搜档网
当前位置:搜档网 › 光学显微镜、SEM、TEM的比较

光学显微镜、SEM、TEM的比较

光学显微镜、SEM、TEM的比较
光学显微镜、SEM、TEM的比较

光学显微镜、TEM、SEM成像原理比较

(一)、透射电子显微镜

1、基本原理

在光学显微镜下无法看清小于0.2μm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron microscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。

目前TEM的分辨力可达0.2nm。电子显微镜(图2-12)与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成。

表2-2不同光源的波长

名称可见光紫外光X射线α射线电子束

0.1Kv10Kv

波长(nm)390~76013~3900.05~130.005~10.1230.0122

扫描电子显微镜(scanning electron microscope,SEM)于20世纪60年代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。

目前扫描电镜(SEM)的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。

电子显微镜技术

目前,电子显微镜技术(electron microscopy)已成为研究机体微细结构的重要手段。常用的有透射电镜(transmission electron microscope,TEM)和扫描电子显微镜 (scanning electron microscope,SEM)。与光镜相比电镜用电子束代替了可见光,用电磁透镜代替了光

学透镜并使用荧光屏将肉眼不可见电子束成像。

成像原理

1、透射电镜技术(TEM)

透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像,投射到荧光屏上或照相底片上进行观察。透射电镜的分辨率为0.1~0.2nm,放大倍数为几万~几十万倍。由于电子易散射或被物体吸收,故穿透力低,必须制备更薄的超薄切片(通常为50~100nm)。其制备过程与石蜡切片相似,但要求极严格。要在机体死亡后的数分钟钓取材,组织块要小(1立方毫米以内),常用戊二醛和饿酸进行双重固定树脂包埋,用特制的超薄切片机(ultramicrotome)切成超薄切片,再经醋酸铀和柠檬酸铅等进行电子染色。

电子束投射到样品时,可随组织构成成分的密度不同而发生相应的电子发射,如电子束投射到质量大的结构时,电子被散射的多,因此投射到荧光屏上的电子少而呈暗像,电子照片上则呈黑色。称电子密度高(electron dense)。反之,则称为电子密度低(electron lucent)。

2、扫描电镜术

扫描电镜是用极细的电子束在样品表面扫描,将产生的二次电子用特制的探测器收集,形成电信号运送到显像管,在荧光屏上显示物体。(细胞、组织)表面的立体构像,可摄制成照片。

扫描电镜样品用戊二醛和饿酸等固定,经脱水和临界点干燥后,再于样品表面喷镀薄层金膜,以增加二波电子数。扫描电镜能观察较大的组织表面结构,由于它的景深长,1mm左右的凹凸不平面能清所成像,故放样品图像富有立体感。

扫描电子显微镜

扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。

一.扫描电镜的特点

和光学显微镜及透射电镜相比,扫描电镜具有以下特点:

(一)能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。

(二)样品制备过程简单,不用切成薄片。

(三)样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。

(四)景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

(五)图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放

大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。

(六)电子束对样品的损伤与污染程度较小。

(七)在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

二.扫描电镜的结构和工作原理

(一)结构

1.镜筒

镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。

2.电子信号的收集与处理系统

在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至几十nm的区域,其产生率主要取决于样品的形貌和成分。通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器(图15(2)的探头是一个闪烁体,当电子打到闪烁体上时,1就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压信号,最后被送到显像管的栅极。

3.电子信号的显示与记录系统

扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。

4.真空系统及电源系统

扫描电镜的真空系统由机械泵与油扩散泵组成,其作用是使镜筒内达到 10(4~10(5托的真空度。电源系统供给各部件所需的特定的电源。

(二)工作原理

从电子枪阴极发出的直径20(m~30(m的电子束,受到阴阳极之间加速电压的作用,射向镜筒,经过聚光镜及物镜的会聚作用,缩小成直径约几毫微米的电子探针。在物镜上部的扫描线圈的作用下,电子探针在样品表面作光栅状扫描并且激发出多种电子信号。这些电子信号被相应的检测器检测,经过放大、转换,变成电压信号,最后被送到显像管的栅极上并且调制显像管的亮度。显像管中的电子束在荧光屏上也作光栅状扫描,并且这种扫描运动与样品表面的电子束的扫描运动严格同步,这样即获得衬度与所接收信号强度相对应的扫描电子像,这种图象反映了样品表面的形貌特征。第二节扫描电镜生物样品制备技术大多数生物样品都含有水分,而且比较柔软,因此,在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,

样品干燥并且有良好导电性能。

一.样品的初步处理

(一)取材

取材的基本要求和透射电镜样品制备相同,可参考第十四章超薄切片技术中所提的要求。但是,对扫描电镜来说,样品可以稍大些,面积可达8mm×8mm,厚度可达5mm。对于易卷曲的样品如血管、胃肠道粘膜等,可固定在滤纸或卡片纸上,以充分暴露待观察的组织表面。

(二)样品的清洗

用扫描电镜观察的部位常常是样品的表面,即组织的游离面。由于样品取自活体组织,其表面常有血液、组织液或粘液附着,这会遮盖样品的表面结构,影响观察。因此,在样品固定之前,要将这些附着物清洗干净。清洗的方法有以下几种:

1.用等渗的生理盐水或缓冲液清洗;

2.用5%的苏打水清洗;

3.用超声震荡或酶消化的方法进行处理。例如清洗肠粘膜表面的粘液,可用下面的方法:清洗液配方:透明质酸酶 300 (gα—糜蛋白酶 10 mg生理盐水 100 ml清洗液的pH为5.5~6。清洗的方法是将样品浸泡在配好的清洗液中,边浸泡边震荡30分钟,最后用双蒸水洗3次。无论用哪种清洗方法,注意在清洗时不要损伤样品。

(三)固定

固定所用的试剂和透射电镜样品制备相同,常用戊二醛及锇酸双固定。由于样品体积较大,固定时间应适当延长。也可用快速冷冻固定。

(四)脱水

样品经漂洗后用逐级增高浓度的酒精或丙酮脱水,然后进入中间液,一般用醋酸异戊酯作中间液。

二.样品的干燥

扫描电镜观察样品要求在高真空中进行。无论是水或脱水溶液,在高真空中都会产生剧烈地汽化,不仅影响真空度、污染样品,还会破坏样品的微细结构。因此,样品在用电镜观察之前必须进行干燥。干燥的方法有以下几种:

(一)空气干燥法

空气干燥法又称自然干燥法,就是将经过脱水的样品,让其暴露在空气中使脱水剂逐渐挥发干燥。这种方法的最大优点是简便易行和节省时间;它的主要缺点是在干燥过程中,组织会由于脱水剂挥发时表面张力的作用而产生收缩变形。因此,该方法一般只适用于表面较为坚硬的样品。

(二)临界点干燥法

临界点干燥法是利用物质在临界状态时,其表面张力等于零的特性,使样品的液体完全汽化,并以气体方式排掉,来达到完全干燥的目的。这样就可以避免表面张力的影响,较好地保存样品的微细结构。此法操作较为方便,所用的时间也不算长,一般约2~3小时即可完

成,所以是最为常用的干燥方法。但用此法,需要特殊仪器设备。

临界点干燥是在临界点干燥仪中进行的,操作步骤如下:

1.固定、脱水:按常规方法进行。如样品是用乙醇脱水的,在脱水至100%后,要用纯丙酮置换15~20分钟。

2.转入中间液:由纯丙酮转入中间液醋酸异戊酯中,时间约15~30分钟。

3.移至样品室:将样品从醋酸异戊酯中取出,放入样品盒,然后移至临界点干燥仪的样品室内,盖上盖并拧紧以防漏气。

4.用液体二氧化碳置换醋酸异戊酯:在达到临界状态(31(C , 72.8大气压)后,将温度再升高10(C,使液体二氧化碳气化,然后打开放气阀门,逐渐排出气体,样品即完全干燥。(三)冷冻干燥法

冷冻干燥法是将经过冷冻的样品置于高真空中,通过升华除去样品中的水分或脱水剂的过程。冷冻干燥的基础是冰从样品中升华,即水分从固态直接转化为气态,不经过中间的液态,不存在气相和液相之间的表面张力对样品的作用,从而减轻在干燥过程中对样品的损伤。冷冻干燥法有两种,即含水样品直接冷冻干燥和样品脱水后冷冻干燥。

1.含水样品直接冷冻干燥法

1.1取材固定:按常规方法进行。

1.2置于冷冻保护剂中:将样品置于冷冻保护剂中浸泡数小时。常用的冷冻保护剂为10%~20%二甲基亚砜水溶液,或15%~40%甘油水溶液。

1.3骤冷:将经过保护剂处理的样品迅速投入用液氮预冷至(150(C的氟利昂冷冻剂中,使样品中的水分很快冻结。

1.4干燥:将已冻结的样品移到冷冻干燥器内已预冷的样品台上,抽真空,经几小时或数天后,样品即达到干燥。

本方法不需要脱水,避免了有机溶剂对样品成分的抽提作用,不会使样品收缩,也是较早使用的方法。但是,由于花费时间长,消耗液氮多,容易产生冰晶损伤,因此未被广泛应用。

2.样品脱水后冷冻干燥

样品用乙醇或丙酮脱水后过渡到某些易挥发的有机溶剂中,然后连同这些溶剂一起冷冻并在真空中升华而达到干燥。和前一种方法比较,本方法的优点是不会产生冰晶损伤,

且干燥时间短。不足之处是有机溶剂对样品成分有抽提作用,造成部分内含物丢失。乙腈(acetonitrile)真空干燥法:这是一种利用乙腈在急速蒸发时会冷却固化的性质将样品干燥的方法。其操作步骤如下:

(1).固定、水洗:按常规方法进行。

(2).乙腈置换:使用50%?70%?80%?90%的乙腈水溶液置换,最后用100%乙腈代替,每步骤15~20分钟。

(3).干燥:至纯乙腈时,放入真空镀膜台抽真空,乙腈和样品在真空中很快致冷而被冻结(冻

结的温度为(45(C),变成冰状固体。然后继续抽真空,使冻结的乙腈升华,约需30分钟,样品即达干燥。

样品干燥后要粘在样品台上。对于不镀膜而直接观察的样品,必须用导电胶来粘固;对于要镀膜的样品,则可以用胶水或万能胶来代替,微细的样品如粉末、纤维等也可用双面胶纸来粘贴。

三.样品的导电处理

生物样品经过脱水、干燥处理后,其表面不带电,导电性能也差。用扫描电镜观察时,当入射电子束打到样品上,会在样品表面产生电荷的积累,形成充电和放电效应,影响对图象的观察和拍照记录。因此在观察之前要进行导电处理,使样品表面导电。常用的导电方法有以下几种:

(一)金属镀膜法

金属镀膜法是采用特殊装置将电阻率小的金属,如金、铂、钯等蒸发后覆盖在样品表面的方法。样品镀以金属膜后,不仅可以防止充电、放电效应,还可以减少电子束对样品的损伤作用,增加二次电子的产生率,获得良好的图象。

1.真空镀膜法

真空镀膜法是利用真空膜仪进行的。其原理是在高真空状态下把所要喷镀的金属加热,当加热到熔点以上时,会蒸发成极细小的颗粒喷射到样品上,在样品表面形成一层金属膜,使样品导电。喷镀用的金属材料应选择熔点低、化学性能稳定、在高温下和钨不起作用以及有高的二次电子产生率、膜本身没有结构。现在一般选用金或金和碳。为了获得细的颗粒,有用铂或用金—钯、铂—钯合金的。金属膜的厚度一般为10nm~20nm。真空镀膜法所形成的膜,金属颗粒较粗,膜不够均匀,操作较复杂并且费时,目前已经较少使用。

2.离子溅射镀膜法

在低真空(0.1~0.01乇)状态下,在阳极与阴极两个电极之间加上几百至上千伏的直流电压时,电极之间会产生辉光放电。在放电的过程中,气体分子被电离成带正电的阳离子和带负电的电子,并在电场的作用下,阳离子被加速跑向阴极,而电子被加速跑向阳极。如果阴极用金属作为电极(常称靶极),那么在阳离子冲击其表面时,就会将其表面的金属粒子打出,这种现象称为溅射。此时被溅射的金属粒子是中性,即不受电场的作用,而靠重力作用下落。如果将样品置于下面,被溅射的金属粒子就会落到样品表面,形成一层金属膜,用这种方法给样品表面镀膜,称为离子溅射镀膜法。和真空镀膜法比较,离子溅射镀膜法具有以下优点:(1)由于从阴极上飞溅出来的金属粒子的方向是不一致的,因而金属粒子能够进入到样品表面的缝隙和凹陷处,使样品表面均匀地镀上一层金属膜,对于表面凹凸不平的样品,也能形成很好的金属膜,且颗粒较细。(2)受辐射热影响较小,对样品的损伤小。(3)消耗金属少。

(4)所需真空度低,节省时间。

(二)组织导电法

用金属镀膜法使样品表面导电,需要特殊的设备,操作比较复杂,同时对样品有一定程

度的损伤。为了克服这些不足,有人采用组织导电法(又称导电染色法),即利用某些金属溶液对生物样品中的蛋白质?脂类和醣类等成分的结合作用,使样品表面离子化或产生导电性能好的金属盐类化合物,从而提高样品耐受电子束轰击的能力和导电率。

此法的基本处理过程是将经过固定、清洗的样品,用特殊的试剂处理后即可观察。由于不经过金属镀膜,所以不仅能节省时间,而且可以提高分辨率,还具有坚韧组织,加强固定效果的作用。

组织导电法主要有碘化钾导电染色法、碘化钾--醋酸铅导电法、丹宁酸—锇酸导电法等。比较常用的是丹宁酸—锇酸导电法,其具体操作方法如下:

(1).样品处理:按常规方法取材、清洗及用戊二醛固定。

(2).导电染色:将样品放入2%~4%丹宁酸溶液中浸泡。如果观察表面结构,浸泡时间为30分钟;如果观察内部结构,浸泡时间为8小时,即可过夜。在浸泡过程中,可更换一次溶液。

(3).清洗及再固定:用磷酸缓冲液充分清洗,然后放入1%锇酸中固定2~4小时,再用磷酸缓冲液清洗。

(4).脱水和干燥:按常规方法。

(5).扫描电镜观察。

四.几种特殊的样品制备技术

(一)细胞内部结构冷冻割断法

1972年,日本学者田中敬一采用冷冻树脂割断法将细胞打开,用扫描电镜观察细胞的内部结构。后来他又以二甲基亚砜代替树脂进行冷冻割断取得成功,该方法简便,结构清晰,已得到广泛应用。其操作方法如下:

1.取材和固定:为了使细胞结构清晰,不被过多的血细胞污染,可在取材前用灌注法冲洗。即先将动物麻醉,经腹主动脉注入生理盐水或低分子量的右,切开下腔静脉放血,至无血色为止。然后迅速取材,将样品修成1mm×1mm×5mm大小,投入1%锇酸溶液中固定1小时,用1/15M磷酸缓冲液 (pH7.4)清洗两次,每次10分钟。

