油相对比较好,可以减少高密度发酵时,产生的乙酸。

甘油脱水酶不仅对氧敏感而容易失活,而且在有甘油存在时,它也会发生自杀失活,过高的甘油浓度会增加3.磷酸甘油(G3P)的积聚从而明显抑制菌体的生长,由于甘油浓度过低也不利于基因的转移形成。在采用甘油作为碳源,同时补加适量的葡萄糖作为菌体生长的优先碳源,以提高甘油的转化率。我们现在采用葡萄糖作为碳源,下步计划做加入适量甘油来减少乙酸产生的实验。回答2:高密度发酵当中,补料还得注意搅拌转速的问题。不同浓度底物流加对搅拌转速是不一样,我遇过这样的问题。讨论3:影响重组大肠杆菌发酵的主要因素有哪些?问题:大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。

回答1:一、代谢副产物-乙酸

乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。

预防乙酸产生的措施:

1、通过控制比生长速率来减少乙酸的产生:

比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。

2、透析培养:

在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。

3、控制葡萄糖的浓度:

葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。

常用的控制方法主要有:

恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。

恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。

二、温度

大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢副产物的产生和代谢热的产生。有时降低温度更有利于目的蛋白的正确折叠及表达。在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。

三、培养方式

微生物的培养方式主要有分批、连续和补料分批3种。大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。使微生物处于最佳的生长环境。这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。

回答2:基因工程菌最重要的是

1、前期要里积累到一定的数量;

2、数量达到之后,要快速进行诱导;

3、升温之后,要保持一定的补料速率,控制乙酸的积累量,使DNA表达达到最大。

回答3:抑制本底表达至关重要!!!

因为是重组大肠,外源基因的表达对大肠杆菌的生长是有很大影响的,换句话说是有毒性的,只是毒性大小的问题,超过了承受范围结果可想而知,因此如何在添加诱导物前抑制本地表达非常重要!

解决方法:优化培养基,碳源的利用:葡萄糖>乳糖,故可以调整两者的比例实现本地表达的最小化.等到大肠长到具备抵抗力的成熟期就ok了,注意葡萄糖不要多否则后面的IPTG无法起到诱导的作用了! 讨论4:高密度发酵是不是都能实现?

问题:现在心中存在一个疑问:是不是大部分基因工程菌(大肠杆菌或者酵母),都能实现高密度发酵吗????

或者上发酵罐的产量都能比摇瓶水平高吗?????高多少才算正常呢?我听说一个说法:说一般发酵罐条件优化了,都会比摇瓶高50%以上,是真的吗????

回答1:现阶段手上有一个菌种,真是尝试了各种各样的碳源,不同种类的氮源,它的酶活水平就是很稳定,在发酵罐上也调整了溶氧,控制pH,酶活最多只有20%的提高。真是很是郁闷,没有太好的思路

回答2:一般的讲,只要该微生物能高密度生长,则该基因工程菌就可以高密度发酵(除非构建的产物对细胞生长都毒害作用,这个情况很少,因为不会选择这种宿主菌)

至于大罐优化发酵的结果,一般都能提高产量或效价的,因为一般大罐的生长环境比摇瓶要好控制的多。但是结果区别很大,有的大罐发酵可以比摇瓶提高10倍,几十倍的。

回答3:细胞密度发酵所采用的流加策略必须按照一定的算法制定,以保持反应器中底物浓度处于较低的水平。营养物最好以它们的消耗速率加入反应器中,这样不仅可以防止底物积累到毒性水平,也不会使细胞处于饥饿状态。

重组Escherichia coli的高密度培养及其过程控制参数

由于Escherichia coli高密度培养能够提高单位体积的产量,利于下游的分离纯化。因此,Esch erichia coli高密度培养是发酵生产追求的目标。目前,采用透析反应器培养E.coli K-12以及培养重组Escherichia coli生产PHB菌体浓度达到204.3g/L DCW。已发表的Escherichia coli最高菌浓为175.4g (DCW)/L。限制Escherichia coli高密度发酵主要是营养供给限制(包括溶氧供给不足),代谢副产物积累和发酵液流变学特性等因素的限制。

高密度培养过程需要控制参数:

溶氧

在微生物培养时,必须不断地向培养液提供足够的氧,以满足微生物生长代谢的需要。在实验室中,可以通过摇床的往复运动或偏心旋转运动对摇瓶中的微生物供氧,而较大生产规模的培养装置则需采用无菌空气并同时进行搅拌的方式对微生物供氧,通风和搅拌的目的就是提供微生物生长和代谢所需的氧。由于微生物的新陈代谢与氧气呼吸有关,调节通气和搅拌可影响发酵周期时

间的长短和代谢产物生成的高低,因而发酵液中的溶氧浓度是发酵过程中的一个需要调节控制的重要参数,在培养过程中有效而经济的供氧是极为重要的。工艺上主要的控制溶氧手段有以下几种1)改变通气速率(增大通风量);(2)改变搅拌速度;(3)改变气体组成中的氧分压;(4)改变罐

压;(5)改变发酵液的理化性质;加入氧载体。

温度

由于微生物的生长和产物的合成代谢都是在各种酶的催化下进行的,而温度却是保证酶活性的重要条件,因此在发酵过程中必须保证稳定而合适的温度环境。温度对发酵的影响是多方面的,对微生物细胞的生长和产物的生成、代谢的影响是由各种因素综合表现的结果。

pH值

发酵过程中培养液的pH值是微生物在一定环境条件下代谢活动的综合指标,是发酵过程中重要参数,对微生物的生长和产物的积累有很大的影响。对于同一种微生物,由于pH值的不同,形

成的发酵产物也会不同。发酵过程中pH值的变化情况1)在微生物细胞的生长阶段,由于所用的微生物菌种不同,相对于接种后的起始pH值来说,发酵液的pH值有上升或下降的趋势;(2)在生产阶段,一般发酵液的pH值趋于稳定,维持在最适合产物形成的pH范围;(3)在微生物细胞的自溶阶段,随着培养基中的营养物质的耗尽,微生物细胞内蛋白酶的积累和活跃,微生物趋于自溶,引起培养液中氨基酸等的增加,致使pH值上升。引起发酵液的pH值下降的主要原因有1)培养基中的碳/氮比不合适,碳源过多,特别是葡萄糖过量或者中间补糖过多或溶解氧不足,致使糖等物质的氧化不完全,培养液中有机酸会大量积累;(2)消泡油加得过多;(3)微生物

生理酸性物质的存在。引起发酵液pH值上升的主要原因有1)培养基中的碳/氮比不当,氮源过多,氨基酸释放会使pH值上升;(2)生理碱性物质的存在;(3) 中间补料液中氨水或尿素等碱性物质加入过多。

重组Escherichia coli高密度培养及外源蛋白高表达研究

[size=2]

