搜档网
当前位置:搜档网 › 水泵的汽蚀

水泵的汽蚀

水泵的汽蚀
水泵的汽蚀

第五章水泵的汽蚀

主要内容

(一)水泵汽蚀的产生和危害

(二)水泵安装与产生汽蚀的关系

(三)水泵的汽蚀余量

(四)相似原理在汽蚀性能研究中的应用

(五)水泵抗汽蚀性能的改进

(一)水泵汽蚀的产生和危害

1、水泵汽蚀的产生过程

当水泵流道中的液体流动到某处的压力等于或低于相应的汽化压力P v时,液体会发生汽化产生大量汽泡,当汽泡流动到高压区,在高压作用下迅速凝结而破裂,对流道表面材料形成极大的、反复的冲击,造成疲劳侵蚀或剥蚀,即为水泵汽蚀的产生过程。

2水泵汽蚀的危害

①噪声和振动

水泵发生汽蚀过程中,从水泵吸入口(低压区域)到出水口(高压区域),大量的汽泡将不断地产生、发展、凝结、破裂所带来的反复不断高速的冲击和极大的脉动力,会伴随着会引起严重的噪声和剧烈的振动。

②对水泵材料产生破坏

由于大量汽泡不断地产生、破裂带来高速冲击,形成极大脉动冲击力,反复不断作用在水泵流道表面,所谓“滴水穿石”,金属材料常常由于经受不起这种严峻考验而产生破坏或失效(P94图4-2)③水力性能大幅下降(P94图4-3)

水泵发生汽蚀时由于大量汽泡堵塞流道的过流截面而使流量下降(流道越小越严重),同时改变了水流速度和方向,降低了流体从叶轮叶片所获能量,大大减小了水泵的扬程

(二) 水泵安装与产生汽蚀的关系

水泵是否产生汽蚀与水泵安装高度直接相关,如图中所示H g越大,泵入口S-S截面上的压力就会越低,则越容易发生汽蚀。显然,H g不可能任意增大,一般应有个限定值,但作为用户又应该如何来确定H g呢?

首先,以水面为基准列水面e–e至泵的进口s–s的“伯方”:

e

≈0,得:

上式称为几何安装高度理论计算式,当右端第一项P e为大气压时,用户可知一般应Hg <10m,但还必须确定出其他变量,才能具体求解Hg,其中:

V s──水泵进口流速,可由运行工况点的流量确定。

h w──吸入管道的流动损失,由用户管路设计所确定。

P s──水泵进口压力,与不同流量工况下的水泵自身的特性相关,用户难以确定。因此,

h

H

V

p

V

p

w

g

s

s

e

e

g

g

g

g

+

+

+

=

+

2

2

2

2

ρ

ρ

应由生产厂向用户提供各种泵在不同流量下所对 应的值作为参考。

通常,生产厂通过试验测得泵在不同流量下 所对应的相对压力──真空度(也称真空高度), 用H s 表示(如图中所示的“H s ─Q”特性曲线), 即:

真空高度Hs 实际上是一个发生汽蚀的临界值,为尽量避免发生汽蚀,生产厂提供给用户时应该留出一个安全量,国内水泵行业统一规定将试验所得Hs 减去0.3m ,即为泵的允许吸上真空度:

(参见 “[H s ]─Q”曲线),将[Hs ]代入水泵的几何安装高度的理论求解式,用户就得到了允

泵安装高度设计所需注意的几个问题:

(1)将额定工况的真空高度留出0.3m 的安全量后,再计算水泵的几何安装高度,是防止水泵在运行中发生汽蚀的前提条件吗?

由于[Hs ]随Qv 变化,故水泵的[Hg ]也将随Qv 变化,而实际上是不可能随着Q v 的变化来改变安装高度的。所以,工程上为了在任何工况下均确保不发生汽蚀,就不能以额定流量工况,而必须取水泵的最大流量工况的[Hs ](最小值)进行计算。

(2)水泵一旦确定后,从用户方面如何提高[Hg ]?

水泵一旦确定后,为尽可能提高[Hg ],从用户方面来说,可采取的尽可能提高[Hg ]的措施: ①减小水平进口管路的长度; ②减少进口管路弯管和变径等; ③尽量增大进口管路的直径;

④其它能够降低进口流动损失h w 和进口流速V s 的措施。

(3)当用户使用条件与标态偏离较大时,怎样才能确保水泵不会发生汽蚀?

国标规定生产厂应在标准状态条件下(水温20℃、标准大气压)进行水泵性能试验,当用户的当地的大气与水温条件与标态偏离较大时,必须进行修正才能确保水泵不会发生汽蚀(参见P96,公式4-5、表4-1、表4-2)。

注意:考试中不允许翻书,如果出现该类型题目,题中的条件中一定是已经给出了!务必注意。

(三) 水泵的汽蚀余量

水泵是否会发生汽蚀,是关系到系统和设备能否正常运行和使用寿命,甚至是否会出现人身事故的大事。因此要在系统和设备的设计规划阶段做出正确分析判断,就必须从系统与设备两方面进行综合分析与研究,参见P100,图4-11,图中:

g

g p

p H

s e s

ρρ-=[]3

.0-=H H s s

①由水泵吸入装置系统确定的有效余量⊿ha (m):

水泵吸入口处单位重量液体所具有超过其汽化压力的富余能量值,其值取决于水泵吸入装置的阻力损失特性。显然⊿ha 越大约好。

②由水泵入口流道自身确定的必需余量⊿hr (m) :

水泵吸入口处与水泵进口流道内的压力最低点处的压差,其值取决于水泵入口流道自身的阻力损失特性,显然⊿hr 越小约好。

③由水泵自身和吸入装置系统共同确定的汽蚀余量⊿h (m) :