2.二甲基亚浸泡:将样品依次放入25%、50%二甲基亚砜溶液中,各浸泡30分钟。

3.割断:用TF—1型冷冻割断装置进行割断。然后将割断后的样品放到50%二甲基亚砜中,等融化后再用1/15M磷酸缓冲液浸洗,每次10分钟,换液5次。

4.软化及后固定:将样品放入0.1%锇酸中软化,温度20(C,时间48~72小时。然后用1%八固定1小时,双蒸水浸洗1小时,换液几次,需彻底清洗干净。

5.导电染色:将样品放入2%丹宁酸中2小时(或过夜),以双蒸水清洗1小时,换液几次。再以1%八固定30~60分钟,双蒸水清洗1小时。

6.脱水、干燥及镀膜:按常规方法进行。

(二)铸型技术

为了研究空腔脏器特别是血管系统复杂的立体分布,先向腔内注射某种成形物质,待该物硬化后再把组织腐蚀去掉,剩下的成形物即能显示血管系统的立体分布,这种技术称铸型

技术。如果是研究血管系统,称为血管铸型。用铸型技术制作的标本,经过镀膜后,就可进行扫描电镜观察。

常用的铸型剂有甲基丙烯酸酯、聚苯乙烯及其共聚物以及ABS等。ABS是一种树脂,为丙烯晴、丁二烯和苯乙烯的三元共聚物,被认为是比较理想的铸型剂。下面简单介绍用ABS 制作血管铸型标本的方法:

1.灌流和注入铸型剂

首先将准备灌注的器官取下或保持自然位置,找到动脉,插入玻璃管或静脉穿刺针,并以粗丝线结扎之,用普通流水或温盐水将血管中的血液冲洗干净。然后灌注铸型剂ABS丁酮溶液,浓度为5%~30%,注入的压力为100mmHg。注入铸型剂的脏器,可以放在50(C~60(C 的温水中浸泡6小时左右,这样既能保持脏器的原形,也有助于铸型剂的硬化。

2.腐蚀和清洗

将标本放入10%~20%氢氧化钠或氢氧化钾溶液中腐蚀,也有放20%~30%盐酸中腐蚀。时间一般为5~7天。若用稀盐酸腐蚀,可加入5%~10%胃蛋白酶,腐蚀的效果更好。然后用流水将血管铸型周围被腐蚀的组织冲洗干净,时间为24~72小时,冲洗的速度要慢。

3.显微解剖和剥制铸型

为了暴露和切取要观察的部分,需要在解剖显微镜下进行。如果铸型太硬,可将铸型浸入酒精中,加温至40~60(C,能使铸型变软,便于解剖和切取。

4.干燥和镀膜

将切取的铸型用蒸馏水洗干净,用滤纸吸干后放37(C温箱中30~60分钟,最后放干燥缸中保存。镀膜可用真空喷镀,也可用离子镀膜,方法同前。镀膜后就可用扫描电镜观察。

(三)盐酸化学消化法

为了研究被观察细胞的基底面及深层细胞表面,可采用盐酸化学消化法制备样品。

1.固定和清洗:同常规方法。

2.盐酸消化:用8mol/L盐酸消化和腐蚀,其温度与时间根据不同组织而异。

3.清洁样品:用2%~5%Tween20作用3小时,以清洁样品和稳定其结构。

4.脱水、干燥和镀膜:按常规方法处理。

自从1933年德国Ruska和Knoll等人在柏林制成第一台电子显微镜后,几十年来,有许多用于表面结构分析的现代仪器先后问世。如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、场电子显微镜(FEM)、场离子显微镜(FIM)、低能电子衍射(LEED)、俄歇谱仪(AES)、光电子能谱(ESCA)、电子探针等。这些技术在表面科学各领域的研究中起着重要的作用。但任何一种技术在应用中都会存在这样或那样的局限性,例如,LEED及X射线衍射等衍射方法要求样品具备周期性结构,光学显微镜和SEM的分辨率不足以分辨出表面原子,高分辨TEM主要用于薄层样品的体相和界面研究,FEM和FIM只能探测在半径小于100nm的针尖上的原子结构和二维几何性质,且制样技术复杂,可用来作为样品的研究十分有限;还有一些表面分析技术,如X射线光电子能谱(ELS)等只能提供空间平均的电子结构

信息;有的技术只能获得间接结果,还需要用试差模型来拟合。此外,上述一些分析技术对测量环境也有特殊要求,例如真空条件等。

1982年,国际商业机器公司苏黎世实验室的葛?宾尼(Gerd Binnig)博士和海?罗雷尔(Heinrich Rohrer)博士及其同事们共同研制成功了世界第一台新型的表面分析仪器——扫描隧道显微镜(Scanning Tunneling Microscope,以下简称STM)。它的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广阔的应用前景,被国际科学界公认为八十年代世界十大科技成就之一。为表彰STM的发明者们对科学研究的杰出贡献,1986年宾尼和罗雷尔被授予诺贝尔物理学奖。

在STM出现以后,又陆续发展了一系列工作原理相似的新型显微技术,包括原子力显微镜(Atomic Force Microscope,以下简称AFM)、横向力显微镜(Lateral Force Microscope,以下简称LFM)等,这类基于探针对被测样品进行扫描成象的显微镜统称为扫描探针显微镜(Scanning Probe Microscope,以下简称SPM)。

与其它表面分析技术相比,SPM所具有的独特优点可归纳为以下五条:

1、原子级高分辨率。如STM在平行和垂直于样品表面方向的分辨率分别可达0.1nm和0.01nm,即可以分辨出单个原子,具有原子级的分辨率。

2、可实时地得到实空间中表面的三维图像,可用于具有周期性或不具备周期性的表面结构研究。这种可实时观测的性能可用于表面扩散等动态过程的研究。

3、可以观察单个原子层的局部表面结构,而不是体相或整个表面的平均性质。因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构等。

4、可在真空、大气、常温等不同环境下工作,甚至可将样品浸在水和其它溶液中,不需要特别的制样技术,并且探测过程对样品无损伤。这些特点适用于研究生物样品和在不同试验条件下对样品表面的评价,例如对于多相催化机理、超导机制、电化学反应过程中电极表面变化的监测等。

5、配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到有关表面结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。如果将应用范围较接近于SPM的电子显微镜、场离子显微镜与其作一简略比较(见表1),就可对STM仪器的特点及优越性有一清晰的认识。

表1.扫描探针显微镜(SPM)与其他显微镜技术的各项性能指标比较分辨率工作环境样品环境温度对样品破坏程度检测深度

扫描探针显微镜(SPM)

原子级(0.1nm)实环境、大气、溶液、真空室温或低温无 100μm量级透射电镜(TEM)点分辨(0.3~0.5nm)晶格分辨(0.1~0.2nm)高真空室温小接近SEM,但实际上为样品厚度所限,一般小于100nm.