重组Escherichia coli的高密度培养的目的在于获得更高的目标蛋白单位体积产量。但是在重组Escherichia coli的高密度培养过程中,常常遇见的是高密度低表达现象,表达效率只有摇瓶的三分之一。实现外源蛋白在菌体高密度培养过程中高效率表达仍是工程重组菌发酵的研究热点。高密度培养下提高外源基因表达的策略

(1)添加复合氮源

菌体生长至高密度时,营养成分逐步耗尽。营养的缺乏也是限制高密度培养下实现高表达的因素。Shimizu等发现在表达阶段,限制蛋白胨和酵母抽提物的浓度,对外源基因表达不利,补料液中加大酵母抽提物比例可以提高外源蛋白的表达量。认为有机氮源提供丰富的氨基酸、小肽、嘌呤、嘧啶、维生素、生物素以及一些生物活性物质,减轻了细胞代谢负担,促进了外源蛋白的表达。

(2)利用代谢工程方法消除乙酸的抑制作用

乙酸对菌体生长和外源蛋白表达抑制的机理通常认为是乙酸破坏了跨膜质子梯度,而跨膜质子梯度是氧化磷酸化和其它需能跨膜运输所必需。pH为中性时乙酸以HAc 和Ac-形式共存,Hac 渗透过细胞膜,在细胞内(pH约为7.5)再分解为H+和Ac-。由于不断渗透使胞外HAc和A c-之间平衡向Hac移动,结果引起一个净电中性H+内流,降低了胞内pH 。由于具有缓冲功能的培养基体积大,乙酸渗透不会导致胞外pH发生剧烈变化,因此胞内pH降低将产生去偶联影响。细胞自身的稳态机制需要能量以改变胞内pH降低趋势,即使质子推动力不发生变化情况

下也是如此。因此为了快速生长,E.coli不仅需要一个大的质子电动势,而且需要维持最佳胞内pH。乙酸大量积累将加剧代谢去偶联的发生。也有报道认为乙酸等短链脂肪酸对DNA、RNA、蛋白质、脂质和肽聚糖等的合成均有抑制,而这些大分子物质是菌体生长和外源蛋白表达所必需的。

目前,一些控制乙酸生成的方法正在被人们所研究,比如培养基优化法,有人以甘油代替葡萄糖作为碳源,实现了高密度培养;葡萄糖流加控制也是一种常用的控制乙酸的方法。为了减少或避免乙酸积累,已经发展了各种葡萄糖流加策略,流加方式主要有恒速流加、线性流加、指数流加等。利用代谢工程的方法改造菌种实现控制乙酸生成的手段也越来越被人们所重视。例如PTA 和ACK代谢突变株的筛选。[/size]

3)增强供氧能力

溶氧(DO)是需氧微生物生长所必需。在发酵过程中受很多方面因素的限制,而DO往往是最易成为控制因素。这是氧在水中的溶解度很低所致。在28℃氧在发酵液中的100%的空气饱和浓度只有7mg/L,比糖的溶解度小7000倍。在对数生长期即使发酵液中的溶氧能达到100%空气饱和度,若此时中止供氧,发酵液中的DO可在几分钟之内便耗竭,使DO成为限制因素。在工业生产中产率是否受氧的限制,单凭通气量的大小是难于确定的。因为DO的高低不仅取决于供氧,通气搅拌等,还取决于需氧状况。故了解溶氧是否够的最简便又有效的办法是就地监测发酵液中的溶氧浓度。从DO变化情况可以了解氧的供需规律及其对生长和产物合成的影响。

生长过程中从培养液中的溶氧浓度的变化可以反映菌的生理生长状况。随菌种的活力和接种量以及培养基的不同,DO在培养初期开始明显下降的时间不同。一般在接种后1-5h内,这也取决于供氧状况。通常,在对数生长期DO明显下降,从其下降的速率可估计菌的大致生长情况。D O低谷到来的迟早与低谷时的DO水平随工艺和设备条件而异。二次生长时DO往往会从低谷处上升,到一定高度后又开始下降——这是利用第二种基质的表现。生长衰退或自溶时会出现DO 逐渐上升的规律。值得注意的是,在培养过程中并不是维持DO越高越好。即使是专性好气菌,过高的DO对生长可能不利。氧的有害作用是通过形成O,超氧化物基O2-和过氧化物基O22-,或羟基自由基OH-,破坏许多细胞组分体现的。有些带巯基的酶对高浓度的氧敏感,好气微生物曾发展一些机制,如形成触酶,过氧化物酶和超氧化歧化酶(SOD),使其免遭氧的摧毁。次级代谢产物为目标函数时,控制生长不使过量是必要的。

增加溶氧的方法有:①在通气中掺入纯氧或富氧,使氧分压提高;②提高罐压,这固然能增加溶氧,但同时也会增加溶解CO2的浓度,因为它在水中的溶解度比氧高30倍。这会影响pH和菌的生理代谢,还会增加对设备强度的要求;③改变通气速率,其作用是增加液体中夹持气体体积的平均成分;在通气量较小的情况下增加空气流量,DO提高的效果显著。但在流量较大的情况下再提高空气流速,对氧溶解度的提高不明显,反而会使泡沫大量增加,导致逃液。④提高设备的供氧能力(以氧的体积传质(简称供氧)系数KLa表示),从改善搅拌考虑,更容易收效。改变搅拌器直径或转速可增加功率输出,从而提高a值。另外改变挡板的数目和位置,使剪切发生变化也能影响a值。在考查设备各项工程参数和工艺条件对菌的生长和产物形成的影响时,同时测定改条件下的DO参数对判断氧的供需是大有好处的。

(4)优化诱导条件及诱导方法

在重组Escherichia coli高密度培养过程中,要达到重组产物的最大比生产率,还要考虑合适的诱导时间、诱导剂强度、诱导时的温度、诱导的培养基以及营养物的流加策略。[/size]

