搜档网
当前位置:搜档网 › 一种改进的Chameleon算法

一种改进的Chameleon算法

一种改进的Chameleon算法
一种改进的Chameleon算法

一种基于图像金字塔光流的特征跟踪方法_江志军

第32卷第8期2007年8月武汉大学学报?信息科学版 G eomatics and Information Science of Wuhan University Vol.32No.8Aug.2007 收稿日期:2007205212。 项目来源:国家自然科学基金资助项目(40301040)。 文章编号:167128860(2007)0820680204文献标志码:A 一种基于图像金字塔光流的特征跟踪方法 江志军1 易华蓉2 (1 武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号,430079) (2 广东商学院旅游与环境学院,广州市赤沙路21号,510320) 摘 要:推导并实现了一种基于图像金字塔光流的角点特征跟踪方法。实验结果表明,该方法在不同运动幅度和运动方式下的检测跟踪性能较好,能够有效地应用于长序列图像的特征跟踪。关键词:图像金字塔;光流;特征跟踪中图法分类号:P237.3 特征检测与跟踪是基于连续图像序列的运动 结构重建问题[1](struct ure f rom motion ,SFM )研究的重要基础和关键技术环节,在航空航天、移动机器人定位、移动量测、交通等领域有着广泛的应用。图像特征的定义及检测方法多种多样,其中最常用的是角点特征[2]。基于梯度光流的角点跟踪方法实现起来相对简单,计算复杂度较低,而且能够得到相当精确的跟踪,如L K 方法[3]。然而,该类方法在应用中也有局限性,如仅适用于小图像运动[4],要求相邻图像间的目标运动小于1个像素。 本文方法基于图像金字塔的分层结构与多分辨率特征,同级别的图像分辨率层次上动态扩展。 1 角点特征检测 对三维重建应用而言,角点是图像的一个重 要的局部特征,它最小化了图像上重要的形状信息[2]。在有图像噪声和区域变形的情况下,特征跟踪考虑到图像上多方向强度(灰度)变化为一种稳定的结构,设想围绕图像中的每个像素点来建立某个小的窗口,使该窗口在不同方向上滑动一个小的距离,并计算该窗口内所有像素强度变化的平均值。如果在所有方向滑动时,窗口内的强度变化都超过了某一门限值,那么该点即可视为检测得到的待跟踪角点。 假设窗口滑动向量为h =(u ,v )T ,定义窗口像素的灰度方差和SSD 作为滑动后强度变化的度量(对彩色图像,首先进行灰度化处理)。对图像上任一像素点p =(x ,y )T ,则有: SSD (p )= ∑W ‖I (p )-I (p +h )‖2 (1) 对I (p +h )在p 点处作一阶泰勒展开近似: I (p +h )=I (p )+I x u +I y v (2) 代入式(1)中并写成矢量形式可得: SSD (p )= ∑W ‖D I h ‖2 =∑ W h T D T I D I h , D I =(I x ,I y ) T (3) 定义 D = ∑ W D T I D I = A C C B (4) 式中,A = ∑ W I x 2 ;B = ∑W I y 2 ;C = ∑W I x I y 。A 、 B 、 C 可使用各种常用梯度算子从图像上计算得 到,本文使用Sobel 算子[5]。SSD 表达式可简写为: SSD (p )=h T Dh (5) 对于n ×n 方阵M ,可以看作是n 维欧氏空 间的线性变换,其特征矢量确定了缩放变换的方向,而其特征值表征该方向上的缩放大小,即可以根据D 的特征值来确定图像强度变化的幅度。 若‖h ‖=α,λ1、λ2为2×2方阵D 的两个特征值,且λ1≤λ2,则