扫描电镜(SEM) 6~10nm高真空室温小 10mm (10倍时)1μm (10000倍时)

场离子显微镜(FIM)原子级超高真空 30~80K有原子厚度

此外,在技术本身,SPM具有的设备相对简单、体积孝价格便宜、对安装环境要求较低、对样品无特殊要求、制样容易、检测快捷、操作简便等特点,同时SPM的日常维护和运行费用也十分低廉,因此,SPM技术一经发明,就带动纳米科技快速发展,并在很短的时间内得到广泛应用。

光学显微镜的结构与使用方法

光学显微镜的结构与使用方法 【目的要求】 1、熟悉光学显微镜的主要构造及其性能。 2、掌握低倍镜及高倍镜的使用方法。 3、初步掌握油镜的使用方法。 4、了解光学显微镜的维护方法。 【实验原理】 光学显微镜(light microscope)是生物科学和医学研究领域常用的仪器,它在细胞生物学、组织学、病理学、微生物学及其他有关学科的教学研究工作中有着极为广泛的用途,是研究人体及其他生物机体组织和细胞结构强有力的工具。 光学显微镜简称光镜,是利用光线照明使微小物体形成放大影像的仪器。目前使用的光镜种类繁多,外形和结构差别较大,有些类型的光镜有其特殊的用途,如暗视野显微镜、荧光显微镜、相差显微镜,倒置显微镜等,但其基本的构造和工作原理是相似的。一台普通光镜主要由机械系统和光学系统两部分构成,而光学系统则主要包括光源、反光镜、聚光器、物镜和目镜等部件。 光镜是如何使微小物体放大的呢?物镜和目镜的结构虽然比较复杂,但它们的作用都是相当于一个凸透镜,由于被检标本是放在物镜下方的1~2倍焦距之间的,上方形成一倒立的放大实相,该实相正好位于目镜的下焦点(焦平面)之内,目镜进一步将它放大成一个虚像,通过调焦可使虚像落在眼睛的明视距离处,在视网膜上形成一个直立的实像。显微镜中被放大的倒立虚像与视网膜上直立的实像是相吻合的,该虚像看起来好像在离眼睛25cm处。 分辨力是光镜的主要性能指示。所谓分辨力(resolving power)也称为辨率或分辨本领,是指显微镜或人眼在25cm的明视距离处,能清楚地分辨被检物体细微结构最小间隔的能力,即分辨出标本上相互接近的两点间的最小距离的能力。据测定,人眼的分辨力约为100 μm。显微镜的分辨力由物镜的分辨力决定,物镜的分辨力就是显微镜的分辨力,而目镜与显微镜的分辨力无关。光镜的分辨力(R)(R值越小,分辨率越高)可以下式计算: 这里n为聚光镜与物镜之间介质的折射率(空气为1、油为1.5); 为标本对物镜镜口张角的半角,sin的最大值为1; 为照明光源的波长(白光约为0.5m)。放大率或放大倍数是光镜性能的另一重要参数,一台显微镜的总放大倍数等于目镜放大倍数与物镜放大倍数的乘积。 一、光学显微镜的基本构造及功能 (一)机械部分 1、镜筒:为安装在光镜最上方或镜臂前方的圆筒状结构,其上端装有目镜,下端与物镜转换器相连。根据镜筒的数目,光镜可分为单筒式或双筒式两类。单筒光镜又分为直立式和倾斜式两种。而双筒式光镜的镜筒均为倾斜的。镜筒直立式光镜的目镜与物镜的中心线互成45度角,在其镜筒中装有能使光线折转45度的棱镜。

典型光学仪器的基本原理

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 6、视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微

镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无

普通光学显微镜的使用方法

普通光学显微镜的使用方法 先介绍一下构造 (一)显微镜的主要构造 普通光学显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。 1.机械部分 (1)镜座:是显微镜的底座,用以支持整个镜体。 (2)镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。 (3)镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。 (4)镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。 (5)物镜转换器(旋转器):接于棱镜壳的下方,可自由转动,盘上有3-4个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。 (6)镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。 (7)调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。 ①粗调节器(粗螺旋):大螺旋称粗调节器,移动时可使镜台作快速和较大辐度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。 ②细调节器(细螺旋):小螺旋称细调节器,移动时可使镜台缓慢地升降,多在运用高倍镜时使用,从而得到更清晰的物象,并借以观察标本的不同层次和不同深度的结构。 2.照明部分

装在镜台下方,包括反光镜,集光器。 (1)反光镜:装在镜座上面,可向任意方向转动,它有平、凹两面,其作用是将光源光线反射到聚光器上,再经通光孔照明标本,凹面镜聚光作用强,适于光线较弱的时候使用,平面镜聚光作用弱,适于光线较强时使用。 (2)集光器(聚光器)位于镜台下方的集光器架上,由聚光镜和光圈组成,其作用是把光线集中到所要观察的标本上。 ①聚光镜:由一片或数片透镜组成,起汇聚光线的作用,加强对标本的照明,并使光线射入物镜内,镜柱旁有一调节螺旋,转动它可升降聚光器,以调节视野中光亮度的强弱。 ②光圈(虹彩光圈):在聚光镜下方,由十几张金属薄片组成,其外侧伸出一柄,推动它可调节其开孔的大小,以调节光量。 3.光学部分 (1)目镜:装在镜筒的上端,通常备有2-3个,上面刻有5×、10×或15×符号以表示其放大倍数,一般装的是10×的目镜。 (2)物镜:装在镜筒下端的旋转器上,一般有3-4个物镜,其中最短的刻有“10×”符号的为低倍镜,较长的刻有“40×”符号的为高倍镜,最长的刻有“100×”符号的为油镜,此外,在高倍镜和油镜上还常加有一圈不同颜色的线,以示区别。 在物镜上,还有镜口率(N.A.)的标志,它反应该镜头分辨力的大小,其数字越大,表示分辨率越高,各物镜的镜口率如下表: 物镜镜口率(N.A.) 工作距离(mm) 10×0.25 5.40 40×0.65 0.39 100× 1.30 0.11

练习使用光学显微镜

练习使用光学显微镜 蔡清柑 1、教学目标 ①知识目标:正确说明显微镜的结构与功能 ②能力目标:能独立、规范地使用显微镜,能观察到清晰的物像;在认识、使用显微镜的过程中发现问题,并尝试解决问题; ③情感目标:认同显微镜的规范操作方法,养成爱护显微镜的习惯,初步形成实事求是的科学态度。 2、教学重点、难点的分析: ①教学重点显微镜的使用方法。 ②教学难点规范使用显微镜,并观察到物象。 3、课前准备 教师:准备显微镜,并逐个检查(准备两个不同倍数的目镜);两种标本(写有“上”字的玻片;永久装片),纱布,显微镜的使用课件;课前每班培训几名学生,以便课上帮助教师辅导其他学生。 4、教学程序 4.1导入新课复习显微镜的结构名称及其用途。(让学生指着显微镜说出结构名称及其用途)(展示图片:细胞图)让学生了解细胞非常小(提示图中物象之所以看的很清楚是被放大了百倍以上)而且形状各异。应该要会使用显微镜。 4.2新课过程 1、认识材料和用具引导学生观察实验桌上显微镜、玻片标本、擦镜纸、纱布等。

2、取镜和安放右手握,左手托;略偏左,安目镜。指导学生看书35页及课件展示:取镜和安放。强调安放目镜时,手指不要触摸镜头,对学生进行爱护显微镜的教育。 3、显微镜的构造学生四人一组,看书对照实物回顾显微镜各部分名称。 4、显微镜的使用教师对学生的回答进行鼓励,引出显微镜的使用。介绍两种观察标本: (1)写有“上”字的玻片;(2)永久装片 5、对光要求学生先看书,然后指导学生动手观察。按照先看到一个白亮的视野→放入标本→-看到清晰像的顺序。 (1)低倍物镜对准通光孔。(2)左眼看,右眼睁。(注:两眼都睁开)(3)转动反光镜,看到明亮视野。(注:双手转动反光镜) 6、观察学生边看书或课件展示自学边操作显微镜进行观察。 (1)标本放在载物台上,压住,正对通光孔。 (2)镜筒先下降,直到接近标本。 (3)左眼注视目镜,使镜筒缓缓上升,直到看清物像。 7、强调 ⑴用低倍物镜(4×,即最短的物镜)对准通光孔。 ⑵转动转换器的手法要正确,对学生进行爱护显微镜的教育。 ⑶镜筒先下降后上升,镜筒下降时,眼睛一定要看着物镜,以免压碎标本。 ⑷左眼看目镜,右眼睁开是为了画图。引导学生继续观察。 8、讨论并回答问题: ⑴视野中“上”字是否倒置,其物像比实际大小放大了多少倍? ⑵若视野中“上”字位于左上方,怎样操作才能将其移至视野中央? ⑶物像放大倍数越大,视野会越暗还是越亮? ⑷物像放大倍数越大,视野中看到的细胞数目越多还是越少?