光知道说闲话了,忘了专业的交流,呵呵,再补充些工艺优化的知识和经验

摇瓶试验yu中试发酵罐试验的不同之处

1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑

2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。

3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。

4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。

5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。

6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。

7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。

8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。

9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。

10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等。,

实验1 大肠杆菌的培养与分离

实验1:大肠杆菌的培养和分离 一、教学要求 二、基本内容 培养 无菌技配制培养基的原 的培养基的配制计算→称量→溶化→调pH 实配制培养基的方法→分装→加棉塞→灭菌→倒验平板 室平板划线法培分离、纯化大肠杆菌 养稀释涂布法系列稀释平板涂布 1.培养基的种类和化学成份 培养基的种类有很多划分标准,按物理性质分:固体培养基和液体培养基(加入琼脂多少)。液体培养基用于扩大培养和工业生产,固体培养基用于菌种分离,鉴定,计数(菌落数量)。 培养基的化学成分包括水、无机盐、碳源、氮源、生长因子等。按照微生物的同化作用类型是自养还是异养,碳源不同,自养微生物为无机碳源,如硝化细菌是二氧化碳或碳酸盐,异养微生物为有机碳源,如大肠杆菌是葡萄糖等有机物。 2.常见微生物类群 原核生物(如细菌大肠杆菌――二分裂、革兰氏阴性、异养兼性厌氧性肠道杆菌、蓝藻、支原体、衣原体、放线菌等)、原生生物(草履虫、变形虫等)、真菌(酵母菌――出芽生殖.异养兼性厌氧性微生物、霉菌、食用菌)、病毒等。 细菌是单细胞的原核生物,有细胞壁(肽聚糖)、细胞膜、细胞质,无成型的细胞核,只有一环状DNA分子(拟核)。以分裂(二分裂)的方式繁殖,分裂速度很快。用革兰氏染色法将细菌分为革兰氏阳性菌(革兰氏染液染色后,再脱色处理,细菌仍保留染色液的颜色)和革兰氏阴性菌两大类,区别在细胞壁的成分不同。大肠杆菌是革兰氏阴性(细胞壁薄,有荚膜)、兼性厌氧的肠道杆菌。 3.无菌技术 对实验操作空间、操作者的衣着和手进行清洁和消毒;将培养器皿、接种用具和培养基等器具进行灭菌;为避免周围微生物污染,实验操作应在酒精灯火焰附近旁进行;避免已灭菌处理的材料用具与周围物品相接触。 灭菌方法: 。灼烧灭菌法①接种环、接种针、试管口等使用

大肠杆菌高细胞密度发酵

课程设计说明书 课程名称:发酵工程 设计题目:大肠杆菌的高细胞密度发酵 院系:生物与食品工程学院 学生姓名:郑帅超 学号:201106040030 专业班级:11 生物技术 指导教师:李安华 2014年5月26日

课程设计任务书 设计题目枯草芽孢杆菌产淀粉酶发酵工艺的优化 学生姓名郑帅超所在院系生物与食品工 程学院 专业、年级、班11生物技术 设计要求: 1、树立正确的设计指导思想,严谨负责、实事求是、刻苦钻研、勇于探索的作风和学风。 2、根据所给资料,按照任务书中提出的范围和要求按时独立完成,不得延误,不得抄袭他人成果。 3、说明书应字迹清楚文字通顺,并附有各项设计成果表,摘引其他书籍或杂志的材料必须注明出处。 4、设计标准要求规范、实用、切合实际。 5、设计应严格按有关设计规范进行。 6、设计结束后,以个人为单位提交设计说明书一份(后附流程图)。 学生应完成的工作: 1、在老师的帮助下完成题目设计。 2、学生查阅相关文献、资料制定实验路线,并有指导老师检查实验路线的合理性和可行性。 3、学生在实验室完成实验方案。 4、完成课程设计说明书的初稿,由指导老师帮助修改,最后定稿。 参考文献阅读: [1]李寅等著,高细胞密度发酵技术,化学工业出版社,2006-10-01,177~288. [2]陈坚,李寅,毛英鹰,等. 生物工程学报,1998 ,14(4) :452~455. [3]李民,陈常庆,朴勤,等. 生物工程学报,1998 ,14(3) :270~275. [4]杨汝燕,李民,陈常庆. 工业微生物,1998 ,28(3) :30~33. [5 ]李民,陈常庆,朴勤等,生物工程学报,1998 ,14 (3) :270~275. [6]杨汝燕,李民,陈常庆,工业微生物,1999 ,29(1) :25~28. [7]徐皓,李民,阮长庚,等. 工业微生物,1998 ,28(2) :20~25. [8]刘社际,葛永红,杨立明. 中国生物制品学杂志,1999 ,12 (1) :29 ~31. 工作计划: 2013.5.11分组并确认指导老师,在老师指导下查阅文献,确定题目。 2013.5.12----2013.5.13 进行理论试讲阶段,确定实验路线,然后确定实验方案。 2013.5.14----2013.5.17 进行实验操作和书写设计说明书。 2013.5.18----2013.5.22 修改说明书,和指导老师沟通。 2013.5.23—2013.5.26 上交课程设计说明书,并由指导老师填写评语和成绩。 任务下达日期:2014年5月13日 任务完成日期:2014年5月26日 指导教师(签名):学生(签名):

最新大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。 预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生: 比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。 3、控制葡萄糖的浓度: 葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度 大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细

大肠杆菌高活性氨基酸生物合成途经研究

研究目的: 汽油替代品:高能量密度、低吸湿性、辛烷值 传统生物燃料&高级醇;直链醇&支链醇 研究菌体:大肠杆菌 方法技术: 代谢工程:高活性氨基酸生物合成途经+埃利希途径(Ehrlich pathway) 葡萄糖→2-酮酸中间体→高级醇(异丁醇、1-丁醇、2 -甲基- 1-丁醇、3-甲基-1- 丁醇和2-苯乙醇) 实验部分: 一、异丁醇 前期实验: 1)2-酮酸是氨基酸生物合成途径的中间产物;通过2-酮基酸脱羧酶(KDC)转化为醛;通过醇脱氢酶(ADH)转化为醇类。通过实验,测定Kivd是所有测试酶中活性最高且最具有多样性的KDC,ADH选用乙醇脱氢酶2,二者均来自酵母菌。 2)不同种类的2-酮酸(表2)加入到表达Kivd的大肠杆菌培养菌中会将相应醇类的产量提