SIFT算法原理

3.1.1尺度空间极值检测 尺度空间理论最早出现于计算机视觉领域,当时其目的是模拟图像数据的多尺度特征。随后Koendetink 利用扩散方程来描述尺度空间滤波过程,并由此证明高斯核是实现尺度变换的唯一变换核。Lindeberg ,Babaud 等人通过不同的推导进一步证明高斯核是唯一的线性核。因此,尺度空间理论的主要思想是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行尺度空间特征提取。二维高斯函数定义如下: 222()/221 (,,)2x y G x y e σσπσ-+= (5) 一幅二维图像,在不同尺度下的尺度空间表示可由图像与高斯核卷积得到: (,,(,,)*(,)L x y G x y I x y σσ)= (6) 其中(x,y )为图像点的像素坐标,I(x,y )为图像数据, L 代表了图像的尺度空间。σ称为尺度空间因子,它也是高斯正态分布的方差,其反映了图像被平滑的程度,其值越小表征图像被平滑程度越小,相应尺度越小。大尺度对应于图像的概貌特征,小尺度对应于图像的细节特征。因此,选择合适的尺度因子平滑是建立尺度空间的关键。 在这一步里面,主要是建立高斯金字塔和DOG(Difference of Gaussian)金字塔,然后在DOG 金字塔里面进行极值检测,以初步确定特征点的位置和所在尺度。 (1)建立高斯金字塔 为了得到在不同尺度空间下的稳定特征点,将图像(,)I x y 与不同尺度因子下的高斯核(,,)G x y σ进行卷积操作,构成高斯金字塔。 高斯金字塔有o 阶,一般选择4阶,每一阶有s 层尺度图像,s 一般选择5层。在高斯金字塔的构成中要注意,第1阶的第l 层是放大2倍的原始图像,其目的是为了得到更多的特征点;在同一阶中相邻两层的尺度因子比例系数是k ,则第1阶第2层的尺度因子是k σ,然后其它层以此类推则可;第2阶的第l 层由第一阶的中间层尺度图像进行子抽样获得,其尺度因子是2k σ,然后第2阶的第2层的尺度因子是第1层的k 倍即3 k σ。第3阶的第1层由第2阶的中间层尺度图像进行子抽样获得。其它阶的构成以此类推。 (2)建立DOG 金字塔 DOG 即相邻两尺度空间函数之差,用(,,)D x y σ来表示,如公式(3)所示: (,,)((,,)(,,))*(,)(,,)(,,)D x y G x y k G x y I x y L x y k L x y σσσσσ=-=- (7) DOG 金字塔通过高斯金字塔中相邻尺度空间函数相减即可,如图1所示。在图中,DOG 金字塔的第l 层的尺度因子与高斯金字塔的第l 层是一致的,其它阶也一样。

LK光流算法总结-精选.doc

运动目标检测之Lucas-Kanade 光流算法读书笔记 视觉是人类感知自身周围复杂环境最直接有效的手段之一,而在现实生活中大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能够快速的发现运动目标。随着计算机技术、通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热 点研究问题之一。而运动目标检测是计算机视觉研究的核心课题之一,融合了图像处理、模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实用价值和广阔的发展 前景。 一目标检测 运动目标检测运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出 来。目前,已有的运动目标检测方法按照算法的基本原理可以分为三类:背景差分法,帧间差 分法和光流法。 1 背景差分法 背景差分法又称背景减除法,背景差分法的原理是将当前帧与背景图像进行差分来得到 运动目标区域,但是需要构建一幅背景图像,这幅背景图像必须不含运动目标,并且应该能不断的更新来适应当前背景的变化,构建背景图像的方法有很多,比较常用的有基于单个高 斯模型的背景构建,基于混合高斯模型的背景构建,基于中值滤波器的背景构造,基于卡尔曼滤波器的背景构造,基于核函数密度估计的背景模型构造。 缺点:因为要求背景是静止的,所以背景的变化,场景中有很多干扰,比如场景中 有树枝和叶子在风中晃动、水面的波动等等,还有照明的变化和天气的变化等都可能影响检 测的结果 2 帧间差分法 帧间差分法是一种通过对视频图像序列中相邻两帧作差分运算来获得运动目标轮廓的 方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。当监控场景中出现异常 物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,