一显微镜的构造及使用方法

实验一显微镜的构造及使用方法 一、目的要求 1.了解显微镜的构造、性能及成像原理。 2.掌握显微镜的正确适用及维护方法。 二、实验器材 1.显微镜、纱布、绸布 2.酵母菌示教标本 三、普通光学显微镜简介 微生物的最显著的特点就是个体微小,必须借助显微镜才能观察到它们的个体形态和细胞结构。熟悉显微镜并掌握其操作技术是研究微生物不可缺少的手段。 显微镜可分为电子显微镜和光学显微镜两大类。光学显微镜包括:明视野显微镜、暗视野显微镜、相差显微镜、偏光显微镜、荧光显微镜、立体显微镜等。其中明视野显微镜为最常用普通光学显微镜,其它显微镜都是在此基础上发展而来的,基本结构相同,只是在某些部分作了一些改变。明视野显微镜简称显微镜。 (一)显微镜的构造 普通光学显微镜的构造可以分为机械和光学系统两大部分。 图1-1 显微镜构造 1.目镜 2.镜筒 3. 转换器 4. 物镜 5. 载物台 6. 聚光器 7. 虹彩光圈 8. 聚光镜调节钮9.反光镜10. 底座11. 镜臂12. 标本片移动钮 13. 细调焦旋钮14. 粗调焦旋钮15.电源开关16.光亮调节钮17.光源 1.机械系统: (1)镜座Base:在显微镜的底部,呈马蹄形、长方形、三角形等。 (2)镜臂Arm:连接镜座和镜筒之间的部分,呈圆弧形,作为移动显微镜时的握持部分。 (3)镜筒Tube:位于镜臂上端的空心圆筒,是光线的通道。镜筒的上端可插入接目镜,下面可与转换器相连接。镜筒的长度一般为160mm。显微镜分为直筒式和斜筒式; 有单筒式的,也有双筒式的。 (4)旋转器Nosepiece:位于镜筒下端,是一个可以旋转的圆盘。有3~4个孔,用于安

试验二普通光学显微镜的使用及细菌的简单染色和革兰氏染色

实验二普通光学显微镜的使用及细菌的简单染色和革兰氏染色普通光学显微镜的使用 一、实验目的 以染色玻片及活菌为例,熟练掌握显微镜油镜的使用方法。 二、显微镜油镜使用的原理 1 普通光学显微镜的基本构造 (1)光学部分: 接目镜、接物镜、照明装置(聚光镜、虹彩光圈、反光镜等)。它使检视物放大, 造成物象。(2)机械部分: 镜座、镜臂、镜筒、物镜转换器、载物台、载物台转移器、粗调节器、细调节器等部件。它起着支持、调节、固定等作用。2 显微镜的放大倍数和分辨率(1)放大倍数=接物镜放大倍数×接目镜放大倍数 (2)显微镜的分辨率:表示显微镜辨析物体(两端)两点之间距离的能力,可用公式表示为: D=λ/2n·sin(α/2 ) 式中D:物镜分辨出物体两点间的最短距离。 λ:可见光的波长(平均0.55μm) n: 物镜和被检标本间介质的折射率。 a:镜口角(即入射角)。3 油镜使用的原理 油镜,即油浸接物镜。当光线由反光镜通过玻片与镜头之间的空气时,由于空气与玻片的密度不同,使光线受到曲折,发生散射,降低了视野的照明度。若中间的介质是一层油(其折射率与玻片的相近),则几乎不发生折射,增加了视野的进光量,从而使物象更加清晰。 三、实验材料 1 显微镜、香柏油、二甲苯、擦镜纸、吸水纸、盖玻片、接种环、酒精灯等。 2 细菌三种形态的玻片染色标本。 3 培养12-18h的枯草芽孢杆菌。四、实验方法与步骤 1 染色细菌玻片的油镜观查 (1)用前检查:零件是否齐全,镜头是否清洁。 (2)调节光亮度。 (3)低倍镜观察:先粗调再微调至物象清晰。

(4)转入中倍、高倍观察,每一不只需调微调旋纽即可看到清晰的物象。 (5)油镜观察:高倍镜下找到清晰的物象后,旋转转换器,在标本中央滴一滴香柏油,使油镜镜头浸入香柏油中,细调至看清物象为止。 (6)绘出所观察到的细菌形态图像。 (7)、换片:另换新片观察,必须从(3)步开始操作。 (8)、用后复原:观察完毕,上悬镜筒,先用擦镜纸擦去油镜头上的香柏油,然后再用擦镜纸沾取少量二甲苯擦去残留的油,最后用擦镜纸擦去残留的二甲苯,后将镜体全部复原。 2 活菌制片观察 取一张干净的载玻片,在其中央滴上一滴干净的蒸馏水,取培养12-18h的枯草芽孢杆菌一小环,在水滴上反复涂抹至菌体充分分散,盖上盖玻片,用吸水纸吸去多余的水分,按照油镜的使用步骤,观察草芽孢杆菌形态,边观察边绘图。 五、实验报告 油镜使用的原理 六、思考题 1 油镜与普通物镜在使用方法上有何不同?应特别注意些什么? 2 使用油镜时,为什么必须用镜头油? 3 镜检标本时,为什么先用低倍镜观察,而不是直接用高倍镜或油镜观察? 七、实验注意事项 1 不准擅自拆卸显微镜的任何部件,以免损坏。 2 镜面只能用擦镜纸擦,不能用手指或粗布,以保证光洁度。 3 观察标本时,必须依次用低、中、高倍镜,最后用油镜。当目视接目镜时,特别在使用油镜时,切不可使用粗调节器,以免压碎玻片或损伤镜面。 4 观察时,两眼睁开,养成两眼能够轮换观察的习惯,以免眼睛疲劳,并且能够在左眼观察时,右眼注视绘图。 5 拿显微镜时,一定要右手拿镜臂,左手托镜座,不可单手拿,更不可倾斜拿。 6 显微镜应存放在阴凉干燥处,以免镜片滋生霉菌而腐蚀镜片。 细菌的简单染色和革兰氏染色 一、实验目的 1 学习微生物涂片、染色的基本技术,掌握细菌的简单染色方法及革兰氏染色。 2 了解革兰氏染色法的原理及其在细菌分类鉴定中的重要性。 二、实验原理 1 简单染色的原理

高中生物实验:普通光学显微镜的使用方法

高中生物实验:普通光学显微镜的使用方法 普通光学显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。 机械部分 镜座:是显微镜的底座,用以支持整个镜体。 镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。 镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。 镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。 物镜转换器(旋转器):接于棱镜壳的下方,可自由转动,盘上有3-4个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。 镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。 调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。 粗调节器(粗螺旋):大螺旋称粗调节器,移动时可使镜台作快