高2~23倍。特种2-酮酸的供应也明显地削减了其他醇类的产量。这些结果均表明增加特种2-酮酸的量可以提高醇类的产量和选择性。 大肠杆菌已有的代谢途径被转基因改造,增加特种2-酮酸的产量,可以生产出期望的醇类。 设计菌株: 1)为合成异丁醇,质粒内PLlacO1启动子控制的ilvIHCD基因被过度表达以增大2-酮异戊酸生物合成量。 2)强化ilv合成途径和乙醇合成途径(Kivd 和Adh2)。 菌株可产生出23 mM异丁醇,这约是普通菌株产量的五倍 3)进一步提高异丁醇的产量,需要删除控制合成副产物的基因,包括adhE,ldhA,frdAB,fnr 和pta。这些基因的删除可提高用于ilvIHCD合成途径的丙酮酸的量。 敲出基因后的菌株产生了30 mM异丁醇。 4)选用枯草芽孢杆菌的alsS基因取代大肠杆菌的ilvIH基因。相比于大肠杆菌更偏向酮丁酸的ilvIH基因,alsS基因对丙酮酸盐有更强的亲和力。 采用alsS途径的菌株可产生约50 mM的异丁醇。 5)为进一步增加丙酮酸盐的量,pflB基因被敲出。 在这些操作的综合作用下,可以在微好氧条件下使异丁醇的产量达到约300mM (22 g/l)。 实验结果: 通过此种方法由葡萄糖获得了高产量、高选择性的异丁醇 二、正丁醇 1)1-正丁醇的前提2-酮基戊酸乙酯不是大肠杆菌的代谢物。,作者尝试以与亮氨酸生物合成途径相似的方法,以一种分子比2-ketovalerate少一个甲基的更小的分子——2-酮丁酸为底物,合成2-ketovalerate。2-酮丁酸可以通过由ilvA基因编码的苏氨酸脱水酶作用苏氨酸生成。 2)为进一步提高1-丁醇的产量,编码二羟酸脱水酶的基因ilvD被敲除。二羟酸脱水酶能够同时产生2-酮基异戊酸(亮氨酸和缬氨酸的前体)和2-酮基3-甲基戊酸(异亮氨酸的前体)。此种操作有两个优点:首先,ilvD基因的敲除避免了leuABCD代谢途径的自然底物2-酮基异戊酸的生成,进而抑制了目的产物的竞争底物。其次,ilvD基因的敲除避免了Kivd的竞争底物2-酮酸-3-甲基-戊酸和2-酮酸-4-甲基戊酸的产生。故而ilvD基因的敲除进一步增加了1- 丁醇的产量。 三、提高耐受性 为了探索耐受性的可提高程度,我们对于正丁醇耐受性的菌株进行传代培养。我们发现,原生的大肠杆菌对于正丁醇的耐受性为1.5%。然而,菌株在正丁醇浓度不断增加的环境下进行传代培养五代之后,便会出现对正丁醇的耐受性达到2%的基因突变菌株(补充材料中的图4)。这种菌株的耐受性可达到与1-丁醇的原生生产者相当或甚至优于原生生产者。 证明大肠杆菌可以适应长链醇类的高浓度环境。之后还可以运用诸如全转录工程(gTME)等其他的方法进一步提高耐受性。

大肠杆菌表达重组蛋白的超声破碎及纯化

大肠杆菌表达重组蛋白的超声破碎及纯化 一可溶性蛋白的纯化 (一)菌体的破碎 1. 仪器与材料:-80℃冰箱;超声波细胞破碎仪;50mM PBS或50mM Tris-HCl pH 7.5;50 ml 离心管;冷冻高速离心机 2.方法 2.1反复冻融 2.1.1收集菌液500ml,等分10份,4000 r/min 4℃离心15min,弃上清。 2.1.2 菌体沉淀中加入相同菌液体积的50mM PBS 或50mM Tris-HCl(选择使蛋白稳定的缓冲液和pH)重悬洗涤一次。 2.1.3 然后按原菌液体积的1/4加入缓冲液重悬菌体,并加入蛋白酶抑制剂PMSF和EDTA(带His标签不加),PMSF终浓度为100μg/ml, EDTA的终浓度为。取20μl重悬菌液进行电泳,检测蛋白表达的情况(是否表达,是可溶性表达还是包涵体表达)。 2.1.4 将菌液(经检测有表达)在-80度冰冻,室温融解,反复几次(反复冻融三次),由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。 2.2超声波处理 (对超声波及热敏感的蛋白慎用) 2.2.1 将反复冻融的菌液(必要时可加入1mg/ml 溶菌酶,缓冲液pH>8.0,加入后需静置20min),进行超声破碎,超声条件:400W,工作5秒,间隔5秒,重复一定次数,(根据我们的仪器找出一个比较好的工作条件)。直至菌体溶液变清澈为止,大约花费时间。 2.2.2 取少量经超声破碎后的菌液,10000rpm离心10分钟,分别对上清和沉淀进行检测,并用全菌作为阳性对照,检测菌体破碎程度及目标条带占总蛋白的含量。 注意事项: (1)超声破碎具体条件可根据实验情况而定,要掌握好功率和每次超声时间,降低蛋白被降解的可能。 (2)功率大时,每次超声时间可缩短,不能让温度升高,应保持在4度左右,超声时保持冰浴。 (3)菌体破碎后总蛋白浓度的测定可用Bradford法或者紫外吸收法。 (4)可通过SDS-PAGE 电泳观察菌体破碎程度及目标条带占总蛋白的含量。 二包涵体蛋白的纯化 1菌体的破碎(加溶菌酶处理包涵体效果可能不好,包涵体中总是有残留的溶菌酶,你看看有没有不加溶菌酶的,这个先保留好了) 1.1仪器与材料:超声波细胞破碎仪;20mM PBS或20mM Tris-HCl pH 7.5;裂解液buffer A;溶菌酶10mg/ml;50ml ,15ml离心管;冷冻离心机 1.2 方法 (1) 收集菌液500ml,等分10份,4000 r/min 4℃离心15min,弃上清。

大肠杆菌重组人干扰素α-2b的发酵

大肠杆菌重组人干扰素α-2b的发酵 作者:丁少云指导老师:江诚 (安徽医学高等专科学校,安徽合肥,231000) 摘要:目的: 探索获得大肠杆菌的高密度发酵和高效表达分泌型重组人干扰素α-2b 的方法。方法: 通过 小试研究获得大肠杆菌分泌型重组人干扰素α-2b 发酵的基本条件; 通过中试研究碳源、氮源等营养物质 补加的方式;同时就单独补充碳源、分别补充碳源和氮源的两种不同的发酵方式进行对比分析。结果: 经优 化后的发酵条件, 最终菌体的光密度可达A 600 = 70, 分泌型重组人干扰素α-2b 终产品为120 g· L - 1菌体, 平均比活性为2.2×108 IU ·m g- 1蛋白。结论: 获得了较满意的高密度发酵条件和重组人IFN α-2b 的 高表达条件。 关键词:重组人干扰素α-2b; 大肠杆菌; 发酵 1.引言 干扰素α-2b (interferonα-2b, IFNα-2b) 是由165 个氨基酸组成的单链多肽, 理论分子量为19219, 由两对二硫键构成, 有一定空间结构, 其中29-138位的二硫键对于维持活性尤其重要[ 1 ] 。干扰素是最早通过基因工程技术表达的蛋白质之一。利用传统的胞内表达方法有一定的缺陷, 如蛋白始终以还原状态存在, 无法形成正确的三级结构。本课题组利用分泌型表达技术构建的IFNα-2b工程菌,使所表达的外源蛋白直接分泌于细菌的细胞间质中, 有利于蛋白质纯化; 同时, 所表达的蛋白同天然IFNα-2b有相同的一、二、三级结构, 因此有100%的生物学活性。本实验研究了大肠杆菌重组人IFNα-2b的发酵工艺,对比单独补充碳源、同时补充碳源和氮源的两种不同方式的发酵方法, 获得了较满意的高密度发酵条件和重组人IFNα-2b的高表达条件。 2.材料与方法 2.1 菌种 工程菌为E .coli JM 101, 基因型F -m crA m crB IN (rrnD -rrnE ) lam da, 来自A T C C ;IFN α-2b cD N A 来自安徽农业大学免疫学教研室; 用于构建表达质粒的起始质粒P S T Ⅱ其结构包括碱性磷酸酶启动子(phoAprom oter)、翻译增强子序列、SD序列、S T Ⅱ信号肽序列、A m p 及T et抗性基因、复制起点。 2.2 发酵罐 B .B raun 5 L 发酵罐、A pplican 40 L发酵罐。 2.3 培养基 ①种子培养基: L B 培养基; ②筛选培养基(g· L - 1 ): 葡萄糖2 g、酵母粉1.2 g、蛋白胨15 g、N aC l 1.2 g 、N H 4 C l 0.96 g、M gSO 4· 7H 2 O0.494 g、调pH 至7.5; ③发酵基本培养基(g· 10 L - 1 ) N aH 2 P O 4· 2H 2O 8.5 g、K 2 H P O 4 ·3H 2O 22.3 g、(N H 4 )2 SO 4 42 g、M gSO 4· 7H 2 O12 g 、葡萄糖10 g、酵母粉50 g、蛋白胨36 g、柠檬酸三钠9.65 g, 微量元素5 m L 。其中微量元素混合物成分: F e、C o、M o、Zn 、C u、M n、B 等; ④补料:a. 50% 葡萄糖(105℃灭菌20 m in );b . 蛋白胨45 g,酵母粉14 g, 溶解于1 L 水中; c. 采用单独流加葡萄糖方法, 需在每升发酵基本培养基中另加入蛋白胨4.5 g, 酵母粉1.4 g。使用发酵罐培养时, 不应加入任何抗生素。 2.4 检测方法 通过SDS -P A G E 电泳, 并经V D S扫描仪分析IFNα-2b的表达量; 通过尿糖检测试剂