可见,水泵是否容易发生汽蚀(即⊿h 的大小)是由系统与水泵共同决定的。

结论:有效余量⊿ha 与必需余量⊿hr 之间的关系(参见P102,图4-13):有效余量⊿ha-Q 曲线与必需余量⊿hr-Q 的交点为发生汽蚀的临界点,其左侧为安全区,右侧为汽蚀区

(1)系统有效汽蚀余量的求解

有效汽蚀余量为水泵吸入口处单位重量液体所具有超过其汽化压力的富余能量值:

──富余能量值(有效汽蚀余量)

由P97,公式4-1(从水面至水泵进口断面的伯努利方程):

─→

若吸水池较大,可令式中Ve=0,代入有效汽蚀余量公式,得到:

由此式可研究运行条件对Δha 的影响。

水泵系统的各种主要运行条件变化对系统有效汽蚀余量Δha 影响: ① 流量对系统有效汽蚀余量Δha 影响

当流量发生变化,而其他条件不变时,由于吸入管路中的流动损失hw 与流量的平方成正比。如图所示,当流量增大时Δha 减小,发生汽蚀的可能性增加。 ② 工作介质温度对系统有效汽蚀余量Δha 影响

泵所输送工作介质的温度发生变化,而其它条件不变时,由于对应的汽化压力P v 与工作介质的温度成正比,所以当水泵所输送工作介质的温度增大时,P v 随之增大,导致系统有效汽蚀余量Δha 减小,发生汽蚀的可能性增加。

③ 吸入水面高度对系统有效汽蚀余量Δha 影响

水泵吸入口与水面之间的吸入高度H g 越大入口压力越低,发生汽蚀的可能性越大。

水泵吸入口与水面之间的倒灌高度H g 越大,水泵入口压力越高,发生汽蚀的可能性越小。

h

p

V

p a V

s s g g g ?=-+ρρ)2(2h

H V p V p w g s

s e e g g g g +++=+2222ρρh H V

p V

p w g e e s s

g g g g --+=+2222ρ

ρ

④ 吸入水面压力对系统有效汽蚀余量Δha 影响

当水泵从高于它的容器进水时,容器内的吸入水面压力P e 越大,则水泵入口压力越高,发生汽蚀的可能性越小。

当P e 与饱和蒸汽压P v 相等时: ∴

注: 当H g 为吸入高度时取正值,反之如H g 为倒灌高度时取负值。

(2)水泵必须汽蚀余量的求解

如P100,图4-11所示,水泵入口阻损: ①s → b:水泵集流段收缩损失 ②b → k:沿程流动与局部冲击 ③o → k:叶片进口绕流与阻塞

可见水泵叶轮进口流道内压力最低点处通常在叶片进口边稍后的 k 点。根据定义,水泵必须汽蚀余量为水泵吸入口 s 点与 k 点的压差:

为求解Δhr ,需要求解从s → k 的总压降,确定k 点压力。

为求解s →k 总压降,我们分别列出s →o 与o →k 的“伯方”:

首先列o →k“伯方”:

由o 点速度三角形:

∵o ~k 间距很小,∴流动损失h w (o ~k)≈0,且Z o =Z k ,u o =u k 代入上式得:

─→

g

g p

h

H p

h

V w g e a ρρ---=?)()(h

H h w g a --=?g

g g p

V

p h

k s s

r ρρ-+=?)2(

2h

V

p Z

V

p Z

k o W k k k o o

o g

g g g )(2222→+++=++

ρρh

u

W p Z

u

W p Z

k o W k

k k k o o o o g

g g g )(222222→+-++=-++ρρg g g g W

p W p k

k o o 2222+=+ρρg o k g g W W W p p o k o 212

2????

??????-+=???? ??ρρ????

?

?????-=???? ??12

2W W o k λ

g

g

g W

p

p o k o 222λ

ρρ+=

再列s →o“伯方”:

∵s ~k 之间流动损失很小,∴h w (s ~o)≈0,且Z s ≈ Z o

代入上式得: ─→

将上式与前页所推出的公式: 联立

得: ─→

上式中的左面部分正是水泵的必须汽蚀余量:

──上式称为水泵必须汽蚀余量基本方程(简称汽蚀基本方程)

在必须汽蚀余量基本方程中,为了对前面关于流动损失为零等假设条件进行修正,可将式中第一个绝对速度项乘以一个修正系数λ1,即得到了修正后的汽蚀基本方程:

由上式可知,必需汽蚀余量Δhr 随着水泵流量的增加,呈一条逐渐上升曲线。即流量越大,水泵入口至叶片进口处的压降越大,也就越容易发生汽蚀。

(3)有效汽蚀余量与必需汽蚀余量的关系

可见,水泵是否容易发生汽蚀是由系统的有效汽蚀余量特性与水泵自身的必需汽蚀余量特性(参见P102图4-13中Δh a ─Q v 曲线与Δh r ─Q v 曲线)共同决定的。

如所示,随着水泵流量的增加,当水泵的必需汽蚀余量≥水泵系统的有效汽蚀余量时,将会发生汽蚀。图中两条曲线的交点称为临界汽蚀状态点,所对应的流量Q

v c 称为临界流量。

所以,管网系统确定后调节流量工况时,应使水泵自身的必需余量尽可能越小越好。为避免发生汽蚀要求:

⊿ha -⊿hr ≥0

当:⊿ha =⊿hr = ⊿h c (⊿h c ──临界汽蚀余量) 即为发生汽蚀的临界点。

通常国标规定将临界汽蚀余量⊿h c 加一个安全余量,即得允许汽蚀余量:

[⊿h]=(1.1~1.3)⊿hc

或[⊿h ]= ⊿h c +K,一般取:K=0.3

(4)根据允许汽蚀余量确定泵的安装高度H g

以往国内的用户通常根据水泵生产厂所给出的,通过试验测得水泵进口在不同流量下,所对应的相对压力──真空度H s (也称真空高度),来确定水泵的允许安装高度:

h

V p Z

V

p Z

o s W o o o s s s

g

g g g )(2222→+++=++ρρg g g g V p V p o o s s 2222+=+ρρg g g g V

V p p

o

s s o 2222-+=ρρg

g g W

p

p

o k o 222λρρ+=g g g g g W

p

V

V p o k o s s 2222222λ

ρρ+=-+g g g g g W

V

p V p o

o k s s 2222222λ

ρρ+=-+g g g g g W

V

p V p h

o

o k s s r 22222

22λ

ρρ+=-+=?g

g

W

V

h r 222

2201λ

λ

+=?[][]h

V H H w

s

s

g

g -

-=22

但是,由于试验过程中为确定水泵允许安装高度H g ,应用计算公式:

求解真空高度时,假设水面压力P e 为大气压P a 后得出H s ,同时需要计算水泵进口处的流动速度V

s ,比较繁琐且在许多系统中的吸入水面的压力并非是大气压(如电厂锅炉给水泵或凝结泵)。

为了使用的方便,现在已越来越提倡采用水泵的允许汽蚀余量,来确定泵的允许安装高度。

将真空高度公式 变形为:

代入有效汽蚀余量公式: 得到:

导出真空高度与有效汽蚀余量的关系式:

当汽蚀发生时: ⊿ha =⊿hr =⊿h c ,代入上式:

因为只有当⊿ha ≥⊿h c ,才能避免发生汽蚀,所以上式所求得的值为泵的临界的最大真空高度。

为避免发生汽蚀,采用许用汽蚀余量[Δh]替代临界汽蚀余量Δhc ,可得到许用真空高度[H s ]:

将上式代入P97,允许几何安装高度公式4-4:

导出允许几何安装高度[Hg]与允许汽蚀余量[Δh]的关系式:

上式中P e 为吸水水面压力,可以是大气压,也可以不是大气压。我们可应用此式求解允许几何安装高度,并且避免了求解水泵进口流动速度的繁琐过程。

(四)相似原理在汽蚀性能研究中的应用

对于某一台水泵来说,汽蚀余量的大小只反映了这一台泵本身的汽蚀性能好坏,却难以对不同的水泵产品之间进行比较。为此,人们应用相似理论来进行研究,从而达到综合比较分析不同泵的水力性能及汽蚀性能参数优劣的目的。主要研究内容包括: 1.汽蚀相似定律

g

g p

p H

s

e s

ρρ-=g g p p H

s e s ρρ-=H

p

p s e

s g

g -=

ρρh

p

V p a V s s

g

g g ?=-+ρρ)2(

2h

p

V

H

p

a

V s s e g g g ?=-+-ρρ)2(2

h

p

V

p H

a V

s e s

g

g g ?--+=ρρ22h

p

V

p H

c V s e s g

g g ?--+=ρρ22max

,][22]

[h

p

V p H g

g g s V

s e ?--+=ρρ[]h

V

h

p

V

p h

V H H w s

V s e w

s s g

g g g g g --?--+=--=2][22222][ρ

ρ

2.汽蚀比转数

3.关于汽蚀比转数的讨论 4.汽蚀系数

1.汽蚀相似定律

某水泵的基本汽蚀方程为:

而模型水泵基本汽蚀方程为:

设,两水泵进口部分几何相似,则在相似运行工况下: λ1=λ1m ,λ2=λ2m , 且λ1=λ2, λ1m =λ2m

由运动相似条件:

上式称为水泵的汽蚀相似定律。

对于同一台水泵来说,它当然与其自身相似,且D 1=D 1m ,因此:

从上式可以看到,对同一台水泵来说,其汽蚀余量与转速改变前后比值的平方成正比,所以说为了防止汽蚀的发生,用户不可为了提高水泵的水力性能而轻易地提高水泵的转速。

2.汽蚀比转数

应用上述所推导的汽蚀相似定律,可以进行水泵的汽蚀性能的相似设计计算、试验研究、选型应用及模型与产品之间的相似性的判别和分析,但在实际应用过程中仍然显得过于繁琐。因此为简便起见,人们研究推导出了一个包含了Q V、Δh 、n 在内的综合性的汽蚀相似特征数,根据各类不同形式的水泵具有各自不同的相似特征数的特性,来进行水泵的汽蚀相似设计计算、相似试验研究、相似选型应用及模型与产品之间的相似性的判别和分析,从而可以大大简化和方便设计计算与分析研究过程。

由水泵的汽蚀相似定律与流量相似定律: 与

将以上两式两端分别立方和平方得到: 与

将以上两式相除:

—→

g

g W

V

h r 222

02201

λλ

+=?g

g W

V h

m

m m m

rm

222

02201λλ+=?211212120202

020)()(???? ??==++=??n

D n D u

u h

h

m m m m

rm r W V W V ???

? ????=n n h

h m

m

2211???? ??=??n

D n D h

h m m rm r n

n D D Q

Q m Vm V m ??? ??=223

6113(???? ??=??n

D n D h

h m m rm r 26

2)(22)(n

n D D Q

Q m Vm V m ??? ??=243(?

??

? ????? ?=??Vm V m

rm

r Q Q n n h

h ?

???

? ?

?=????

? ?

???n Q h

n Q h V

r m

Vm

rm 423423

两端开四次方: 常数

令,式中的常数为C (或S ),即称为汽蚀比转数。

3.关于汽蚀比转数的讨论 (1)汽蚀比转数的量纲

(2)不同形式水泵的汽蚀比转数

(3)同一台水泵在不同流量下的汽蚀比转数 (4)汽蚀比转数与相似性的关系

(1)汽蚀比转数是一个无量纲量?还是一个有量纲的量? ①汽蚀比转数是有量纲的。

②单位制不同的国家各自使用的汽蚀比转数的值不同。

③国内习惯使用工程制单位的汽蚀比转数:

④使用公制单位国家的吸入比转数:

⑤国际推荐使用无因次的汽蚀比转数:

(2)不同形式泵的汽蚀比转数 ① 双吸单级泵 ② 单吸多级泵 ③ 多级双吸泵

①对双吸单级泵, 流量应以 代入:

②对单吸多级泵,

汽蚀余量是对于首级来说的,以Δhr 代入即可。 ③对多级泵的首级双吸叶轮:

(3)同一台泵在不同流量工况下的汽蚀比转数是变化的?还是固定不变的?

