搜档网
当前位置:搜档网 › 光电技术实验

光电技术实验

光电技术实验
光电技术实验

光电技术实验实验报告

目录

一、光源与光辐射度参数的测量(必做) (3)

二、PWM调光控实验 (5)

三、LED色温控制实验 (8)

四、光敏电阻伏安特性实验 (11)

五、线阵CCD驱动电路及特性测试(必做) (13)

六、相关器的研究及其主要参数的测量(必做) (15)

七、多点信号平均器(必做) (19)

八、考试内容 (23)

实验一 光源与光度辐射度参数的测量

一、实验目的

1.熟悉进行光电实验过程中所用数字仪表使用方法

2.了解LED 发光二极管

3.研究影响LED 光照度的参数

二、实验仪器

光电综合实验平台主机系统 1 台、发白光的 LED 平行光源(远心照明光源)及其夹持装置各 1 个

三、实验原理

(1)LED 发光原理:LED 发光二极管为 PN 结在正向偏置下发光的特性。有些材料构成的 PN 结在正向电场的作用下,电子与空穴在扩散过程中要产生复合。复合过程中电子从高能级的“导带”跌落至低能级的“价带”, 电子在跌落过程中若以辐射的形式释放出多余的能量,则将产生发光或发辐射的现象。并且,可以通过控制电流来控制(或调整)发光二极管的亮度,即可以通过改变发光管的电流改变投射到探测器表面上的照度,这就是 LED 光源具有的易调整性。

(2)光度参数与辐射度参数:光源发出的光或物体反射光的能量计算通常是用“通量”、“强度”、“出射度”和“亮度”等参数,而对于探测器而言,常用“照度”参数。辐照度或光照度均为单位探测器表面所接收的辐射通量或光通量。即

)/(2m W S

e

Ee φ=

或 )(lx S

v

Ev φ=

式中S 为探测器面积。

(3)点光源照度与发光强度的关系:各向同性的点光源发出的光所产生的照度与发光强度 I v 成正比,与方向角的余弦(COS φ)成正比,与距离光源的距离平方(l^2)成反比,即

)(cos 2

lx l

Iv Ev φ

=

四、实验内容

(1)安装LED 发光装置与照度探测器装置,并在电路中接入电流表、限流电阻和可调电阻测量发光LED 的电流。

(2)测量发光管未点亮时的暗背景照度。

(3)测量同一距离、同一LED 的照度值随电流变化的情况。记录实验数据。 (4)调节LED 与照度探测器间的距离,重复步骤(3)。记录实验数据。 (5)更换不同的LED ,重复步骤(3)和(4)。

(6)测量遮罩时红光LED 的照度值和与探测器间距的关系,实验步骤类似,注意保持LED 电流不变。记录实验数据。 (7)关机结束实验。

五、数据处理

(1)测量不同距离、不同LED 光照度参数的测量 背景光强:Evb=7.35×10 Lx

白光蓝光

红光E-l

(2)测量蓝光LED在盖上遮罩时照度与距离的关系

六、分析

(1)不同色光中,在同等条件下,白光LED的照度值最大,这是由于白光中包含最多频率的光,其余色光的LED,波长越短,照度越强。

(2)同一色光LED,在距离不变的情况下,流过LED的电流越大,照度值越强。

(3)同一色光LED,在电流不变的情况下,距离探测器越远,照度值越弱。

实验二 PWM调光控制实验

引言

随着LED背光的节能、环保、高性能等优势的凸显,LCD屏的背光逐渐从CCFL向LED 切换,目前公司的液晶屏也逐渐从CCFL背光得型号向LED背光的型号切换。两种背光的模式最大的不同在于驱动方式,CCFL背光的屏的背光驱动需要逆变器提供高压,而LED背光的驱动方式相对简单,只需要恒定的低压直流电源即可。但是无论是逆变器也好,还是LED 背光驱动电路也好,都会用到一种PWM调光技术,对背光的亮度大小进行调节。这里学习一下关于LED的PWM调节。