SIFT算法实现及代码详解

经典算法SIFT实现即代码解释: 以下便是sift源码库编译后的效果图:

为了给有兴趣实现sift算法的朋友提供个参考,特整理此文如下。要了解什么是sift算法,请参考:九、图像特征提取与匹配之SIFT算法。ok,咱们下面,就来利用Rob Hess维护的sift 库来实现sift算法: 首先,请下载Rob Hess维护的sift 库: https://www.sodocs.net/doc/1318611382.html,/hess/code/sift/ 下载Rob Hess的这个压缩包后,如果直接解压缩,直接编译,那么会出现下面的错误提示: 编译提示:error C1083: Cannot open include file: 'cxcore.h': No such file or directory,找不到这个头文件。 这个错误,是因为你还没有安装opencv,因为:cxcore.h和cv.h是开源的OPEN CV头文件,不是VC++的默认安装文件,所以你还得下载OpenCV并进行安装。然后,可以在OpenCV文件夹下找到你所需要的头文件了。 据网友称,截止2010年4月4日,还没有在VC6.0下成功使用opencv2.0的案例。所以,如果你是VC6.0的用户请下载opencv1.0版本。vs的话,opencv2.0,1.0任意下载。 以下,咱们就以vc6.0为平台举例,下载并安装opencv1.0版本、gsl等。当然,你也可以用vs编译,同样下载opencv(具体版本不受限制)、gsl等。 请按以下步骤操作: 一、下载opencv1.0 https://www.sodocs.net/doc/1318611382.html,/projects/opencvlibrary/files/opencv-win/1.0/OpenCV_1.0.exe

LK光流算法总结

运动目标检测之Lucas-Kanade光流算法读书笔记 视觉是人类感知自身周围复杂环境最直接有效的手段之一,而在现实生活中大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能够快速的发现运动目标。随着计算机技术、通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热点研究问题之一。而运动目标检测是计算机视觉研究的核心课题之一,融合了图像处理、模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实用价值和广阔的发展前景。 一目标检测 运动目标检测运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出来。目前,已有的运动目标检测方法按照算法的基本原理可以分为三类:背景差分法,帧间差分法和光流法。 1背景差分法 背景差分法又称背景减除法,背景差分法的原理是将当前帧与背景图像进行差分来得到运动目标区域,但是需要构建一幅背景图像,这幅背景图像必须不含运动目标,并且应该能不断的更新来适应当前背景的变化,构建背景图像的方法有很多,比较常用的有基于单个高斯模型的背景构建,基于混合高斯模型的背景构建,基于中值滤波器的背景构造,基于卡尔曼滤波器的背景构造,基于核函数密度估计的背景模型构造。 缺点:因为要求背景是静止的,所以背景的变化,场景中有很多干扰,比如场景中有树枝和叶子在风中晃动、水面的波动等等,还有照明的变化和天气的变化等都可能影响检测的结果 2帧间差分法 帧间差分法是一种通过对视频图像序列中相邻两帧作差分运算来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。当监控场景中出现异常物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,