生物统计学 实验报告 大肠杆菌

A 题 细胞体内代谢物浓度预测 随着基因组、转录组、蛋白质组等各种“组学”研究计划的蓬勃开展,生命科学进入了“组学”时代。代谢组学作为系统生物学的重要分支,其研究的重点是细胞内代谢物种类与浓度的定性和定量分析以及代谢网络的构建和模拟。 对代谢物的检测及浓度测定主要采用实验方法,包括核磁共振、气相色谱-质谱联用和液相色谱-质谱联用等技术。但由于代谢物种类繁多,且大部分浓度较低(μM 数量级),尤其是胞内代谢物提取难度非常大,精确测定其浓度异常困难,而且实验测定需要消耗大量财力物力和人力,因此通过计算机方法对代谢物浓度预测和分析变得越来越重要。 活细胞的代谢物浓度由什么决定?除了一些特定的代谢和酶的作用以外,有没有那种能全局影响浓度值的性质? 试根据附件中的数据完成如下问题: 1 根据不同类型的数据,分析代谢物浓度与其物理化学性质之间的关系。 2 筛选合适的物理化学性质,建立预测代谢物浓度的预测模型,并对此模型进行评价; 1.线性插补法处理缺失数据 原理:用该列数据缺失值前一个数据和后一个数据建立线性插值,然后用缺失点在线性插值函数的函数值填充该缺失值,即: 在于消除不同变量的量纲的影响,而且标准化转化不会改变变量的相关系数。 代谢物浓度:取对数 代谢物理化性质:标准差标准化法 )1,1( m j n i S x x x j j ij ij ≤≤≤≤-=' 式中:.)(11,1121∑∑==--= =n i j ij j n i ij j x x n S x n x 3.SAS 软件建立多元线性回归方程 回归模型一般形式: u X b X b X b b Y k k +++++= (22110)

大肠杆菌高效表达重组蛋白策略

大肠杆菌高效表达重组蛋白策略 前言 重组蛋白的制备在蛋白结构分析和医疗应用领域十分重要。药物蛋白的研究需要高纯度的重组蛋白来进行药物动力学和物理化学的研究[1]。重组蛋白在检测酶活、连接配体、蛋白相互作用等生物学领域广泛应用。已经表达出多种重组蛋白被证明有很大的应用潜力[2,3]。通过基因工程改造的方法已经获得了许多性状优良的宿主菌表达系统,尤其是通过大肠杆菌可以大量表达外源基因编码的重组蛋白[4]。但是仍然有两个问题制约着大肠杆菌表达系统对重组蛋白的表达:一个是表达量低,还有一个就是表达错误折叠的蛋白包涵体[5]。蛋白的表达和纯化工艺一直在发展进步,但是超过30%的重组蛋白为不具有生物活性的包涵体,严重影响了重组蛋白的生产应用[6,7]。 在理想条件下,重组蛋白由强启动子进行表达,产生大量的具有生物学活性的可溶性重组蛋白。但是,强启动子会导致重组蛋白的过表达,从而影响宿主菌体的生长并产生包涵体[8]。在某些条件下可以通过变性、复性的方法使包涵体恢复活性[9],但是复性后的蛋白是否能够完全恢复活性仍然未可知。一般来讲,可以通过表达条件的优化来促进蛋白的可溶性表达,比如:诱导温度、培养基组成、宿主菌的种类。还可以通过多种方案来解决蛋白不溶的问题:蛋白重新折叠[10],构建融合蛋白[11]。另外想要进一步增加蛋白可溶性可以与分子伴侣共表达[8]或者低温诱导[12]。本文对目前主要的促进蛋白可溶表达的方法进行了比较全面的总结。 1.大肠杆菌表达系统的构建

1.1选择表达宿主菌 对于大规模的表达重组蛋白,一般选择胞表达或者周质空间表达。与周质空间表达相比,胞表达的表达量更高,因此应用更为广泛。在实验研究和实际生产中,已经有很多大肠杆菌表达系统广泛应用于。在表达体系中较为常用的大肠杆菌为B菌株和K12菌株及它们的衍生菌株(表1[13])。美国国立研究院已经认证了K12菌株的标准性以及安全的使用方案,因此K12菌株在生产应用中具有极大的优势。但是由B菌株演变而来的BL系列菌株与K12相比,突变了lon和ompT 两个基因[14],因此具有许多表达优势:产物积累少,缺少蛋白酶,防止产物被降解。这些优势使得BL菌株也具有非常广泛的应用[15,16,17]。 通常来讲,针对不同的重组蛋白,宿主菌的选择也是不同的。如果重组蛋白含有大肠杆菌稀有密码子,就需要宿主能够表达针对这些密码子的tRNA,比如BL21 (DE3) CodonPlus-RIL,Rosetta(DE3)等菌株。如果重组蛋白具有许多二硫键,则需要宿主表达环境为氧化条件的。AD494宿主菌是硫氧还蛋白突变型,可以促进二硫键的折叠。Origami菌株为硫氧还蛋白突变和谷胱甘肽还原酶突变,进一步加强了二硫键在细胞的形成[18]。另外一方面,如果表达的重组蛋白对于宿主菌是有毒性的,则需要表达为包涵体的形式。 表1:常用于重组蛋白表达的宿主菌及其特点