一、实验目的

了解LED 亮度调节的原理和方法

二、实验仪器

LED 智能控制实验箱一台、示波器一台。

三、实验原理

LED 调光是指通过调光器调节LED 的亮度,达到节能、环保、舒适等效果。调光器的原理有波宽控制调光(Pulse Width Modulation,简称PWM),模拟调光。模拟调光,指用模拟线性技术调整电流的大小,只是简单的改变LED 串的DC 电流。模拟调光尽管实现简单,不会引入潜在EMC,但是由于LED 的发光特性随着平均驱动电流而偏移,对于单色LED 来说,其主波长会改变。对白光LED 来说,其相关颜色温度(CCT)会改变。对于人眼来说,很难察觉到红、绿或蓝LED 中几纳米波长的变化,特别是在光强也在变化的时候。但是白光的颜色温度变化是很容易检测的。同时模拟调光还面临输出电流精度的问题,而这种精细控制在RGB 应用中特别重要。另外在对比度、能耗等方面PWM 调光同样具有优势,因此在大多数设计中仍然使用PWM 数字调光。

脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换及LED照明等许多领域中。

通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。

简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。

下面介绍一下PWM 的三个基本参数:

1、脉冲宽度变化幅度(最小值/最大值)

2、脉冲周期(1 秒内脉冲频率个数的倒数)

3、电压高度(例如:0V-5V)

可见我们只需要提供宽/窄不同(占空比高/低)的数字式脉冲,即可简单地实现改变输出

电流,从而调节LED 的亮度。

四、实验内容

(1)打开LED 智能控制实验箱,接通12V/2A 电源,依次打开电源开关;检查各模块是否正常工作,两个黄色按键(触动式按键开关)用来控制LED 的亮暗,即PWM 调光。如图2.1 所示;

(2)依次按下“红色”、“绿色”、“蓝色”、“白色”四个按钮,相对应LED 灯及工作指示灯熄灭;

(3)选择某一颜色的LED 灯,单击对应的按键,使其点亮工作;

(4)按动黄色的“暗”、“亮”按键,观察LED 灯明亮的变化,理解PWM调光的过程;

(5)此时,用示波器测量不同通道与不同亮度下的PWM波形,计算占空比,填入表格;

(6) 关闭该LED 灯,按照上述步骤,依次尝试其他光源的明亮变化过程。

五、数据处理

红色LED 亮度变化,依次暗、微亮、亮、明亮、刺眼亮下PWM的占空比

波形截图占空比

六、思考题

a.结合实验过程和实际情况简述PWM 调光的方法和原理。

以LED显示器为例,我们知道显示器是可以调节亮度的,那么这种变化是如何实现的呢?原理是这样的,显示器需要调节LED发光的亮度,通过电流来调节亮度太过复杂,为了节约成本,对于屏幕亮度的调节,行业里会采用闪烁的方式来解决。LED光源的亮度是一定的,让LED光源不断的开启和关闭,通过调节开启时间和关闭时间的长短,来调节屏幕的亮度。

具体的过程是这样的,比如LED背光闪烁1000次,其中500次开启和500次关闭,如果开启的时间停顿1秒,关闭的时间停顿0.5秒,这时的屏幕亮度就要比开启和关闭停顿时间一样的背光系统强。这样用户在调节屏幕亮度的时候,实际上亮度的明暗得益于LED背光闪烁的变化。

在实际的产品中,LED背光这种明暗时间的转变速度非常的快,采用PWM调光的普通大众显示器其工作频率一般在200Hz-1000Hz左右,而人眼在频率达到100Hz的时候就已经难以察觉明显的明暗变化了,因为人眼感知亮度的过程是积累的,在闪烁的速度足够快的时候,人眼看到的画面是“常亮”的。

实验三 LED 色温控制实验

引言

LED 产品中,一项重要的规格数字就是色温,这关系到LED 灯光照明产品所显示的颜色特性,一般的灯具也都有色温的规格。研究表明,色温作为评价照明光源的重要指标,对人的心理健康和生理健康,尤其是长时间处于一定照明环境中,具有十分重要的影响。

一、实验目的

1.了解 LED 色温实现连续控制的原理和方法

2.理解色温、相关色温的概念,主观感觉色温的变化对人体的影响

二、实验仪器

LED 智能控制实验箱一台、数字光谱仪一套

三、实验原理

如果人体眼睛受到外界光的刺激,人就会产生特定的主观感受,这个感受被称为颜 色。表述光源颜色的方法有很多种,用“色温”的概念表述热辐射光源的颜色是一种准 确而简单的方法。作为描述光源和其他物体的光度特性的重要物理量,光源的色温是通 过对比其色彩和理论的热黑体辐射(简称黑体,在任何温度下对任何波长的辐射能的吸 收率都等于 1 的物体,是一种理想的模型,也叫完全辐射)来确定的。