SIFT算法英文详解

SIFT: Scale Invariant Feature Transform The algorithm SIFT is quite an involved algorithm. It has a lot going on and can be come confusing, So I’ve split up the entire algorithm into multiple parts. Here’s an outline of what happens in SIFT. Constructing a scale space This is the initial preparation. You create internal representations of the original image to ensure scale invariance. This is done by generating a “scale space”. LoG Approximation The Laplacian of Gaussian is great for finding interesting points (or key points) in an image. But it’s computationally expensive. So we cheat and approximate it using the representation created earlier. Finding keypoints With the super fast approximation, we now try to find key points. These are maxima and minima in the Difference of Gaussian image we calculate in step 2 Get rid of bad key points Edges and low contrast regions are bad keypoints. Eliminating these makes the algorithm efficient and robust. A technique similar to the Harris Corner Detector is used here. Assigning an orientation to the keypoints An orientation is calculated for each key point. Any further calculations are done relative to this orientation. This effectively cancels out the effect of orientation, making it rotation invariant. Generate SIFT features Finally, with scale and rotation invariance in place, one more representation is generated. This helps uniquely identify features. Lets say you have 50,000 features. With this representation, you can easily identify the feature you’re looking for (sa y, a particular eye, or a sign board). That was an overview of the entire algorithm. Over the next few days, I’ll go through each step in detail. Finally, I’ll show you how to implement SIFT in OpenCV! What do I do with SIFT features? After you run through the algorithm, you’ll have SIFT features for your image. Once you have these, you can do whatever you want. Track images, detect and identify objects (which can be partly hidden as well), or whatever you can think of. We’ll get into this later as well. But the catch is, this algorithm is patented. >.< So, it’s good enough for academic purposes. But if you’re looking to make something commercial, look for something else! [Thanks to aLu for pointing out SURF is patented too] 1. Constructing a scale space Real world objects are meaningful only at a certain scale. You might see a sugar cube perfectly on a table. But if looking at the entire milky way, then it simply does not exist. This multi-scale nature of objects is quite common in nature. And a scale space attempts to replicate this concept

一种视频微表情检测的改进光流算法

2018年6月图 学 学 报 June2018第39卷第3期JOURNAL OF GRAPHICS V ol.39No.3一种视频微表情检测的改进光流算法 李秋宇1,张玉明2,杨福猛3,詹曙1 (1. 合肥工业大学计算机与信息学院,安徽合肥 230009; 2. 芜湖职业技术学院电气工程学院,安徽芜湖 241000; 3. 安徽信息工程学院,安徽芜湖 241000) 摘要:微表情是人们在试图隐藏自己真实情感时表现出的不受自主神经控制、持续时间短暂,强度十分微弱的面部表情。由于微表情与谎言识别有着密切的联系,其公共安全、侦查讯问、临床医学等领域有很大的应用前景。针对人为识别微表情十分困难的问题,提出一种基于Horn-Schunck (HS)光流法改进并应用于微表情自动检测的方法。使用预条件Gauss-Seidel迭代方法改进了HS光流法,加快了收敛速度。通过在自发微表情数据库CASME中进行实验,该验证方法在微表情检测中有很好的效果。 关键词:微表情检测;光流法;预条件迭代 中图分类号:TP 391 DOI:10.11996/JG.j.2095-302X.2018030448 文献标识码:A 文章编号:2095-302X(2018)03-0448-05 An Improved Optical Flow Algorithm for Micro Expression Detection in the Video Sequence LI Qiuyu1, ZHANG Yuming2, YANG Fumeng3, ZHAN Shu1 (1. School of Computer and Information, Hefei University of Technology, Hefei Anhui 230009, China; 2. School of Electrical Engineering, Wuhu Institute of Technology, Wuhu Anhui 241000, China; 3. Anhui Institute of Information Technology, Wuhu Anhui 241000, China) Abstract: Micro-expression is a kind of short-duration subtle expression which is not controlled by the autonomic nervous system. Micro-expression appears when a person is attempting to conceal his true emotion. Micro-expression detection boasts great application prospects in many fields, such as public security, investigation and interrogation as well as clinical medicine due to its close relationship with lie detection. Automatic detection of micro-expressions has come to the fore in research, because it is of great difficulty to artificially identify micro-expression . This paper proposes an improved algorithm based on the Horn-Schunck (HS) optical flow for automatic micro-expression detection. In this study, the pre-conditioned Gauss-Seidel iterative method is employed to improve the HS optical flow method, which accelerates the convergence rate. Experiments in the spontaneous micro-expression database CASME show that the propounded method exerts an excellent effect on the detection of micro-expression. Keywords: micro-expression detection; optical flow; preconditioned iteration 第一作者:李秋宇(1993-),男,安徽霍邱人,硕士研究生。主要研究方向为计算机视觉、深度学习。E-mail:lqy@https://www.sodocs.net/doc/1318611382.html, 通信作者:詹曙(1968-),男,安徽合肥人,教授,博士。主要研究方向为三维人脸图像分析和识别、医学影像分析和医学成像系统。 E-mail:shu_zhan@https://www.sodocs.net/doc/1318611382.html, 万方数据