对于同一台水泵来说,当运行工况发生变化时,汽蚀比转数是随之改变的,工程上规定采用水泵的额定工况时的比转数作为相似准则的比转数。今后,如无特别说明,当我们说某台水泵汽蚀的比转数,就是指它的额定工况(设计工况)的汽蚀比转数。

h

Q

r

n

C V

?=4

3

62.5h

Q

r

n

S V

?=

4/3()

C r

n h g Q K

V s

3431036.2602-?=?=?π2Q

V h

Q

r

n C V ?=43262

.5h

Q

r

n

C V ?=43262

.5

(4)汽蚀比转数与相似性的关系

① 如果两台水泵相似,两者的汽蚀比转速是否相等? ② 如果两台水泵汽蚀比转数相等,两者之间是否相似?

① 两台相似的水泵在相似工况下,其汽蚀比转数一定相等。

② 但两台水泵的汽蚀比转数相等,只能说明两者的进口部分满足相似条件,并非确保整机一定是相似的

4.汽蚀系数

采用速度系数法进行水泵的设计,是建立在现有一系列性能较好的水泵的统计资料基础之上。这种设计方法方便可靠。为了应用这种速度系数法,进行水泵汽蚀性能的理论估算,就必须找出水泵的汽蚀相似特征数与水泵比转数之间的关系(前面所介绍的汽蚀比转数C 的计算式并未反映其与比转数n

s 的直接关系)。十九世纪末,美国科学家托马首先推导出了水泵的汽蚀系数σ(也称托马系数),并建立了水泵的汽蚀相似特征数C 、水泵比转数 n s 及托马系数σ之间的关系式。

(1)汽蚀系数的导出

由汽蚀相似定律:

在相似工况下:

移项: 常数

令,式中的常数为σ,称为汽蚀系数(托马系数)

Δhr — 额定点的必须汽蚀余量 H — 额定点的单级扬程

2)汽蚀比转数C 与比转数n s 之间的关系

由汽蚀比转数: —→

又由比转数: —→

代入托马系数表达式:

211???? ??=??n D n

D h

h

m m rm r H

H u u n D n D h h m

m

m

m

rm

r =?

??

? ?

?=???

? ??=??2211=?=?H h

H h m

rm r

h

Q

r n C V ?=4362.53

462.5?

??? ??=?C Q n V r h

H

Q

n

V S

n 4365.3=3

4

65.3???? ??=n

H

S V Q n 3434

3454.165.362.5??? ?

?=???

? ?????? ??=?=C n n Q n C Q n S S V V r H

h σ

移项并两端开4/3次方,并移项得到:

(3)求解汽蚀系数的工程法

根据前面所得到的汽蚀比转数C 与比转数n s 之间的关系式,只要确定了托马系数,也就确定了汽蚀比转数与比转数之间的关系,工程上通常采用经验公式法或图表法确定托马系数: ① 经验公式② 图表查取

① 经验公式法

由于单位制不统一,各国所使用经验公式的系数存在差别。

国外使用公制单位的公式为: 单吸泵: 双吸泵:

国内使用工程制单位的公式为: 单吸泵: 双吸泵:

② 图表的查取

为了更直观、更方便地进行设计计算,工程上可以利用图表或曲线表示出,汽蚀系数σ随着水泵的比转数n s 变化的关系图。参见P106,图4-14

(五) 水泵抗汽蚀性能的改进

1.水泵自身抗汽蚀性能的提高

2.水泵吸入装置有效汽蚀余量的提高

1.水泵自身抗汽蚀性能的提高 (1)合理设计叶轮进口几何尺寸 (2)改进水泵的结构形式 (3)水泵叶轮盖板形线的优化 (4)叶轮叶片进口边的加长与扭曲 (5)强化叶轮材料的抗汽蚀性能

(1)合理设计叶轮进口几何尺寸

根据汽蚀基本方程式:

显然,Δhr 与V 0、W 0有关,而V 0、W 0与进口几何尺寸有关,因此合理设计叶轮进口几何尺寸,尽可能地降低叶轮进口流速,将有利于提高泵的抗汽蚀性能: ①增大叶轮入口直径 ②增大叶轮入口宽度

σ

4

3

54.1n

s

C =n

s

3

46108.78-?=σn

s

3

461050-?=σn

s

3

4610215-?=σn

s

3

4610136-?=σg

g W

V

h r 222

02201

λλ

+=?

(2)改进水泵的结构形式

改进水泵的结构形式也是提高汽蚀性能的有效手段之一,如将单吸叶轮改进为双吸式叶轮,使水泵叶轮进口的流量减小一半,降低了进口流速,能够大大提高水泵的抗汽蚀性能。

(3)水泵叶轮盖板形线的优化

(1)无前盖板“半开式”叶轮

无前盖板“半开式”叶轮,进口局部损失大,进口压降大,汽蚀余量Δh 小,这类叶轮水力效率低,优点是工艺结构简单,强度得到一定改善。

(2)平面盖板封闭式叶轮

平面盖板封闭式叶轮,进口局部损失得到一定改善,减小了水泵进口压降,汽蚀余量Δh有所上升。

(3)曲面盖板封闭式叶轮

优化设计的曲面盖板封闭式叶轮,更加减小了进口局部损失,进口压降进一步降低,汽蚀余量Δh更大,但其缺点是工艺性和强度相对降低。

(4)叶轮叶片进口边的加长与扭曲

前述各项参数初定后,叶轮叶片进口边形位参数设计合理与否,对水泵抗汽蚀性能也起着较大的作用。

当叶片进口边过于靠近出口,其长度变小、各点的径向尺寸变大导致进口速度增加,如果将其尽量向吸入方向延伸,能够使进口边加长、减小径向尺寸而降低进口速度。

此外采用扭曲形的进口将能够减小进口处的冲击损失,起到进一步改善水泵的汽蚀性能的作用。

(5)强化叶轮材料的抗汽蚀性能

“水向高处流”是水泵的重要功能之一,所以为了最大限度地发挥水泵的“举高”作用,水泵在许多情况下都是运行在“汽蚀潜伏”的临界状态下的,虽然这种情况下汽泡数量并不多,对流道阻塞不大,水泵仍可以处于正常运行状态,但由于“滴水穿石”,对水泵材料的破坏作用仍将影响其正常的使用寿命。