热辐射发射光源的光谱是连续而光滑的。对黑体而言,温度不同,颜色也不一样。 黑体发光的颜色与温度存在唯一的对应关系。色温是颜色温度的简称,在表述某光源的 颜色时,常常把该光源的颜色与黑体发光的颜色进行比较。色温是以绝对温度 K (开尔 文)为单位表示的,以黑体辐射的 0K=-273℃为起点,加热黑体。随着温度的升高,黑 体辐射便进入可见光领域,依次由深红-浅红-橙黄-白-蓝逐渐变化。当某一光源与黑体 的颜色相同时,我们将黑体的绝对温度表示为该实际光源的色温。例如,在 3000K 时, 灯泡的发光颜色与黑体的发射光相同,我们便称灯泡的色温是 3000K 。 黑体发射光的相对光谱功率分布由普朗克定律给出:

()

1

/511),(2---=T c e c T P λλλ

(1)

四、实验内容

(1)依次打开电源。

(2)选择四色 LED 的某一颜色(红色)LED 光源,使其点亮工作。

(3) 将光谱仪与电脑连接,运行光盘中对应软件,根据提示完成安装,并在桌面生成“SpectraSmart ”快捷方式。双击打开采集软件,请从程序主选单中选择“ 量测”,再进一步选择“ 色彩量测”,即打开“量测选择界面”,选择“ 光源色彩测量- 绝对测量”之后点击“下一步”,如图 1-1;打开“设定色彩量测参数”界面,观测角度和参考光源可选择默认的 2 度和 A 光源;然后点击“下一步”进入“参数设定”界面, 为得到最佳量测效果,请先选择“ 自动设置”,程序会自动将曝光时间调整为最佳曝光时间;点击“下一步”进入参考光谱采集界面,选择 ,将现在量测到的光源储存为参考光谱;点击“下一步”,进入“暗光谱获取”系统,可以使用预设暗光谱。

(4) 点击“下一步”进入“光源光谱测量”界面,整个采集界有三个显示区域,一

是光源光谱显示,一是色彩信息,一是 CIE 色度图。在色彩信息里面我们可以获取的参数有光谱分布、主波长、色坐标、三刺激值、色纯度。

(5) 按动黄色按键“亮”,使 LED 光源变亮,记录此时的照度值和色温值。

(6) 继续按黄色按键“亮”,直到亮度不再变化。分别记录下不同亮度时的照度值和

色温值。观察亮度与色温之间的关系,并画出照度与色温的变化曲线。

(7) 之后依次测量其他颜色(绿、蓝、白)的 LED 灯,验证第四步得到的结论。

五、数据处理

(1)绿光色彩信息与CIE色度图

(2) 蓝光色彩信息与CIE色度图

(3) 白光色彩信息与CIE色度图

六、思考题

a.结合实验过程和实际情况简述实现色温连续控制的方法和原理。

答:要实现连续色温的调控,则三基色照明系统需具有足够多级的亮度调节功能,目前最常用的有两种方式进行灰度调制: 一是脉冲宽度调制(PWM),即在一个时钟周期内控制流过器件电流的时间长短来调节灰度; 二是脉冲幅度调制(PAM),即控制器件两端电压幅度大小来调节灰度。

实验五光敏电阻伏安特性实验

一、实验目的

认识并学习光敏电阻,掌握光敏电阻的基本工作原理

二、实验仪器

(1)GDS-Ⅲ(或Ⅳ)型光电综合实验平台 1 台

(2)LED 光源 1 个

(3)光敏电阻 1 个

(4)通用光电器件实验装置 2 只

(5)通用磁性表座 2 只

(6)光电器件支杆 2 只

(7)连接线 20 条

(8)40MHz 示波器探头 2 条

三、实验原理

某些物质吸收了光子的能量后,产生本征吸收或杂质吸收,从而改变了物质电导率的现

象称为物质的光电导效应。利用具有光电导效应的材料(如硅、锗等本征半导体与杂质半导体,硫化镉、硒化镉、氧化铅等)可以制成电导(或电阻)随入射光度量变化器件,称为光电导器件或光敏电阻。当光敏电阻受到光的照射时,其材料的电导率发生变化,表现出阻值的变化。光照越强,它的电阻值越低。