大肠杆菌感受态细胞制备与转化

大肠杆菌感受态细胞制备实验(CaCl2法) 细胞经过一些特殊方法(电击法、CaCl2法)等处理后,细胞膜的通透性发生了暂时性的改变,成为能允许外源DNA分子进入的细胞,即感受态细胞(Compenent cells)。 1实验方法原理: 带有外源DNA 的重组质粒,在体外构建后,导入宿主细胞,随着细胞的大量复制、繁殖,才能够有机会获得纯的重组质粒DNA,该过程称之为转化过程。受体细胞经过一些特殊方法(如:CaCl2,RuCl 等化学试剂)的处理后,细胞膜的通透性发生变化,能容许外源DNA 的载体分子通过。 2实验材料、试剂、仪器耗材: E. coli DH5α菌株 LB固体培养基、LB液体培养基、CaCl2、硫酸镁、SOB、TFB等 培养皿、恒温摇床、聚丙烯管、电热恒温培养箱、台式高速离心机、无菌工作台、烧瓶、恒温水浴锅、低温冰箱、制冰机、分光光度计、微量移液枪、锥形瓶、试管等 3实验步骤: 1、从37℃培养16-20 h的平板中挑取一个单菌落(直径2-3 mm),转到一个含有100 ml LB 或SOB培养基的1L烧瓶中。于37℃剧烈振摇培养3 h。一般经验,1 OD600约含有大肠杆菌DH5α 109 个/mL。 2、将细菌转移到一个无菌、一次性使用的、用冰预冷的50 ml聚丙烯管中,在冰上放置10 min,使培养物冷却至0℃。 3、于4℃用Sorvall GS3特头(或与之相当的转头)以4 100 r/min离心10 min,以回收细胞。 4、倒出培养液,将管倒置1 min以使最后的痕量培养液流尽。

5、每50 ml初始培养液用30 ml预冷的0.1 mol/LCaCl2-MgCl2溶液(80 mmol/L MgCl2,20 mmol/L CaCl2)重悬每份细胞沉淀。 6、于4 ℃用Sorvall GS3转头(或与之相当的转头)以41 00 r/min离心10 min,以回收细胞。 7、倒出培养液,将管倒置1 min以使最后的痕量培养液流尽。 8、每50 ml初始培养物用2 ml用冰预冷的0.1 mol/L CaCl2(或TFB)重悬每份细胞沉淀。 9、此时,可以用新鲜制备的感受态细胞直接做转化实验,也可以将细胞冻存于- 70℃。 4注意事项: 1. 为达到高效转化,活细胞数务必少于10 8个细胞/mL,对于大多散大脑杆菌来说,这相当于OD值为0.4左右。为保证细菌培养物的生长密度不致过高,可每隔15-20 min测定OD600值来监测,用监测的时间及OD值列一个图表,以便预测培养物的OD600值到0.4的时间,当OD600值达到0.35时,收获细菌培养物。 2. 在菌株与菌株之间,OD值与每毫升中活细胞散间的关系变化很大,因此有必要通过漶量特定脑杆菌的生长培养物在生长周期的不同时相的OD600值,并将各稀释维度的培养物铺于无抗生素的LB琼脂板以计算每一时相的活细胞散,从而使分光光度计读数得到标准化。 3. 对大多数大肠杆菌(MC106除外),采用TFB代替CaCl2可得到相同或更好的结果。Dagert和Ehrlieh的实验(1979)曾表明,细胞可以于4℃在CaCl2溶液中保存24-48 h,在贮存的最初12-24 h内,转化率增加4-6倍,然后降低到初始水平。 4. 克隆的新鲜程度,一定要选新鲜平板的单克隆,即刚涂布生长过夜的平板。 5. 菌体的OD600值,JM109或BL21,OD值为0.35,DH5α为0.4,要尽量保证OD 值不要过高,更不能超过0.6。 6. 低温处理的时间,做完后冰上保存12-24 h后分装,并保存于-80℃。

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度

大肠杆菌在发酵乳中生长繁殖浅谈+-+LQ

大肠杆菌在发酵型酸牛奶生长繁殖浅谈 摘要:本文以发酵乳作为基础,其中添加一定浓度的以大肠杆菌为典型菌的大肠菌群,用以研究大肠杆菌在发酵乳中的生长情况。 关键词:大肠杆菌发酵型酸牛奶生长情况 一引言: 发酵型酸牛奶大致可以分为三个品类:第一类是满足营养需求的基础酸奶;第二类是满足美味休闲的大果粒、谷物酸奶;第三类是健康功能酸奶,如通畅、免疫、儿童成长等。其中基础酸奶的市场规模占60%以上,果粒(谷物)酸奶和功能性酸奶的市场规模相对较低。 因大肠杆菌对产品存在着污染隐患,现阶段没有相关文献说明大肠杆菌在发酵型酸牛奶中生长繁殖情况,为此,本文就大肠杆菌在发酵型酸牛奶生长情况进行了评述。 二术语和定义: 1.大肠菌群:在一定培养条件下能发酵乳糖、产酸产气的需氧和兼性厌氧革兰氏阴性无芽胞杆菌。 2.发酵乳fermented milk:以生牛(羊)乳或乳粉为原料,经杀菌、发酵后制成的pH 值降低的产品。 3.大肠杆菌:广泛存在于人和温血动物的肠道中,能够在4 4.5℃发酵乳糖产酸产气,IMViC(靛基质、甲基红、VP实验、柠檬酸盐)生化实验为++--或-+--的革兰氏阴性杆菌。以此作为粪便污染指标来评价食品的卫生状况,推断食品中肠道致病菌污染的可能性。 三设备及试剂: 1.温箱:36±1度 2.冰箱:2-5度 3.恒温水浴:46±1℃ 4.天平:感量0.01g 5.均质器 6.振荡器 7.无菌培养皿:直径为90mm 8.无菌吸管:1ml(具0.01ml刻度) 9.无菌锥形瓶:容量为500ml 10.移液器:20-200ul 培养基和试剂: 1.结晶紫中性红胆盐琼脂 2.煌绿乳糖胆盐肉汤 3.无菌生理盐水 4.无菌1mol/lNaOH和1mol/lHCL 四实验方法 1 收集发酵型酸牛奶,以大肠杆菌作为大肠菌群的典型菌落,其中添加10ml的复溶大肠杆菌(菌种编号为CCTCC AB91112)于样品中;