经大量试验和现场实际应用证明,无论是金属或非金属材料都会产生汽蚀破坏,只是程度不同而已,所以对于需要经常处于“汽蚀潜伏”的临界状态下运行的水泵,应该选用耐磨、耐冲击、耐腐蚀性能比较好的高镍铬合金钢、铝青铜、铝铁青铜、磷青铜等材料来制作。

(5)提高叶轮叶片的表面质量

经大量试验和现场实际应用还证明,叶轮叶片表面的粗糙程度对汽泡的产生和材料表面的破坏速度也具有较大的影响。光洁度较高(或者称为粗糙度较低)的表面,对汽泡的诱发能力最小,而材料表面越粗糙,则越容易诱发汽泡的产生和发展。此外,由于材料表面越粗糙,在汽蚀产生过程中巨大的冲击力作用下,更容易产生应力集中而加快材料的失效速度,从而大大降低了水泵的运行和使用寿命。

2.水泵吸入装置有效汽蚀余量的提高

(1)吸入段阻力损失的降低

(2)吸入或倒灌高度合理设计

(3)前置增压设备或部件的应用

(4)超汽蚀型水泵的研究与开发

(1)吸入段阻力损失的降低

①降低水泵的吸入高度;

②减小水平进口管路的长度;

③尽量增大进口管路的直径;

④提高吸入管道材料的表面质量;

⑤减少进口管路弯管和变径等;

⑥除底阀外尽量不将调节阀门设置在进口管路上。

(2)吸入或倒灌高度的合理设计

①在满足实际“举高”所需扬程的条件下,尽可能合理地减小水泵的吸入高度。

②在满足系统的经济性要求和安装高度允许的条件下,尽可能合理地增大水泵的倒灌高度。

(3)前置增压设备或部件的应用

①前置诱导轮:参见P108,图4-15

②双重翼叶轮:参见P108,图4-16

③前置泵:主泵前设置一台底速增压泵

(5)超汽蚀泵的研究与开发

参见P109,图4-17~图4-18,为一种近年来研制开发的新型产品,它的主要特点是:

①优点:其特殊的诱导轮叶型和宽型流道设计能够产生一层不易破灭的固定汽泡膜,覆盖在整个翼型叶片的背面,起到保护叶片表面材料不受到后部汽泡溃灭的冲击,这种水泵可以在汽蚀状态下维持运行----

②缺点:在汽蚀状态下运行效率低、扬程小,当后部汽泡溃灭的冲击可能会作用在泵体等部件上时,将造成这些部件的损坏或失效。

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下。 5、剧烈震动

汽蚀现象

液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPS Hc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等;3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料。

汽蚀的成因及危害

汽蚀的成因及危害 液体在一定温度下,降低压力,当压力达到该温度下的汽化压力时,液体便产生汽泡而汽化。这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,在其过流部分的局部区域,通常是叶轮叶片进口稍后的区域,因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力,液体便在该处开始汽化,产生大量蒸汽,形成气泡。 当含有大量气泡的液体向前流动,经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在这个及其短暂的瞬间,液滴质点将产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒数万次,严重时会将壁板击穿。 在水泵中产生气泡和气泡破裂,过流部件遭受到损坏乃至破坏的过程称之为水泵的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,同时导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 降低汽蚀现象的措施 一、增大装置的汽蚀余量 准确计算离心泵的安装高度选择合适的安装位置增大泵前贮液罐中液面的压力,降低被输送液体的温度以降低,的值减小吸入管路的阻力增加吸入管直径缩短吸入长度减少弯管阀门选用吸入良好的喇叭管,将调节阀安装在排出管线上在满足生产需要的前提下降低叶轮的转速,可适当降低离心泵工作时的流量,也可起到增大装置汽蚀余量的目的。将吸上装置改为倒灌装置。 二、1)提高泵本身的抗汽蚀性能 改进泵本身结构或结构形式使泵具有尽,可能小的允许汽蚀余量,改进泵的入口至叶轮附近的结构设计增大,过流面积,增大叶轮盖板进口段的曲率半