速和较大辐度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。 照明部分 装在镜台下方,包括反光镜,集光器。 反光镜:装在镜座上面,可向任意方向转动,它有平、凹两面,其作用是将光源光线反射到聚光器上,再经通光孔照明标本,凹面镜聚光作用强,适于光线较弱的时候使用,平面镜聚光作用弱,适于光线较强时使用。 集光器(聚光器)位于镜台下方的集光器架上,由聚光镜和光圈组成,其作用是把光线集中到所要观察的标本上。 聚光镜:由一片或数片透镜组成,起汇聚光线的作用,加强对标本的照明,并使光线射入物镜内,镜柱旁有一调节螺旋,转动它可升降聚光器,以调节视野中光亮度的强弱。 光学部分 目镜:装在镜筒的上端,通常备有2-3个,上面刻有5*、10*或15*符号以表示其放大倍数,一般装的是10*的目镜。 物镜:装在镜筒下端的旋转器上,一般有3-4个物镜,其中最短的刻有“10*”符号的为低倍镜,较长的刻有“40*”符号的为高倍镜,最长的刻有“100*”符号的为油镜,此外,在高倍镜和油镜上还常加有一圈不同颜色的线,以示区别。 在物镜上,还有镜口率(N.A.)的标志,它反应该镜头分辨力的大小,其数字越大,表示分辨率越高,各物镜的镜口率如下表:

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

光学显微镜标准操作规程

光学显微镜标准操作规程 1 目的 规范光学显微镜标准操作规程,确保光学显微镜正确使用。 2 授权操作人员 经培训并通过考核的微生物实验室工作人员。 3 原理 当被观察物体置于镜前的焦点稍远处时,物体反射的光线经物镜放大后成一倒立实像位于目镜前焦点附近,再经目镜放大呈倒立虚像位于观察者的明视距离(约250mm)处。 4 工作环境 相对湿度:10% ~ 85%;运行温度:15 ~ 30℃。 5 操作程序 5.1 准备:将光学显微镜放置在采光好的实验台上,避免振动。向上转动粗调螺旋至一定高度后,将载物片放于载物台上。 5.2 调焦与低倍镜观察:将10×低倍物镜对准镜筒,转动粗调螺旋使物镜下降到快接触标本处后,选择平面反光镜的角度,调整聚光器的上下高度和光栅大小,使目视亮度适宜,再用细调螺旋上下调节焦点,使物像清晰。 5.3 高倍镜观察:转换40×高倍镜对准镜筒,一般不需重新调焦,仅调节细螺旋即可看到清晰物像。 5.4 油镜观察:于革兰氏染色处滴加香柏油一小滴,将玻片放在载物台上。使油镜头(100×)对准镜筒,转动粗调螺旋使之降至与玻

片轻轻接触。然后升高聚光镜使其与载物台平齐,将光栅放至最大,选择凹面反光镜调节角度,使射入光线最强。再转动粗调螺旋使物镜上升,待见到标本中物像后,调节细调螺旋使物像清晰,对标本进行顺序观察。 5.5 收镜:显微镜使用完毕,取下载物片,用擦镜纸将油镜头揩干净(必要是可滴一滴清洁液于擦镜纸上)。用绸布擦拭镜身,将物镜转成“八”字形,镜筒、聚光器下降至最低处,反光镜放水平位,以右手握镜臂,左手托镜座,轻轻放入显微镜箱内。 6 维护及保养 光学系统清洁,一般情况下可用洗耳球吹气、小毛刷刷除仪器表面的灰尘。当光学系统有污染时,可用擦镜纸蘸清洁液擦拭,如被尿、便等污染时可用棉签蘸1%氨水擦拭污染区。 7 应急处理 出现不能解决的故障,应及时联系维修人员并通知微生物负责人。 8 注意事项 8.1 要培养良好的操作习惯,使用螺旋时要注意,当对焦时以转动粗调螺旋为主,尽量少用细调螺旋,以延长机械系统的寿命。在转换高倍镜,特别是油镜观察时,切记粗调螺旋只能将镜头上移而不能下移,以免压碎载物片,碰坏镜头。 8.2 显微镜存放的环境条件应防震、防潮、防尘、防日晒、防温差过大。

光学显微镜的使用步骤和维护保养

光学显微镜的使用步骤和维护保养 一、操作步骤和注意事项 (一)正置显微镜 1、安放右手握住镜臂,左手托住镜座,使镜体保持直立。桌面要清洁、平稳,要选择临窗或光线充足的地方。单筒的一般放在左侧,距离桌边3~4厘米处。 2、清洁检查显微镜是否有毛病,是否清洁,镜身机械部分可用干净软布擦拭。透镜要用擦镜纸擦拭,如有胶或粘污,可用少量二甲苯清洁之。 3、对光镜筒升至距载物台1~2厘米处,低倍镜对准通光孔。调节光圈和反光镜,光线强时用平面镜,光线弱时用凹面镜,反光镜要用双手转动。若使用的为带有光源的显微镜,可省去次步骤,但需要调节光亮度的旋钮。 4、安装标本将玻片放在载物台上,注意有盖玻片的一面一定朝上。用弹簧夹将玻片固定,转动平台移动器的旋钮,使要观察的材料对准通光孔中央。 5、调焦调焦时,先旋转粗调焦旋钮慢慢降低镜筒,并从侧面仔细观察,直到物镜贴近玻片标本,然后左眼自目镜观察,左手旋转粗调焦旋钮抬升镜筒,直到看清标本物像时停止,再用细调焦旋钮回调清晰。操作注意:不应在高倍镜下直接调焦;镜筒下降时,应从侧面观察镜筒和标本间的间距;要了解物距的临界值。若使用双筒显微镜,如观察者双眼视度有差异,可靠视度调节圈调节。另外双筒可相对平移以适应操作者两眼间距。 6、观察若使用单筒显微镜,两眼自然张开,左眼观察标本,右眼观察记录及绘图,同时左手调节焦距,使物象清晰并移动标本视野。右手记录、绘图。镜检时应将标本按一定方向移动视野,直至整个标本观察完毕,以便不漏检,不重复。光强的调节:一般情况下,染色标本光线宜强,无色或未染色标本光线宜弱;低倍镜观察光线宜弱,高倍镜观察光线宜强。除调节反光镜或光源灯以外,虹彩光圈的调节也十分重要。 (1)低倍镜观察观察任何标本时,都必须先使用低倍镜,因为其视野大,易发现目标和确定要观察的部位。 (2)高倍镜观察从低倍镜转至高倍时,只需略微调动细调焦旋钮,即可使物像清晰。使用高倍镜时切勿使用粗调焦旋钮,否则易压碎盖玻片并损伤镜头。转动物镜转换器时,不可用手指直接推转物镜,这样容易使物镜的光轴发生偏斜,转换器螺纹受力不均匀而破坏,最后导致转换器就会报废。(3)油镜的观察先用低倍镜及高倍镜将被检物体移至视野中央后,再换油镜观察。油镜观察前,应将显微镜亮度调整至最亮,光圈完全打开。使用油镜时,先在盖玻片上滴加一滴香柏油(镜油),然后降低镜筒并从侧面仔细观察,直到油镜浸入香柏油并贴近玻片标本,然后用目镜观察,并用细调焦旋钮抬升镜筒,直到看清标本的焦段时停止并调节清晰。香柏油滴加要适量。油镜使用完毕后一定要用擦镜纸沾取二甲苯擦去香柏油,并再用干的擦镜纸擦去多余二甲苯。 7、结束操作观察完毕,移去样品,扭转转换器,使镜头V字型偏于两旁,反光镜要竖立,降下镜筒,擦抹干净,并套上镜套。若使用的是带有光源的显微镜,需要调节亮度旋钮将光亮度调至最暗,再关闭电源按钮,以防止下次开机时瞬间过强电流烧坏光源灯。 (二)倒置显微镜倒置显微镜与正置显微镜的主要区别在于物镜位于载物台下方,这样有利于观察时在上方对样品进行一些实时操作。 倒置显微镜操作过程基本与双筒的正置显微镜相似,需注意以下几点:观察时可调节铰链式双目目镜至舒适的位置。组织培养液或水溅到载物台上、物镜上或显微镜镜架上可能会损伤设备。如果溅上后,应该立即从墙上插座拔下电源线,擦去溅出液或水。一定要轻柔转动光强调节钮,不要试图将旋钮转过终点位置。使用后一定要先将灯的强度调至最小再关电源。使用后要旋转三孔转换器,使物镜镜片置于载物台下侧,防止灰尘的沉降。 (三)实体显微镜又称体视显微镜或解剖显微镜。操作步骤基本和双筒正置显微镜类似:取用解剖镜时,移动需用双手,保持稳重。若需连镜箱搬动,应将镜箱锁好,同时镜箱的钥匙必须拔除。镜管上若有防尘罩,应取下并换上目镜及眼罩。将样品置于玻片上或蜡盘中再放到载物盘上待观察。拧开锁紧螺丝,把镜