大肠杆菌微生物培养实验报告及评价标准

实验1 微生物的分离、培养及计数 实验原理 纯化分离:人为提供适宜的菌落生长的条件(包括营养、温度、Ph等)。用平板划线法,通过接种环在琼脂固体培养基表面连续划线的操作,将聚集的菌种逐步稀释分散到培养基的表面。在数次划线后培养,可以分离到由一个细胞繁殖而来的肉眼可见的子细胞菌落。 筛选:转基因大肠杆菌有抗氨苄青霉素基因,所以在含有氨苄青霉素的LB培养基中可以正常繁殖长成菌落。而普通的大肠杆菌没有抗氨苄青霉素基因,咋含有氨苄青霉素的LB培养基中不能繁殖。由此可进行大肠杆菌的筛选。 梯度稀释并计数:通过浓度梯度稀释把液体培养基培养的大肠杆菌稀释到一定浓度,用稀释涂布平板法,然后将不同稀释度的菌液分别涂布到琼脂固体培养基的表面进行培养。在稀释度足够高的菌液里,聚集在一起的微生物将被分散成单个细胞,从而能在培养基表面形成单个的菌落。由此可计数计算大肠杆菌的数量。 实验目的 1.通过制备LB固体培养基,对平板进行划线等,学会使用固体LB 平板。 2.通过用液体培养基,学会对微生物进行扩大培养。 3.通过稀释,学会用计数器对微生物进行计数。

实验材料和药品 待分离的大肠杆菌菌液、高压蒸汽灭菌锅、LB 固体培养基、LB 液体培养基、接种环、玻璃涂布器、培养皿、恒温培养箱、摇床、酒精灯、无菌水、移液枪、EP 管 实验步骤(用简单的流程图表示) 实验数据的记录与分析(如照片、表格等)

稀释倍数104105 大肠杆菌单个菌落个 837799111812数 平均数 浓度×107×107 实验结果与讨论 结果:稀释了105计算出来的结果约为×107ml/cm^3

大肠杆菌发酵经验总结

大肠杆菌发酵经验总结-CAL-FENGHAI.-(YICAI)-Company One1

大肠杆菌发酵经验总结 大肠杆菌发酵经验总结 首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。 第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。 第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,p H偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。 一、代谢副产物-乙酸 乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当

大肠杆菌实验

大肠杆菌感受态细胞制备与质粒DNA的转化 一、实验目的 1)掌握用CaCl2法制备感受态细胞的原理和方法。 2)学习和掌握质粒DNA的转化和筛选方法及操作步骤。 二、实验原理 本实验以E.coli DH 5α菌株为受体细胞,并用CaCl2处理,使其处于感受态,然后与pBS质粒共保温实现转化。由于所用pBS质粒带有长那霉素抗性基因。因此可以通过长那霉素抗性来筛选转化子。如果受体细胞没有转入pBS,则在含长那霉素的培养基上不能生长。能在长那霉素培养基上生长的受体细胞肯定已经导入了pBS。转化子扩增后,可将转化的质粒提取出,进行电泳酶切等进一步鉴定。 三、仪器及试剂 仪器:恒温摇床、CO2细胞培养箱、台式高速冷冻离心机、超净工作台、低温冰箱、恒温水浴锅、制冰机、分光光度计、移液枪、Eppendrof管。 试剂:LB培养基(在950mL水中加入10g胰蛋白胨、5g酵母提取物、10gNaCl、用1mol/L NaOH调制pH=7.2.加入至1L,121℃高压灭菌20min) 长那霉素储存液:100mg/mL 含长那霉素的LB固体培养基:(1L LB液体培养基中加入20g琼脂粉,将配好的LB固体培养基高压灭菌后,冷却至60℃左右,加入长那霉素储存液,使其终浓度为50μg/mL。摇匀后铺板,每皿倒15mL,室温放置过夜至冷凝水挥发干净) 1mol/L CaCl2储存液质粒DNA10ng/Μl 四、实验步骤 1 感受态细胞的制备 1)从LB平板上挑选新活化的E.coli DH 5α单菌株,接种于3~5mL LB液体培养基中,37℃下震荡过夜培养,12h左右,直至对数生长后期。

2)将该菌悬浮液以1:50的比例接种于5mL LB液体培养基中,37℃振荡培养2~3h至OD600为0.5左右。 3)将5mL培养液转入4个1.5mL离心管中,冰上放置10min,然后于4℃下,5000rpm离心5min。 4)弃去上清液,用预冷的1mL 0.1 mol/L CaCl2溶液轻轻悬浮细胞,冰上放置15~20min后,40℃下5000rpm离心5min。 2 铺平板 将配好灭菌的LB固体培养基加热融化,待冷却至60℃左右后,加入长那霉素储存液,使其终温度为50μg/mL,摇匀后铺板,每皿倒约15mL。室温放置过夜至冷凝水挥发干净。 3 感受态细胞的转化 1)取100μl感受态细胞悬浮液,加入5μLpBS质粒DNA溶液,轻轻摇匀,冰上放置30min。 2)42℃水浴热激70s,热激后迅速置于冰上冷却3~5min。 3)向管中加入400μl LB液体培养基(不含抗生素),混匀后37℃震荡培养1h。使细菌恢复到正常生长状态,并表达质粒编码的抗生素抗性基因。 4)将上述菌液摇匀,取200μl涂布于含长那霉素的筛选平板上,正面放置0.5h。待菌液完全被吸收后倒置培养皿,37℃培养16~24h, 5)对照实验: 对照组1:以同体积的无菌二次水代替DNA溶液,其他操作与上面相同。此组正常情况下在含抗生素的LB平板上应没有菌落出现。 对照组2:以同体积的无菌二次水代替DNA溶液,取5μl菌液,稀释100万倍,涂布于不含抗生素的LB平板上,此组正常情况下应产生大量菌落。 五、实验数据记录处理 转化后在含抗生素的平板上长出的菌落即为转化子,各培养皿中的菌落数如下表所示:

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

生物化学实验报告记录:Westernblotting检测大肠杆菌重组蛋白

————————————————————————————————作者:————————————————————————————————日期:

实验三 Western blotting检测大肠杆菌重组蛋白 一、实验目的 利用Western Blotting技术,定性(或定量)检测苦荞黄酮醇合酶基因(Flavon ol synthase gene, FtFLS)在大肠杆菌表达宿主菌Escherichia coli BL(DE3)中的诱导表达。 二、实验原理 黄酮醇合酶(FLS,EC 1.14.11.23)属于2-ODD家族,催化黄酮醇合成支路中最后一步氧化反应,也是直接合成黄酮醇的反应。FLS可以使二氢黄酮醇在C3链中C2和C3之间氧化形成双键,从而生成黄酮醇:a Dihydroflavonol + 2-oxoglutarate + O2 a Flavonol + succinate + CO2 + H2O。 本实验采用PCR的方法,在苦荞黄酮醇合酶基因(FtFLS)ORF起始密码子前引入Kpn?酶切位点,去掉终止密码并引入Bam H ?酶切位点。克隆引入酶切位点后的FtFLS到表达载体pET-30b(+)质粒中,其表达产物分别在N-末端和C-末端各含有6 ×His标签。重组质粒(pET-30b(+)-FtFLS)经鉴定后转化表达宿主菌E. coli BL21(DE3)并使用IPTG进行诱导表达。收集诱导0 h、2 h、4 h、6 h和8 h的产物,经SDS-PAGE后用于考马斯亮蓝R-250染色或Western blotting分析。 Western blotting的标准流程如下:蛋白质首先通过SDS-PAGE胺凝胶电泳分离,通过电泳转移到固相支持物上(硝酸纤维素膜、PVDF膜和尼龙膜);将膜上未反应的位点封闭起来,以抑制抗体的非特异性吸附,固定的蛋白质即可与特异性的多克隆或单克隆抗体相互作用并通过放射、生色或化学发光的方法进行定位。 本实验采用小鼠抗聚组氨酸单克隆抗体(Anti-His tag IgG,一抗)与重组FtF LS蛋白的N-末端和C-末端6 ×His发生抗原-抗体特异反应,再利用辣根过氧化物酶标记羊抗小鼠IgG(peroxidase-Goat Anti- Mouse IgG,二抗)与一抗发生特异结合,最后使用DAB进行显色。DAB即:二氨基联苯胺(3, 3'-diaminobenzidine),是过氧化物酶(Peroxidase)的生色底物。DAB在过氧化氢的存在下失去电子而呈现出颜色变化和积累,形成浅棕色不溶性产物。该方法常用于检测过氧化物酶的活性,它灵敏度高,特异性好,在免疫组化,原位杂交,Western blotting等膜显色中