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

离心泵大流量工况汽蚀现象分析及运行优化

离心泵大流量工况汽蚀现象分析及运行优化 发表时间:2018-05-28T09:47:19.547Z 来源:《电力设备》2018年第1期作者:赵英淳毛伟峰刘攀 [导读] 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 (中国能源建设集团西北电力试验研究院有限公司西安 710032) 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 关键词:离心泵;汽蚀;运行方式及控制逻辑优化 1. 概述 大型发电厂的凝结水泵及锅炉给水泵均采用多级离心泵。在电厂启动至带满负荷过程中,凝结水泵和给水泵流量变化范围大,机组通常设计两台甚至多台离心泵并联运行,以满足不同负荷、不同流量的运行要求。当离心泵在大流量工况下运行时,易出现汽蚀现象,损害设备的同时,严重危害机组运行安全,导致机组停炉停机[1]~[3]。 本文在对离心泵大流量工况下汽蚀机理分析基础上,结合两个典型案例,提出了相应工况下的几点运行优化建议。 2. 离心式水泵大流量工况汽蚀机理分析 离心水泵在运转过程中,当其通流部分液体的绝对压力下降到小于或等于当时温度下的汽化压力时,液体就会汽化,大量蒸汽及溶解在液体中的气体逸出,形成气泡。当气泡随液体从低压区移动到高压区时,气泡在高压作用下迅速凝结而破裂,其所占有的空间就会形成具有高真空的空穴,附近的液体在高压差的作用下以极高的速度流向形成的空穴,形成冲击力。由于气泡中的蒸汽和气体来不及在瞬间全部凝结和溶解,因此,在冲击力作用下又分成小气泡,如此反复。当上述过程在叶轮或叶片等流通部件表面发生,将对金属材料产生机械剥蚀。同时,气泡中逸出的氧气等活性气体也会对金属材料产生化学腐蚀。汽蚀过程发生后将会严重影响设备运行状态,缩短泵的使用寿命,甚至由于附带产生的振动等问题引起设备或人身安全问题[4]。 离心泵内最易发生汽蚀的部位为其通流部分的压力最低点,位于叶片进口端偏后的某一界面k处。当k点绝对压强pk小于或等于汽化压强pv时,即发生汽蚀。根据汽蚀基本方程式: (1) 式中:p1和c1分别为流体在泵入口界面处压强和速度;c0为流体在叶片进口边前的绝对速度;m为考虑流体在泵入口截面到临界截面间水力损失和液体绝对速度的不均匀性后引入的压降系数;ω0为流体在叶片进口处的相对速度;λ为流体绕流叶片端部所产生的压降系数。 引入有效汽蚀余量NPSHa和必需汽蚀余量NPSHr两个量。NPSHa表示液体到达泵进口处的能量扣除汽化压头所富裕的能量: (2) 当液体温度、吸入液面压强和泵的安装高度均保持不变情况下,由于吸入管路的流动损失与流量的平方成正比,所以NPSHa随液体流量变化为一条下降的抛物线。 NPSHr表示液体进入泵后压头下降程度: (3) 由于c0和ω0均与流量的增大而增大,所以NPSHr随流量的变化程一条上升的曲线。 NPSHa的曲线和NPSHr的曲线相交于临界流量点Qk,当泵内流量大于Qk时,NPSHa<NPSHr,即有效汽蚀余量提供的富裕能量不足以克服泵体进口液体的压头降时,泵将发生汽蚀[5]。 由离心泵汽蚀机理可知,控制泵入口流量是避免汽蚀的关键,实际工程中可从改变泵的运行曲线或泵出口管路的阻力特性入手,改变泵的工作点,使离心泵工作在小于临界流量Qk的稳定区域,避免和预防汽蚀。 3. 案例分析 3.1 机组锅炉跳闸后凝结水泵汽蚀案例分析及运行优化建议 3.1.1 案例过程 某300MW机组采用的是上海凯士比泵有限公司生产的型号为“NLT350-400x5”的凝结水泵,水泵额定参数:流量为907.3m3/h,扬程250m,转速1480rpm,NPSHr≤3.2m,轴功率756.4kW。 2015年12月20日,锅炉跳闸后的机组恢复过程中,出现了凝结水泵B出力不正常的现象,具体过程如下: 15:45:18,机组在高负荷运行过程中锅炉跳闸,此时凝泵B稳定运行,电流83.2A,泵出口母管压力2.22MPa,凝结水流量859t/h,除氧器上水调阀开度74.3%,凝泵再循环开度11.5%且处于自动控制状态; 15:49:27,由于给水流量迅速下降,除氧器上水调阀快速关至18.4%,凝泵B电流降至48.9A,泵出口母管压力升至2.84MPa,凝结水流量降至121t/h,凝泵再循环调阀超弛开至98.1%,该调阀切至手动控制; 15:50:32,手动打开除氧器上水调门至81.0%,凝泵B电流81.1A,出口母管压力1.29MPa,凝结水流量855t/h,再循环调阀开度98.1%; 15:51:22,除氧器上水调阀再度关小至4.1%,凝泵B电流74.9A,出口母管压力2.48MPa,凝结水流量677t/h,再循环调阀开度98.2%;该工况运行约7min,15:56:07,除氧器上水调阀再度关小至2.2%,凝泵B电流85.3A,出口母管压力2.17MPa,凝结水流量

防止水泵汽蚀方法措施

防止水泵汽蚀方法措施 一水泵的类型原理 一、水泵的定义:通常把提升液体、输送液体或使液体增加压力, 即把原动机的机械能变为液体能量从而达到抽送液体目的的机器统称为泵。 二、水泵的工作原理: 1 容积式泵_ 利用工作腔容积周期变化来输送液体。 2 、叶片泵_ 利用叶片和液体相互作用来输送液体。 三、水泵的具体用途:水泵的不同用途、不同的输送液体介质、不同 流量、扬程的范围,泵的结构型式当然也不一样,材料也不同,概括起来,大致可以分为: 1 、城市供水 2 、污水系统 3 、土木、建筑系统 4 、农业水利系统 5 、电站系统 6 、化工系统 7 、石油工业系统 8 、矿山冶金系统 9 、轻工业系统10 、船舶系统 二汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力

上升气泡消失在液体中的现象称为汽蚀溃灭。 水泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 三水泵汽蚀基本关系式 水泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从水泵本身和吸入装置双方来考虑,水泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHrNPSHc——水泵开始汽蚀 NPSHa NPSHa>NPSHrNPSHc——水泵无汽蚀