SIFT 特征提取算法详解

SIFT 特征提取算法总结 主要步骤 1)、尺度空间的生成; 2)、检测尺度空间极值点; 3)、精确定位极值点; 4)、为每个关键点指定方向参数; 5)、关键点描述子的生成。 L(x,y,σ), σ= 1.6 a good tradeoff

D(x,y,σ), σ= 1.6 a good tradeoff

关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的。在 Lowe 的论文中, 将第0层的初始尺度定为1.6,图片的初始尺度定为0.5. 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。 next octave 是由first octave 降采样得到(如2) , 尺度空间的所有取值,s为每组层数,一般为3~5 在DOG尺度空间下的极值点 同一组中的相邻尺度(由于k的取值关系,肯定是上下层)之间进行寻找

在极值比较的过程中,每一组图像的首末两层是无法进行极值比较的,为了满足尺度 变化的连续性,我们在每一组图像的顶层继续用高斯模糊生成了 3 幅图像, 高斯金字塔有每组S+3层图像。DOG金字塔每组有S+2层图像.

If ratio > (r+1)2/(r), throw it out (SIFT uses r=10) 表示DOG金字塔中某一尺度的图像x方向求导两次 通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度)?

直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向 Identify peak and assign orientation and sum of magnitude to key point The user may choose a threshold to exclude key points based on their assigned sum of magnitudes. 利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备 旋转不变性。以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度 方向。梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。随着距中心点越远的领域其对直方图的贡献也响应减小.Lowe论文中还提到要使用高斯函 数对直方图进行平滑,减少突变的影响。

SIFT算法分析

SIFT算法分析 1 SIFT 主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。 2 SIFT 算法的主要特点: a)SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。 b)独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进 行快速、准确的匹配。 c)多量性,即使少数的几个物体也可以产生大量SIFT特征向量。 d)高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。 e)可扩展性,可以很方便的与其他形式的特征向量进行联合。 3 SIFT 算法流程图:

4 SIFT 算法详细 1)尺度空间的生成 尺度空间理论目的是模拟图像数据的多尺度特征。 高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为: L( x, y, ) G( x, y, ) I (x, y) 其中G(x, y, ) 是尺度可变高斯函数,G( x, y, ) 2 1 2 y2 (x ) 2 e / 2 2 (x,y)是空间坐标,是尺度坐标。大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。 为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。 D( x, y, ) (G( x, y,k ) G( x, y, )) I ( x, y) L( x, y,k ) L( x, y, ) DOG算子计算简单,是尺度归一化的LoG算子的近似。图像金字塔的构建:图像金字塔共O组,每组有S层,下一组的图像由上一 组图像降采样得到。 图1由两组高斯尺度空间图像示例金字塔的构建,第二组的第一副图像由第一组的第一副到最后一副图像由一个因子2降采样得到。图2 DoG算子的构建: 图1 Two octaves of a Gaussian scale-space image pyramid with s =2 intervals. The first image in the second octave is created by down sampling to last image in the previous

光流法

光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。其计算方法可以分为三类:(1)基于区域或者基于特征的匹配方法; (2)基于频域的方法; (3)基于梯度的方法; 简单来说,光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”。光流的研究是利用图像序列中的像素强度数据的时域变化和相关性来确定各自像素位置的“运动”。研究光流场的目的就是为了从图片序列中近似得到不能直接得到的运动场。 光流法的前提假设: (1)相邻帧之间的亮度恒定; (2)相邻视频帧的取帧时间连续,或者,相邻帧之间物体的运动比较“微小”;(3)保持空间一致性;即,同一子图像的像素点具有相同的运动 这里有两个概念需要解释: 运动场,其实就是物体在三维真实世界中的运动; 光流场,是运动场在二维图像平面上的投影。