实验一 普通光学显微镜的构造和使用

实验一普通光学显微镜的构造和使用 一、目的要求 1.掌握普通光学显微镜的基本构造、使用方法、保护要点。 2.掌握普通光学显微镜油浸系的原理。 3.使用油镜观察几种细菌的基本形态。 二、显微镜的基本构造 显微镜由机械装置和光学系统两大部分组成(图1-1)。 光学显微镜的构造(图1-1) 1. 物镜转换器 2. 接物镜 3.游标卡尺 4.载物台 5.聚光器 6. 彩虹光阑 7.光源 8. 镜座 9. 电源开关 10. 光源滑动变阻器 11. 粗调螺旋 12. 微调螺旋 13. 镜臂 14.镜筒 15.目镜 16.标本移动螺旋 1.机械装置 镜座(base)和镜臂(arm)镜座位于显微镜底部,呈马蹄形,它支持全镜。镜臂有固定式和活动式两种,活动式的镜臂可改变角度。镜臂支持镜筒。 镜筒(body tube)是由金属制成的圆筒,上接目镜,下接转换器。镜筒有单筒和双筒两种,单筒又可分为直立式和后倾式两种。而双筒则都是倾斜式的,倾斜式镜筒倾斜45°。双筒中的一个目镜有屈光度调节装置,以备在两眼视力不同的情况下调节使用。

转换器(no sepiece)为两个金属碟所合成的一个转盘,其上装3—4个物镜,可使每个物镜通过镜筒与目镜构成一个放大系统。 载物台(stage)又称镜台,为方形或圆形的盘,用以载放被检物体,中心有一个通光孔。在载物台上有的装有两个金属压夹称标本夹,用以固定标本;有的装有标本推动器,将标本固定后,能向前后左右推动。有的推动器上还有刻度,能确定标本的位置,便于找到变换的视野。 调焦装置是调节物镜和标本间距离的机件,有粗动螺旋(coarse adjustment)即粗调节器和微动螺旋(fine adjustment)即细调节器,利用它们使镜筒或镜台上下移动,当物体在物镜和目镜焦点上时,则得到清晰的图像。2.光学系统 物镜(objective)物镜安装在镜筒下端的转换器上,因接近被观察的物体,故又称接物镜。其作用是将物体作第一次放大,是决定成像质量和分辨能力的重要部件。物镜上通常标有数值孔径、放大倍数、镜筒长度、焦距等主要参数。如:NA0.30;10×;160/0.17;16mm。其中“NA0.30”表示数值孔径(numerical aperture,简写为NA),“10×”表示放大倍数,“160/0.17”分别表示镜筒长度和所需盖玻片厚度(mm),16mm表示焦距。 目镜(ocular lens)装于镜筒上端,由两块透镜组成。镜把物镜造成的像再次放大,不增加分辨力,上面一般标有7×、10×、15×等放大倍数,可根据需要选用。一般可按与物镜放大倍数的乘积为物镜数值孔径的500—700倍,最大也不能超过1000倍的选择。目镜的放大倍数过大,反而影响观察效果。 聚光器(condenser)光源射出的光线通过聚光器汇聚成光锥照射标本,增强照明度和造成适宜的光锥角度,提高物镜的分辨力。聚光器由聚光镜和虹彩光圈(iris diaphragm)组成,聚光镜由透镜组成,其数值孔径可大于1,当使用大于1的聚光镜时,需在聚光镜和载玻片之间加香柏油,否则只能达到1.0。虹彩光圈由簿金属片组成,中心形成圆孔,推动把手可随意调整透进光的强弱。调节聚光镜的高度和虹彩光圈的大小,可得到适当的光照和清晰的图像。 光源(light source)较新式的显微镜其光源通常是安装在显微镜的镜座内,通过按钮开关来控制;老式的显微镜大多是采用附着在镜臂上的反光镜,反光镜是一个两面镜子,一面是平面,另一面是凹面。在使用低倍和高倍镜观察时,用平面反光镜;使用油镜或光线弱时可用凹面反光镜。 滤光片(filter)可见光是各种颜色的光组成的,不同颜色的光线波长不同。如只需某一波长的光线时,就要用滤光片。选用适当的滤光片,可以提高分辨力,增加影像的反差和清晰度。滤光片有紫、青、蓝、绿、黄、橙、红等各种颜色的,分别透过不同波长的可见光,可根据标本本身的颜色,在聚光器下加相应的滤光片。 三、油镜物镜的基本原理 微生物学研究用的显微镜的物镜通常有低倍物镜(16mm,10×)、高倍物镜(4mm,40—45×)和油镜(1.8 mm,95—100×)三种。油镜通常标有黑圈或红圈,也有的以“OI(oil immer-sion)字样表示,它是三者中放大倍数最大的。根据使用不同放大倍数的目镜,可使被检物体放大1000—2 000多倍。从图Ⅲ-3中可看出油镜的焦距和工作距离(标本在焦点上看得最清晰时,物镜与样品之间的距离)最短,光圈则开得最大,因此,在使用油镜观察时,镜头离标本十分近,需特别小心。

光学显微镜的工作原理

光学显微镜的工作原理 显微镜就是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们瞧到了过去瞧不到的许多微小生物与构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏就是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜与聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片与载玻片等。 (一)、物镜 物镜就是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜与浸液物镜;其中浸液物镜又可分为水浸物镜与油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)与复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径与工作距离。 ①、放大倍数就是指眼睛瞧到像的大小与对应标本大小的比值。它指的就是长度的比值而不就是面积的比值。例:放大倍数为100×,指的就是长度就是1μm的标本,放大后像的长度就是100μm,要就是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜与目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,就是物镜与聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0、05-0、95,油浸物镜(香柏油)的数值孔径为1、25。 ③、工作距离就是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物