水泵的汽蚀

第五章水泵的汽蚀 主要内容 (一)水泵汽蚀的产生和危害 (二)水泵安装与产生汽蚀的关系 (三)水泵的汽蚀余量 (四)相似原理在汽蚀性能研究中的应用 (五)水泵抗汽蚀性能的改进 (一)水泵汽蚀的产生和危害 1、水泵汽蚀的产生过程 当水泵流道中的液体流动到某处的压力等于或低于相应的汽化压力P v时,液体会发生汽化产生大量汽泡,当汽泡流动到高压区,在高压作用下迅速凝结而破裂,对流道表面材料形成极大的、反复的冲击,造成疲劳侵蚀或剥蚀,即为水泵汽蚀的产生过程。 2水泵汽蚀的危害 ①噪声和振动 水泵发生汽蚀过程中,从水泵吸入口(低压区域)到出水口(高压区域),大量的汽泡将不断地产生、发展、凝结、破裂所带来的反复不断高速的冲击和极大的脉动力,会伴随着会引起严重的噪声和剧烈的振动。 ②对水泵材料产生破坏 由于大量汽泡不断地产生、破裂带来高速冲击,形成极大脉动冲击力,反复不断作用在水泵流道表面,所谓“滴水穿石”,金属材料常常由于经受不起这种严峻考验而产生破坏或失效(P94图4-2)③水力性能大幅下降(P94图4-3) 水泵发生汽蚀时由于大量汽泡堵塞流道的过流截面而使流量下降(流道越小越严重),同时改变了水流速度和方向,降低了流体从叶轮叶片所获能量,大大减小了水泵的扬程 (二) 水泵安装与产生汽蚀的关系 水泵是否产生汽蚀与水泵安装高度直接相关,如图中所示H g越大,泵入口S-S截面上的压力就会越低,则越容易发生汽蚀。显然,H g不可能任意增大,一般应有个限定值,但作为用户又应该如何来确定H g呢? 首先,以水面为基准列水面e–e至泵的进口s–s的“伯方”: e ≈0,得: 上式称为几何安装高度理论计算式,当右端第一项P e为大气压时,用户可知一般应Hg <10m,但还必须确定出其他变量,才能具体求解Hg,其中: V s──水泵进口流速,可由运行工况点的流量确定。 h w──吸入管道的流动损失,由用户管路设计所确定。 P s──水泵进口压力,与不同流量工况下的水泵自身的特性相关,用户难以确定。因此, h H V p V p w g s s e e g g g g + + + = + 2 2 2 2 ρ ρ

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 /Detail_289475_102102_%E4%BA%94%E9%87%91%E5%B8%B8%E8%AF%86.shtml 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是水泵自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:轴承损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧螺丝。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下0.5m。 5、剧烈震动 主要有以下几个原因:电动转子不平衡;联轴器结合不良;轴承磨损弯曲;转动部分的

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

关于水泵气蚀

水泵气蚀 一般是无法完全避免的,因为离心泵在告诉旋转时,中心部分肯定会产生负压从而使气体分离成小气泡,而排出集液腔也就是叶轮的外周附近压力猛力增加,这样液体就把气泡压破,气泡形成的空穴由液体高速填充。 而接近叶轮外周表面的空穴填充过程就会伤及叶轮表面,除非液体不含任何气体成分也不会在一定负压下挥发。 如果涡壳结构合理,在一定程度上可以延缓气蚀引起的损伤时间。另外叶轮用比较硬的材料做成也有一定效果。如果能一定程度降低液体内气体含量就更好了,比如曝气。 气蚀是难以避免的,这是离心泵与生俱来的特性。 但是,我们可以在设计方面考虑。 比如: 1.加大泵的气蚀余量,尽量避免采用自吸的,让液面高于吸口; 2.采用比较好的叶轮,提高抗气蚀性能;

泵内气蚀现象 水泵在运行期间,若由于某种原因使泵内局部压力降低到水的汽化压力(vapor pressure)时,水就会产生汽化而形成气液流。从水中离析出来的大量气泡随着水流向前运动,到达高压区时受到周围液体的挤压而溃灭,气泡内的气体又重新凝结成水,同时产生很高的水锤压力,使材料的边壁遭受侵蚀和破坏。通常把这种现象,称为水 泵的气蚀(cavitation)现象。 气蚀过程中,由于泵内含有大量的气泡,叶轮与水流之间的能量转换规律遭到破坏,从而引起水泵性能变坏(流量、扬程和效率迅速下降),甚至达到断流状态,并伴随有强烈的振动和噪声。这种性能的变化,对于不同比转数的泵有着不同的特点。如低比转数的离心泵因叶槽狭长、出口宽度较小,当气蚀发生后,气泡区很容易扩展到叶槽的整个范围,引起水流断裂,水泵性能曲线呈急剧下降形状,如图4-1(a)所示。对于中、高比转数的离心泵和混流泵,由于叶槽较宽,气泡不容易堵塞通道,只有在脱流区继续发展时,气泡才会布满整个叶槽,因此在性能出现断裂之前,其性能曲线先是比较平缓地下降,然后迅速呈直线下降,如图4-1(b)所示。对高比转数的轴流泵,由于叶片之间的通道相当宽阔,故气蚀发生后气泡区不易扩展到整个叶槽,因此性能曲线下降缓慢,以至无明显的断裂点,如图4-1(c) 所示。

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

什么叫气蚀气蚀现象怎么解决

一、什么叫气蚀: 当离心泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力。从而,贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵不能输送液体,此种现象称为“气蚀现象”。 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 为了使泵内充满液体,通常在吸入管底部安装一带滤网的底阀,该底阀为止逆阀,滤网的作用是防止固体物质进入泵内损坏叶轮或防碍泵的正常操作。 造成汽蚀的主要原因有: 1、进口管路阻力过大或者管路过细; 2、输送介质温度过高; 3、流量过大,也就是说出口阀门开的太大; 4、安装高度过高,影响泵的吸液量; 5、选型问题,包括泵的选型,泵材质的选型等. 解决办法: 1、清理进口管路的异物使进口畅通,或者增加管径的大小; 2、降低输送介质的温度; 3、减小流量; 4、降低安装高度; 5、重新选泵,或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等。