如上图所示,H中的像素点(x,y)在I中的移动到了(x+u,y+v)的位置,偏移量为(u,v)。 光流法用于目标检测的原理:给图像中的每个像素点赋予一个速度矢量,这样就形成了一个运动矢量场。在某一特定时刻,图像上的点与三维物体上的点一一对应,这种对应关系可以通过投影来计算得到。根据各个像素点的速度矢量特征,可以对图像进行动态分析。如果图像中没有运动目标,则光流矢量在整个图像区域是连续变化的。当图像中有运动物体时,目标和背景存在着相对运动。运动物体所形成的速度矢量必然和背景的速度矢量有所不同,如

SIFT算法与RANSAC算法分析

概率论问题征解报告: (算法分析类) SIFT算法与RANSAC算法分析 班级:自23 姓名:黄青虬 学号:2012011438 作业号:146

SIFT 算法是用于图像匹配的一个经典算法,RANSAC 算法是用于消除噪声的算法,这两者经常被放在一起使用,从而达到较好的图像匹配效果。 以下对这两个算法进行分析,由于sift 算法较为复杂,只重点介绍其中用到的概率统计概念与方法——高斯卷积及梯度直方图,其余部分只做简单介绍。 一. SIFT 1. 出处:David G. Lowe, The Proceedings of the Seventh IEEE International Conference on (Volume:2, Pages 1150 – 1157), 1999 2. 算法目的:提出图像特征,并且能够保持旋转、缩放、亮度变化保持不变性,从而 实现图像的匹配 3. 算法流程图: 原图像 4. 算法思想简介: (1) 特征点检测相关概念: ◆ 特征点:Sift 中的特征点指十分突出、不会因亮度而改变的点,比如角点、边 缘点、亮区域中的暗点等。特征点有三个特征:尺度、空间和大小 ◆ 尺度空间:我们要精确表示的物体都是通过一定的尺度来反映的。现实世界的 物体也总是通过不同尺度的观察而得到不同的变化。尺度空间理论最早在1962年提出,其主要思想是通过对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行尺度空间主轮廓的提取,并以该主轮廓作为一种特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程。尺度越大图像越模糊。 ◆ 高斯模糊:高斯核是唯一可以产生多尺度空间的核,一个图像的尺度空间,L (x,y,σ) ,定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ) 卷积运算 高斯函数: 高斯卷积的尺度空间: 不难看到,高斯函数与正态分布函数有点类似,所以在计算时,我们也是 ()()() ,,,,*,L x y G x y I x y σσ=()22221 ()(),,exp 22i i i i x x y y G x y σπσσ??-+-=- ? ??