四、实验内容

(1)测量光敏电阻暗电阻安装光敏电阻装置,在电路中接入不同阻值的电阻进行多次测量,接入电压表测量暗电阻电压。注意测量暗电阻时要已知保持遮光盖盖上的状态。记录实验数据。

(2)测量光敏电阻亮电阻,安装LED发光装置并与光敏电阻对接。在电路中给LED接入电流表,给光敏电阻接入电压表和电流表,改变LED的电流,测量不同光照下光敏电阻的阻值。记录实验数据。

(3)测量光敏电阻伏安特性,按照如下电路图搭建实验电路。

在实验软件中,调整采样频率设置,在示波器界面观察到符合要求的方波与锯齿波曲线后,在主界面选择数据采集即可出现光敏电阻的伏安特性曲线。

五、数据处理

(1)光敏电阻暗电阻的测量

Rd=(318.672+348.297+402.131)/3 kΩ=356.367kΩ

(3)光敏电阻伏安特性的测量

使用软件测量所得光敏电阻伏安特性曲线如下

实验七线阵CCD驱动电路及特性测试一、实验目的

1.掌握用刷双踪示波器观测二相线阵CCD驱动器各相驱动脉冲的频率、周期、幅度和相位关系的方法。

2.通过测量CCD驱动脉冲之间的相位关系,掌握二级线阵CCD的基本工作原理。

3.通过测量典型线阵CCD的输出信号与驱动脉冲的相位关系,掌握CCD的基本特征。

4.掌握线性CCD的驱动脉冲波形,积分时间和输出信号波形的关系。

二、实验仪器

线阵CCD、示波器

三、实验原理

通过时序关系测量

四、实验内容

现有示波器的Y1、Y2观察φ1和φ2,注意其位相关系,记录φ1及φ2波形,测量其频率

(1)观察记录φ1、φ2的波形

(2)观察记录φ1、φr的波形

(3)观察记录φr、SP的波形

(4)观察记录φ1、U0的波形

(5)观察记录φSH、U0’的波形

(6)观察记录φC、U0’的波形

五、数据处理

(1) (2)

(3) (4)

(5)

(6)

六、分析

通过测量CCD 可以看到各项之间的相位,周期等的关系,与理论时序图相比较,符合情况,对线性CCD 有了更深入的了解。

实验八、相关器的研究及其主要参数测量

一、实验目的

1.了解相关器的原理

2.测量相关器的输出特性

3.测量相关器的抑制干扰能力和抑制白噪声能力

二、实验仪器

相关器实验台、示波器

三、实验原理

1.相关检测

微弱信号检测的基础是被测信号在时间轴上具有前后相关性的特点,所谓相关,是指两个函数间有一定的关系。如果它们之间的乘积对时间求平均(积分)为零,则表明这两个函数不相关(彼此独立);如不为零,则表明两者相关。相关的概念按两个函数的关系又可分为自相关和互相关两种。由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。

2.相关器

通常相关器由乘法器和积分器构成。乘法器有两种:一种是模拟乘法器;另一种是开关式乘法器,常采用方波作参考信号,而积分器通常由RC低通滤波器构成。

模拟乘法器组成的相关器虽然简单,但它存在一系列缺陷,对参考信号的稳定性要求极高;对存在于待测信号和参考信号中的各高次谐波分量,以及低次谐波分量等,均有一定的响应;更严重的是,电路利用器件的非线形特性进行相乘运算,造成对输入信号中的各种分量及噪声进行检波而得到的直流输出,形成输出噪声,以致仍把微弱信号检出量淹没,基于上述原因,现行的设备中常采用开关式乘法器构成。

开关式乘法器,称为相敏检波器(简称PSD)。相关器由相敏检波器与低通滤波器组成。当非同步的干涉信号进入PSD后,由于与参考信号无固定的相位关系,得到如下图(d)的波形,经LPF积分平均后,其输出值为零,实现了对非同步信号的抑制。

理论上,由于噪声和信号不相关,通过相关检测器后应被抑制,但由于LPF的积分时间不可能无限大,实际上仍有噪声电平。

四、实验内容

1.相关器PSD 波形的观察及输出电压的测量

按上图先连接①,预热后调整信号源产生1KHz,200mV 的正弦波。调好后拆除①,再连接②。置相关器交流放大倍数×10,直流放大倍数×1,低通滤波器时间常数选择1S 档。用示波器接到相关器PSD 输出端,观察乘法器输出的波形;交直流噪声电压表换档开关拨到直流档,接到相关器的直流输出端,测量相关器的直流输出电压。当宽带相移器相位转换开关