光学显微镜的发展历史

杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 ' 1 f

'2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1 '120202β?=≤f y 显微镜的分辨率和有效放大率 光学仪器分辨率 瑞利判据:两个相邻的“点”光源所成的像是两个衍射斑,若两个等光强的非相干点像之间的间隔等于艾里圆的半径,即一个像斑的中心恰好落在另一个像斑的第一暗环处,则这两个点就是可分辨的点。当物面在无穷远时,以两点对光学系统的张角可表示两分辨点的距离,其值为:

实验三-普通光学显微镜的使用方法及细菌的革兰氏染色法

实验三-普通光学显微镜的使用方法及细菌的革兰氏染色法

实验三普通光学显微镜的使用及细菌的简单染色、革兰氏染色法 生科15.2 周罡201500181104 【实验目的】 1.复习光学显微镜的结构、各部分的功能和使用方法。 2.学习并掌握油镜的原理和使用方法。 3.掌握利用显微镜观察不同微生物的基本技能,了解球菌、杆菌、放线菌、酵母、真菌在光学显微镜下的基本形态特征。 4.学习并掌握微生物的制片及简单染色的基本要求。 5.学习并掌握革兰氏染色法。 6.了解革兰氏染色原理。 7.巩固显微镜操作技术及无菌操作技术。【实验原理】 (一)普通显微镜的基本原理 1.基本原理 现代普通光学显 微镜利用目镜和物镜 两组透镜系统来昂达 成像,故又称为复式显 微镜。它们包括机械部

分和光学部分两部分。机械部分包括镜座、镜臂、镜筒、载物台、物镜转换器、粗调节螺旋、细调节螺旋、标本夹等。光学部分包括接目镜、接物镜、反光镜、光圈(虹采)、聚光镜(集光器)等。 显微镜的放大效能(分辨率)是由所用光波长短和物镜数值口径决定,缩短使用的光波波长或增加数值口径可以提高分辨率,可见光的光波幅度比较窄,紫外光波长短可以提高分辨率,但不能用肉眼直接观察。所以利用减小光波长来提高光学显微镜分辨率是有限的,提高数值口径是提高分辨率的理想措施。要增加数值口径,可以提高介质折射率,当空气为介质时折射率为1,而香柏油的折射率为1.51,和载片玻璃的折射率(1.52)相近,这样光线可以不发生折射而直接通过载片、香柏油进入物镜,从而提高分辨率。显微镜总的放大倍数是目镜和物镜放大倍数的 乘积,而物镜的放大倍数越高,分辨率越高。 2.油镜微生物学使用的显微镜的物镜通 常有低倍镜(10×)、高倍镜(40×)和油镜(100×),油镜是三者中放大倍数最大的,油镜的焦距和工作距离最短,油镜与其他物镜不同的是载玻片与

零基础光学显微镜使用方法

零基础光学显微镜使用方法 编撰:杨历佳 我在本文中主要介绍的内容有:光学显微镜的组成、各部件的作用和原理、具体的操作方法及注意事项、保养和清洁。 普通光学显微镜按物镜放大倍数可以分10倍、40倍和100倍等。根据微生物等样本的大小,选择不同的放大倍数。例如要观察真菌(如酵母菌等)10×10就可以看的很清楚;如果要观察细菌的话至少要用到10×40;想要看的更为清楚就要用100倍的油镜来看,使用油镜时需要滴加香柏油。一般的镜检用400倍(10×40)基本上就足够了。 光学显微镜的组成结构 光学显微镜主要包括:物镜、目镜、反光镜、粗/细准焦螺旋、遮光器、盖玻片和载玻片等部件。如图:

1、物镜: 显微镜的放大作用主要取决于物镜,是显微镜最重要的光学部件,利用光线使被检物体第一次成像。物镜质量的好坏直接影响显微镜映像质量,它是决定显微镜的分辨率和成像清晰程度的主要部件。所以对物镜的质量和校正很重要,它是衡量一台显微镜质量的首要标准。 物镜刻有“10×”符号的为低倍镜,刻有“40×”符号的为高倍镜,刻有“100×”符号的为油镜。 以40×物镜为例,物镜上的数字分别为:40/0.65和160(∞)/0.17 (1)40表示物镜的放大倍数:放大倍数是指眼睛看到的像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后,像的长度是100μm。要是以面积计算,则放大了10,000倍。显微镜的总放大倍数等于物镜和目镜放大倍数的乘积; (2)0.65为数值孔径(mm),数值孔径越大,样本观察的分辨率和放大率越大,视场宽度与工作距离越小。 数值孔径的定义是:物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。 (3)160为镜筒长度(mm),∞指无穷大。机械镜筒长(镜筒长度)是指从物镜的安装定位处到显微镜镜筒上端面的距离,标准定为160mm; (4)0.17为所需盖玻片的标准厚度单位(mm); 工作距离(物距): 样本调准焦点时,物镜前端与试样或盖玻片顶面的距离。 10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm。

光学显微镜的工作原理

光学显微镜的工作原理 显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。 (一)、物镜 物镜是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径和工作距离。 ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。

普通光学显微镜的使用单染色及革兰氏染色

【实验题目】 普通光学显微镜的使用,单染色及革兰氏染色 【实验目的】 1. 学习并掌握显微镜的结构功能和使用。 2.学习微生物涂片、染色的基本技术。 3.学习掌握革兰氏染色法。 4.初步认识细菌的显微形态。 【实验器材】 1、菌种: 金黄色葡萄球菌(G+)、大肠杆菌(G-)、枯草芽孢杆菌以及自选菌种两种 2、溶液和试剂: a) 草酸铵结晶紫染液、番红复染液等各种染料以及碘液、95%乙醇、无菌水等 b) 香柏油、二甲苯 3、仪器及其它用品: 普通光学显微镜、擦镜纸、绸布、酒精灯、载玻片、接种针、培养皿等 【实验原理】 A、普通显微镜的基本原理 1、基本原理 现代普通光学显微镜利用目镜和 物镜两组透镜系统来昂达成像,故又 称为复式显微镜。它们包括机械部分 和光学部分两部分。机械部分包括镜 座、镜臂、镜筒、载物台、物镜转换 器、粗调节螺旋、细调节螺旋、标本 夹等。光学部分包括接目镜、接物镜、 反光镜、光圈(虹采)、聚光镜(集 光器)等。 显微镜的放大效能(分辨率)是 由所用光波长短和物镜数值口径决 定,缩短使用的光波波长或增加数值 口径可以提高分辨率,可见光的光波 幅度比较窄,紫外光波长短可以提高分辨率,但不能用肉眼直接观察。所以利用减小光波长来提高光学显微镜分辨率是有限的,提高数值口径是提高分辨率的理想措施。要增加数值口径,可以提高介质折射率,当空气为介质时折射率为1,而香柏油的折射率为1.51,和载片玻璃的折射率(1.52)相近,这样光线可以不发生折射而直接通过载片、香柏油进入物镜,从而提高分辨率。显微镜总的放大倍数是目镜和物镜放大倍数的乘积,而物镜的放大倍数越高,分辨率越高。 2、油镜微生物学使用的显微镜的物镜通常有低倍镜(10×)、高倍镜(40×)和油镜(100×),油镜是三者中放大倍数最大的,油镜的焦距和工作距离最短,油镜与其他物镜不同的是载玻片与物镜之间隔的不是一层空气(干燥系),而是一层油脂,称为“油浸系”。由于香柏油与玻璃的折光率相似(香柏油为1.515,玻璃为1.52)。镜检时,滴加香柏油的作用是使光源尽可能多的进入物镜中,避免光线通过折光率低的空气(折光率为1.0)而散失,因而能提高物镜的分辨率,使物像明亮清晰(见下图)

相关主题