光流法

光流法 光流是一种简单实用的图像运动的表达方式,通常定义为一个图像序列中的图像亮度模式的表观运动,即空间物体表面上的点的运动速度在视觉传感器的成像平面上的表达。 中文名:光流法属于:简单实用的图像运动 表示:一种几何变化分为:匹配的方法频域的方法梯度的方法 人类主要通过眼睛,耳朵和大脑来获取、处理与理解获得的信息。然而图像具有最直观、明了、让人一看就懂的特质,因为人们获取信息70%以上依靠视觉,20%左右依靠听觉,10%左右依靠触觉和嗅觉,这就是为什么“百闻不如一见”,一幅图像说明一切问题,胜过千言万语。 计算机视觉这一领域的先驱可追溯到很早的时候,但是直到20世纪70年代后期,当计算机的性能提高到足以处理诸如图像这样的大规模数据时,计算机视觉才得到了正式的关注和发展。计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释,也包括对视觉信息的采集,传输,处理,存储与理解等过程。计算机视觉最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力,要经过长期的努力才能达到的目标。因此,在实现最终目标以前,人们努力的中期目标是建立一种视觉系统,这个系统能依据视觉敏感和反馈的某种程度的智能完成一定的任务。计算机视觉应用领域较广泛,包括航空航天、卫星照片、军事导弹精确制导、移动机器人视觉导航、工业自动化系统、医学辅助诊断等。 计算机视觉系统的结构形式很大程度上依赖于其具体应用方向。有些是独立工作的,用于解决具体的测量或检测问题,也有些作为某个大型复杂系统的组成部分出现,比如工业控制系统,汽车导航系统。计算机视觉系统的具体实现方法同时也由其功能决定,有些是预先固定的,有些是在运行过程中自动学习调整。尽管如此,以下几个功能却几乎是每个计算机系统都需要具备的。 图像获取,一幅数字图像是由一个或多个图像感知器产生的,例如摄像机,红外遥感摄像仪,雷达,超声波接收器等,所产生的图片包括二维图像,三维图像或者一个图像序列。 预处理,在对图像实施具体的计算机视觉方法来提取某种特定的信息前,首先通过一种或一些方法预先对图像进行处理,以满足后继图像处理的要求,包括二次取样,平滑去噪,提高对比度等。 特征提取,是使用计算机提取图像信息,检查每个像素确定该像素是否代表一个特征,例如边缘提取,边角检验,斑点检验。图像分割,对图像进行分割来提取有价值的信息用于后继处理的部分。 光流法的基本原理

SIFT算法实现原理步骤

SIFT 算法实现步骤 :1 关键点检测、2 关键点描述、3 关键点匹配、4 消除错配点 1关键点检测 1.1 建立尺度空间 根据文献《Scale-space theory: A basic tool for analysing structures at different scales 》我们可知,高斯核是唯一可以产生多尺度空间的核,一个图像的尺度空间,L (x,y,σ) ,定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ) 卷积运算。 高斯函数 高斯金字塔 高斯金子塔的构建过程可分为两步: (1)对图像做高斯平滑; (2)对图像做降采样。 为了让尺度体现其连续性,在简单 下采样的基础上加上了高斯滤波。 一幅图像可以产生几组(octave ) 图像,一组图像包括几层 (interval )图像。 高斯图像金字塔共o 组、s 层, 则有: σ——尺度空间坐标;s ——sub-level 层坐标;σ0——初始尺度;S ——每组层数(一般为3~5)。 当图像通过相机拍摄时,相机的镜头已经对图像进行了一次初始的模糊,所以根据高斯模糊的性质: -第0层尺度 --被相机镜头模糊后的尺度 高斯金字塔的组数: M 、N 分别为图像的行数和列数 高斯金字塔的组内尺度与组间尺度: 组内尺度是指同一组(octave )内的尺度关系,组内相邻层尺度化简为: 组间尺度是指不同组直接的尺度关系,相邻组的尺度可化为: 最后可将组内和组间尺度归为: ()22221 ()(),,exp 22i i i i x x y y G x y σπσσ??-+-=- ? ??()()(),,,,*,L x y G x y I x y σσ=Octave 1 Octave 2 Octave 3 Octave 4 Octave 5σ2σ 4σ8 σ 0()2s S s σσ= g 0σ=init σpre σ()() 2log min ,3O M N ??=-?? 1 12S s s σσ+=g 1()2s S S o o s σσ++=g 222s S s S S o o σσ+=g g 121 2(,,,) i n k k k σσσσ--L 1 2 S k =