拨到

=00时,调节其相移旋钮,使相关器直流输出电压达到正的最大,PSD 输出的波形如

全波整流输出的波形一样;说明连接正确。再将相移开关分别拨到=1800、900、2700

,记

录相位、直流输出电压、PSD 波形。 2. 相关器谐波响应的测量与观察

实验仪器同实验1相同,连接电路作一处变动,断开多功能信号源由正弦波输出插座输出到宽带相移器输入端的信号,多功能信号源1/N 输出插座连接到宽带相移器,此时,可以改变待测信号和参考信号的频率之比,使n =1、2、3、……。

先置分频数为1,按下宽带相移器相移零度开关,调节相移旋钮,使相关器输出的直流电压最大,观察示波器的波形相同于全波整流波形,说明相关器待测信号与参考信号频率相同,相位也相同,满足n =1的要求,记录输入信号、参考信号、PSD 信号、直流输出信号,画出各点波形。

改变分频数N 为2、3、4、5……,分别重复上述测量,记录数据和画出波形,并分析相关器谐波响应直流输出电压的特点。 3.对噪声的抑制及与等效噪声的带宽

完成相关器谐波响应的测量与观察后,紧接着将分频数置n=1、=0°,若PSD 波形不是全波整流波形,需要调节宽带相移器的微调旋钮使相位差为0,这样相关器的直流输出为最大,记下此直流电流值,将信号源的噪声调至最小,然后将信号源的噪声输出接相关器的噪声输入,逐渐增大噪声,发现示波器波形被噪声严重干扰,而交流、直流、噪声电压表显示相关器的直流电压起初并没有明显的变化,这是因为当噪声较小的情况下相关器抑制住了噪声,但是随着干扰噪声的增大,相关器的直流输出也由开始的不变、逐渐变小到迅速变化,这是因为相关器抑制噪声的能力有限,当干扰噪声足够大时相关器就抑制不住了。

在相关器

?

?

直流输出变化的过程中,自定一个发生跳变的临界值,例如输出电压的十位发生跳变,记下此时的信号电压和噪声电压(具体操作:信号源、白噪声的输出分别接交流、直流、噪声电压表的输入,测试档分别调至正弦、噪声档,一记录下Vs与VN值),并将两者进行比较,可以看出相关器的信噪比及相关器的抑噪能力。

五、数据处理

1.相关器PSD

2.

n=1 n=2

n=3 n=4

n=5 n=8

n=9

3.对噪声的抑制及与等效噪声的带宽

选择跳变临界值:0.48V

测得结果: Vs=2.12V Vn=8.45V

实验七、多点信号平均器

一、实验目的

1.了解多点信号平均器的原理

2.观察与测量多点信号平均器的输出特性

3.观察与测量多点信号平均器的抑制噪声能力

二、实验器材

微弱信号检测实验综合装置、示波器

三、实验原理

1.同步积累法

设信号周期为 ,把信号通路连接一个分配器的弧刷,分配器上的每一个触点接一个积累器,如图20-1。分配器的弧刷转一周的时间与信号重复周期相同并保持同步,这样信号通路被轮流接至每一个积累器,积累器积累信号。设积累器数目为n 个,则信号周期 被分割为n 个区,忽略弧刷切换触点的过渡时间,每个积累器连接信号通道的时间为:

n

T

t =

? ----------------------------------------------- (1) 由于分配器弧刷转一周时间同信号周期(保持同步),所以每次信号到来的那个时区,恰好都接在同一积累器上(如R),故称为同步积累。 只要信号重复次数足够多,就可以把淹没在强噪声中的微弱信号提取出来。重复次数越多,提出微弱信号能力越强。信号是周期性的,信号将按电压相加起来,输出信号正比于积累的次数 。

i

S So mV V = --------------------------------------------

(2)

对于噪声,由于是随机的,因此在积累m 次后,应按功率相加

2

2i N o N mV V =

-------------------------------------------- (3) 经过积累 次后的输出电压信噪比为

m V V V V Ni

Si No

So =

--------------------------------- (4) 可见, 次积累后电压信噪比提高了 倍,功率信噪比提高了 倍。原则上,不论输入信

噪比如何低,只要积累次数 足够大,总可以使输出信噪比达到要求的数值。 2.多点信号平均器组成

多点信号平均器是根据以上原理设计的信号处理装置,它采用电子电路构成弧刷分配器和积累器。对信号进行多个依次同步取样,分别积累到各个积累器,把每个周期的许多取样信号,依次一一对应相加求平均。取样点越多,复现波形精度越高。(采用数字存储器,常用1024个,采用模拟存储器,常用12 8个)。