大肠杆菌生化实验

细菌常用生理生化反应实验结果观察 一结果观察 1葡萄糖发酵实验 直接观察试管, 试管变黄者为葡萄糖发酵阳性菌,不变者为阴性菌. 左边为恶臭假单胞菌,有气泡并变为黄色;右边为大肠杆菌, 2V. P. 反应和甲基红试验: 将培养好的液体培养基分装于两个干净的小试管中,在一管中滴入2-3滴甲基红试剂, 溶液变红的为甲基红阳性菌,不变的为甲基红阴性菌. 在另一管中加入V. P. 试剂,在37℃保温15分钟, 变红者为阳性菌,不变者为阴性菌. VP,图为右边为大肠杆菌,溶液变红,为阳性菌。 3吲哚实验 在培养好的液体培养基中加入1厘米高的乙醚,振荡,静置分层,加入2-4滴吲哚试剂,在掖面交界出现红色者为吲哚反应阳性菌,不变者为阴性菌.

左边为大肠杆菌,出现红色阳性菌;右边为产气杆菌,颜色不变,阴 性菌。 4硝酸盐还原实验 在点滴板上滴入革里斯试剂A液和B液,如过溶液变红说明有亚硝酸盐,为硝酸盐还原阳性菌,如果不变色需要再倒出部分培养基在另外的小孔中再滴如耳苯胺试剂,如果变蓝,说明此菌为阴性菌;如果不变色,说明此菌为硝酸盐还原强阳性菌. 右下方恶臭假单胞菌,加入革里斯试剂A、B后不变色,再加入二苯 胺试剂后变蓝,为阴性菌;左上方大肠杆菌为红色。 5柠檬酸盐实验 直接观察斜面,斜面变兰色者为柠檬酸盐利用阳性菌,不变者为阴性菌.

左边产生蓝色,产气杆菌阳性;右边为大肠杆菌,阴性。 6明胶水解 向培养好的明胶培养基中加入酸性氯化汞或三氯乙酸溶液,并铺满平板,菌落周围出现透明圈的菌为明胶水解阳性菌,没有透明圈的菌为阴性菌. 左边为大肠杆菌,出现透明圈,阳性;右边为枯草杆菌,阴性菌。 7 淀粉水解实验 向培养好的淀粉培养基平板上加入碘液,并铺满平板,菌落周围出现透明圈的菌为淀粉水解阳性菌,没有透明圈的菌为阴性菌.

大肠杆菌常见的类型你知道多少

大肠杆菌常见的类型你知道多少? 1.大肠杆菌败血症6-10周龄的肉鸡多发,尤其在冬季发病率高,死淘率通常在5%-20%,严重的可达50%。雏鸡在夏季也较多发,病鸡精神不振,采食减少,衰弱和死亡。病鸡腹部膨满,排出黄绿色的稀便。特征性的病变是纤维素性心包炎,气囊混浊肥厚,有干酪样渗出物。肝包膜呈白色混浊,有纤维素性附着物,有时可见白色坏死斑。脾充血肿胀。 2.死胚、初生雏卵黄囊感染和脐带炎种蛋内的大肠杆菌来自种鸡卵巢和输卵管及蛋壳被粪便的污染。侵入种蛋内的大肠杆菌在孵化过程中进行增殖,致使孵化率降低,胚胎在孵化后期死亡,死胚增多。孵出的雏鸡体弱,卵黄吸收不良,脐带炎,排出白色、黄绿色或泥土样的稀便。腹部膨满,出生后2-3天死亡,一般6日龄过后死亡率降低下来。即使不死的鸡,也是发育迟滞。死胚和死亡雏鸡的卵黄膜变薄,呈黄泥水样或混有干酪样颗粒状物、脐部肿胀发炎。4日龄以后感染常见心包炎,其中急性死亡的病雏几乎见不到病变。 3.卵黄性腹膜炎及输卵管炎腹膜炎可由气囊炎发展而来,也可由慢性输卵管炎引起。发生输卵管炎时,输卵管变薄,管内充满恶臭干酪样物,阻塞输卵管使排出的卵落到腹腔而引起腹膜炎。 4.出血性肠炎埃希氏大肠杆菌正常只寄生在鸡的下部肠道中,但当发生饲养和管理失调,卫生条件不良,各种应激因素存在,使鸡的抵抗力降低,大肠杆菌就会在上部肠道寄生,从而引起肠炎。病鸡羽毛粗乱,翅膀下垂,

精神委顿,腹泻。雏鸡由于腹泻糊肛,容易与鸡白痢混淆。剖检病变,主要表现在肠道的上1/3至1/2肠粘膜充血、增厚、严重者血管破裂出血,形成出血性肠炎。 5.其它器官受侵害的病变大肠杆菌引起滑膜炎和关节炎,病鸡跛行或呈伏卧姿势,一个或多个腱鞘、关节发生肿大。发生大肠杆菌肉芽肿时,沿肠道和肝脏发生结节性肉芽肿,病变似结核。此外,大肠杆菌还可引起全眼球炎、脑炎等。 6.慢性呼吸道综合症鸡先感染支原体,造成呼吸道粘膜被损害,后继发大肠杆菌的感染。病的早期,上呼吸道炎症,鼻、气管粘膜有湿性分泌物,发生罗音、咳音,发展严重时,发生气囊炎、心包炎,有纤维素渗出,肝脏也被纤维素物质包围,肺部有肺炎,呈深黑色,硬化。 7.皮下感染头部肿胀由于表皮损伤侵入,感染扩散到关节和骨部,引起这些部位的炎症。有一些病毒感染后,继发大肠杆菌急性感染,造成头部肿胀,即肿头综合症,双眼和整个头部肿胀,皮下有黄色液体及纤维素渗出,可从局部分离出大肠杆菌。

相关主题