采用序优化的改进蚁群算法

第44卷 第2期2010年2月 西 安 交 通 大 学 学 报 J OU RNAL O F XI ′AN J IAO TON G UN IV ERSIT Y Vol.44 №2Feb.2010 收稿日期:2009Ο06Ο20. 作者简介:张兆军(1981-),男,博士生;冯祖仁(联系人),男,教授,博士生导师. 基金项目:国家自然科学基金资助项目(60875043);国家重点基础研究发展规划资助项目(2007CB311006). 采用序优化的改进蚁群算法 张兆军1,2,冯祖仁1,2,任志刚1,2 (1.西安交通大学系统工程研究所,710049,西安;2.西安交通大学机械制造 系统工程国家重点实验室,710049,西安) 摘要:为了评价蚁群算法在有限时间内所得优解的质量,基于序优化方法提出了一种改进的蚁群算法:使用盲目挑选规则选择初始解,并对信息素进行相应的初始化;确定得到满足要求的优解所需要的迭代次数,将其作为算法的终止条件;为了更好地利用每次迭代中的优解,在算法开始阶段使用前l 个迭代优解更新信息素,以增强探索能力;在算法结束阶段采用当前迭代最优解更新信息素,以加快收敛速度.改进算法在保证收敛的前提下,并没有增加算法的时间复杂度.对旅行商问题进行的仿真实验表明,改进算法在解的质量和收敛速度方面优于最大Ο最小蚂蚁系统.关键词:蚁群算法;序优化;盲目挑选;旅行商问题中图分类号:TP18 文献标志码:A 文章编号:0253Ο987X (2010)02Ο0015Ο05 Novel Ant Colony Optimization Algorithm B ased on Order Optimization ZHAN G Zhaojun 1,2,FEN G Zuren 1,2,REN Zhigang 1,2 (1.Systems Engineering Institute ,Xi ′an Jiaotong University ,Xi ′an 710049,China ;2.State Key Laboratory for Manufacturing Systems Engineering ,Xi ′an Jiaotong University ,Xi ′an 710049,China ) Abstract :To evaluate t he quality of optimal solutions obtained by t he ant colony optimization (ACO )algorit hm in limited time ,an imp roved ACO algorit hm is presented on t he basis of t he or 2dinal optimization.An initial solution is selected using t he blind picking rule ,and t he p heromone is initialized correspondingly.The number of iterations to achieve t he optimal solution meeting t he demand is t hen determined and is used as t he termination condition of t he algorit hm.To make better use of t he solutions obtained at each iteration ,t he first l solutions are employed to enhance search capability at t he beginning p hase of t he algorit hm.While t he current optimal solution is used at t he end p hase of t he algorit hm to accelerate t he convergence.The time complexity of t he novel algorit hm is not increased under t he condition t hat ensures t he convergence.Simulation re 2sult s on t he traveling salesman p roblem show t hat t he p roposed algorit hm is superior to t he max 2min ant system in bot h t he quality of solutions and t he speed of convergence. K eyw ords :ant colony optimization ;ordinal optimization ;blind picking ;traveling salesman problem 蚁群算法[1]是一种仿生随机优化算法,已被成功应用于旅行商问题(TSP )、二次分配、网络路由、属性约简[2]等问题的求解,具有鲁棒性、正反馈、分布式计算和易与其他算法结合等优点.然而,现有方法也存在一些不足,如初期搜索时间偏长,容易陷入局部最优解等.为此,学者们提出了很多改进算 法,例如使用局部更新策略和全局更新策略的蚁群系统[3],限制信息素的上、下界并使用最优解更新策略的最大2最小蚂蚁系统(max 2min ant system ,MMAS )[4]等.此外,文献[5]受神经网络和遗传算法的启发,提出了一种二进制蚁群进化算法;文献[6]将分散搜索的思想融入蚁群算法,提高了算法的

sift算法详解

尺度不变特征变换匹配算法详解 Scale Invariant Feature Transform(SIFT) Just For Fun 张东东zddmail@https://www.sodocs.net/doc/1318611382.html, 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。 1、SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由David Lowe在1999年所发表,2004年完善总结。 其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。 此算法有其专利,专利拥有者为英属哥伦比亚大学。 局部影像特征的描述与侦测可以帮助辨识物体,SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。 SIFT算法的特点有: 1.SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性; 2.独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配; 3.多量性,即使少数的几个物体也可以产生大量的SIFT特征向量; 4.高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;

相关主题