模拟多点信号平均器用门积分电路作为积累器,门积分电路单元电路由电阻R ,周期脉冲开关,(场效应管或其它),电容C 组成。

用n 个门积分电路并联起来,并由控制系统产生门脉冲依次控制各个门的打开时间,同时控制依次同步输出,在电阻L R 上产生输出波形。

多点信号平均器框图:

四、实验内容

1.多点信号平均器的输出特性

按图所示连接。多功能信号源置“正弦波”输出,调节输出为频率1 KHz左右,输出电压为500 mV左右(用“频率计”、“交流,直流,噪声电压表”测量),“正弦波”输出接多点信号平均器的“信号输入”,“同频单位幅度方波”输出作为“参考信号”接宽带相移器的“输入”。把宽带相移器的“同相输出”信号输给多点信号平均器的“参考输入”。示波器的输入接多点信号平均器的“加法器输出”,输入接多点信号平均器的“输出”。(相位差可以不用测量)

多点信号平均器的“时间常数”置:0.2 s;“正常,比较”置:正常。

多点信号平均器参考输入的触发信号,相对于信号输入的延迟时间,由宽带相移器的相移

《典型光电成像器件电路设计》

《典型光电成像器件电路设计》 课程编号: 课程名称:典型光电成像器件电路设计——高压、选通电源设计 学分:1学时:1周 选修课程:模拟电子技术,电路原理 一、目的与任务 本课程目的是针对微光检测技术中常用的距离选通技术,设计适合像管供电的高压电源和带距离选通功能的电源,帮助测控技术与仪器、电子科学与技术(光电子方向)的学生掌握光电成像技术中供电电源的设计方法。 二、教学内容及学时分配 1.设计要求,高压电源和选通电源原理讲解(1天) 2.电源参数选择与仿真分析(1天) 3.硬件电路调试(2天) 4.实验结果验收(1天) 三、考核与成绩评定 考核:在1周的实验课中用1天时间进行2人一组的考核验收。 成绩根据3方面情况最终评定: 1.学生的实验操作情况 2.学生的实验报告完成情况 3.学生的实验出勤情况 成绩评定按百分制,验收考核占总成绩的40%,平时表现、实验报告占总成绩的40%,创新性占20%,60分为及格。 四、大纲说明 1.本大纲是根据我校电子科学与技术(光电子)、光电信息科学与工程、光电信息工程专业培养计划及其知识结构要求,并适当考虑专业特色而制定的。 2.在保证基本教学要求的前提下,教师可以根据实际情况,对内容进行适当的调整和删节。 3.本大纲适合光电类相关专业。 五、教材、参考书 选用教材:江月松.光电技术与实验[M].北京:北京理工大学出版社,2000.

参考书: [1]胡士凌,孔得人.光电电子技术[M].北京:北京理工大学出版社,1996. [2]童诗白,华成英.模拟电子技术基础(第三版)[M].北京:高等教育出版社出版社,2001. [3]白廷柱,金伟其.光电成像原理与技术[M].北京:北京理工大学出版社,2006. 编写教师:高昆 责任教授签字: 教学院长签字:

光电材料与器件实验指导书

《光电材料与器件》实验指导书 何宁编 桂林电子科技大学信息与通信学院 2008年12月

实验一光电池及LED光源特性测试 一.实验目的 1 理解光电池的光电转换机理及主要特性参数。 2 理解LED光源的电光转换机理、驱动方式及主要特性参数。 3 掌握两种器件的应用及参数的测试方法。 二.实验内容 1 测量光电池的开路电压、短路电流和伏安特性。 2 测量LED光源的驱动特性及电光转换效率。 三.实验原理 光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。 图1 光谱特性图2 光电特性 图1中硅光电池的光谱响应范围是波长4000?——12000?,在波长为8000?时达到峰值,而硒光电池的峰值出现在5000 ?左右,波长的范围是3800——7500?,1埃=0.1nm。 图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。经实验证明外负载越小线性度越好。 不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。太阳能辐射能量主要集中在1.3-32um的波长范围,表面温度近6000K的太阳能辐射出的能量95%以上的部分分布在波长小于2um的光谱范围。而对于温度为几百K的物体其辐