针对热水泵汽蚀现象的分析和解决方法

针对热水泵汽蚀现象的分析和解决方法 摘要:在如今的很多化工生产过程中,对于管路输送需要伴热要求,在100℃以下的情况下,大多数会选择简单经济的热水循环系统。在温度要求比较高的时候,比如说高于95℃,热水循环泵经常会出现异常情况,表现在噪音和振动,以及输出流量和压力上。针对这种热水循环系统的异常现象,本文通过理论计算判断是泵出现了汽蚀现象。汽蚀轻则会造成系统压力不稳流量减少,重则会降低泵的使用寿命甚至造成泵的损坏。因此使用过程中我们需要想方设法避免汽蚀的出现。本文通过理论推算,将泵的吸入高度提高了3.5米。然后再通过现场整改后的观察验证了之前的分析,泵的运转回归了正常,从而保证了热水循环系统的稳定运行,进而满足了工厂生产条件,为公司和客户消除了一个生产隐患。 关键词:热水泵汽蚀;热水循环系统;热水泵故障分析 作者公司乳化产品工艺生产线的输送管路部分对介质的温度有较高的要求,因此输送管路要求伴热温度在95±3℃,伴热系统选择的是热水循环系统,整个系统由热水箱(采用蒸汽加热),管路、泵和阀门组成,目前这套系统已在十多条生产线上得到推广应用。但在实际生产使用过程中,我发现很多工厂在热水的温度超过95℃时,热水循环泵的运行状态出现不稳定,具体表现为振动和噪音加大,输出流量出现异常波动,输出压力降低等,根据这种现象初步判断为泵出现了明显汽蚀。根据掌握的知识,作者大致分析了汽蚀的发生过程:水汽化时的压力称为汽化压力(饱和蒸汽压力),它汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。可见,一定温度下的压力是促成液体汽化的外界因素。液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡。这种气泡会降低泵吸入端的压强,当泵吸入压强降到水的饱和蒸汽压以下时,液体又会产生气泡。气泡聚集在一起,会在泵腔内在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区。由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生疲劳和裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此需要极力避免和消除汽蚀现象。为了验证分析是否正确,我们通过以下计算来进行理论分析。 作者公司一直选用的热水泵型号为上海中耐制泵有限公司生产的IRG型单级单吸立式热水循环离心泵,适用于能源、冶金、化工、纺织、造纸,以及宾馆饭店等锅炉高温热水增压循环输送及城市采暖系统循环用泵,使用介质温度不超过120℃。1、吸入压力≤1.0MPa,或泵系统最高工作压力≤1.6MPa,即泵吸入口压力+泵扬程≤1.6MPa,泵静压试验压力为2.5MPa,整体采用铸铁结构,密封处为机械密封。

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc NPSHr NPSHa NPSHa=NPSHr--泵开始汽蚀 NPSHa NPSHa NPSHr--泵无汽蚀 式中 NPSHa--装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr--泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;

NPSHc--临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; --许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取 =(1.1,1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ g+Vs/2g-Pc/ g=Pc/ g hg-hc-Ps/ g 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa NPSHr可防止发生汽蚀的措施如下: 1( 减小几何吸上高度hg(或增加几何倒灌高度); 2( 减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附 件等; 3( 防止长时间在大流量下运行; 4( 在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5( 泵发生汽蚀时,应把流量调小或降速运行; 6( 泵吸水池的情况对泵汽蚀有重要影响; 7( 对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

汽蚀余量和泵的安装高度的关系

先说一下各种汽蚀余量的概念: NPSH,汽蚀余量,是水泵进口的水流能量相对汽化压力的富余水头。 要谈允许汽蚀余量的由来,首先讲NPSH的一种:有效汽蚀余量NPSHa(NPSH available,也有以Δha表示),取决于进水池水面的大气压强、泵的吸水高度、进水管水头损失和水流的工作温度,这些因素均取决于水泵的装置条件,与水泵本身性能无关,所以也有叫装置汽蚀余量的。 NPSHr(NPSH required,Δhr),必需汽蚀余量。由上所述,在一定装置条件下,有效汽蚀余量Δha为定值,此时对于不同的泵,有些泵发生了汽蚀,有些泵则没有,说明是否汽蚀还与泵的性能有关。因为Δha仅说明泵进口处有超过汽化压力的富余能量,并不能保证泵内压力最低点(与泵性能有关)的压力仍高于汽化压力。将泵内的水力损失和流速变化引起的压力降低值定义为必须汽蚀余量Δhr,也就是说要保证泵不发生汽蚀,必要条件是Δha>Δhr。Δhr与泵的进水室、叶轮几何形状、转速和流量有关,也就是与泵性能相关,而与上述装置条件无关。 一般来讲Δhr不能准确计算,所以通常通过试验方法确定。这时就引入临界汽蚀余量NPSHc (NPSH critical,Δhc),即试验过程泵刚好开始汽蚀时的汽蚀余量,此时Δha=Δhc=Δhr,这样即可确认Δhr。而由于临界状况很难判断(因为此时性能可能并无大变化),按GB7021-86规定,临界Δhc这样确定:在给定流量情况下,引起扬程或效率(多级泵则为第一级叶轮)下降(2+k/2)%时的Δha值;或在给定扬程情况下,引起流量或效率下降(2+k/2)%时的Δha值。k为水泵的型式数。 而以上均为理论值。要保证水泵不发生汽蚀,引入允许汽蚀余量([NPSH],[Δh]),是根据经验人为规定的汽蚀余量,对于小泵[Δh]=Δhc+0.3m,大型水泵[Δh]=(1.1~1.3)Δhc。最后水泵运行不产生汽蚀的必要条件是:装置有效汽蚀余量不得小于允许汽蚀余量,即Δha>=[Δh]。如同测试水泵其他性能参数一样,水泵厂家通过汽蚀试验测得不同流量下的临界汽蚀余量Δhc,绘制Δhc~Q曲线和Δh~Q曲线供用户使用。 最后,允许汽蚀余量[Δh]越大,对装置有效汽蚀余量要求越高,也就越容易发生汽蚀。 再说说离心泵的工作原理 离心泵的工作原理 1.工作原理

相关主题