光电技术与实验

《光电技术》课程是光电信息科学与工程类专业(包括光信息科学与技术、电子信息科学与技术、电子科学与技术、信息工程、测控技术与仪器、光电信息工程和应用物理学)的专业基础必修课。是一门以光电子学为基础,将光学技术、现代微电子技术、精密机械及计算机技术紧密结合,成为获取光信息或借助光提取其他信息的重要手段。对培养光电信息科学与工程类人才的基本工程技术能力非常重要。 它将电子学中的许多基本概念与技术移植到光频段,解决光电信息系统中的工程技术问题。这一先进技术使人类能更有效地扩展自身的视觉能力,使视觉的长波延伸到亚毫米波,短波延伸紫外、X射线、射线,乃至高能粒子,并可在飞秒级记录超快现象的变化过程。光电技术在现代科技、经济、军事、文化、医学等领域发挥着极其重要的作用,以此为支撑的光电子产业是当今世界争相发展的支柱产业,是竞争激烈、发展最快的信息技术产业的主力军。光电技术迅速发展,半导体激光器、上千万像素的CCD与CMOS固体图像传感器、PIN与APD光电二级管及液晶显示等在工业与民用领域随处可见,热成像技术也已广泛应用于军事和工业领域。光电技术不断渗透到国民经济的各个方面,成为信息社会的支撑技术之一。该课程以基本物理理论为基础,讲解光电器件的工作原理及特性,使学生掌握应用这些光电器件的方法。在光电变换与信号处理中,以光电器件的应用为主导,课堂讲解与辅助作业相结合的形式,引导学生应用光电器件来解决光电变换与信号处理问题,使学生能够把握光电技术的总体框架,有兴趣、有信心地投入到创新活动实践中,培养学生独立思考的习惯和解决实际工程问题的能力。 在教育部高等学校光电信息科学与工程类专业指导性专业规范中,《光电技术与实验》是该类专业的专业基础必修课。因此,我校光信息科学与技术、电子信息科学与技术及电子科学与技术等专业自2000年起开设了《光电技术》课程并延续至今。我院的光信息科学与技术、电子信息科学与技术两个专业都开设了光电技术课程,内容主要是光电器件和红外,但在理论深度和范围上有所区别,光信息科学与技术专业由于开设了光学、半导体光电子学等课程,有良好的基础,因为课程的理论深度更深,涉及的光电技术领域也更广。此外,对于光信科和电信科两个专业,讲授内容方面各有侧重,对光信息专业,在光电器件方面讲授的内容多一些。 为适应新世纪人才培养,2004年学校对本科教学计划进行了较大的调整,为了适应新的改革形势,保证教学质量,我院将光电信息科学类课程整合作为一个重要教研项目进行立项研究,这次调整强调了光电技术课程的重要性,在“厚基础、宽口径”的培养战略指导下,搭建起以光电技术为核心的光信息平台,作为光信息科学与技术专业的专业必修课。光电技术课程理论课学时调整到40学时,实验部分单独设课,加强到24学时,强化了综合实验的内容,强调基本技能训练和学生综合能力的培养,并使学生的创新意识和动手能力得到训练和加强。同时为适应课程的改革需要,光电技术课程组自编了《光电信息技术实验》和《光电技术》部分讲义,实验教材中突出了与信息学科相关的光电技术知识以及光电器件在信息技术中的应用知识。目前光电信息技术实验作为开放性实验面向全校供相关专业选修。 近10年来,伴随着专业建设和发展,光电技术课程已发展成为拥有一支素质良好、勇于创新的教师队伍,先进的教学体系、教学方法和教学手段的重要基础课程,光电技术课程建设和发展将为培养面向二十一世纪的新型复合型人才做出更大的贡献。

《光电子技术实验》指导书

《光电子技术实验》指导书 北京航空航天大学 仪器科学与光电工程学院 2010年12月 实验规则及注意事项 由于本实验课所用设备属于高技术实验系统,许多组件价格昂贵,易于损坏,所以实验者在做实验前应该充分复习实验大纲上的内容,实验者在做实验时应注意以下几点事项: 1.操作光纤时应注意不能用力拉扯光纤,不能随意弯曲光纤。实验时不要用手碰动与实验无关的光纤部分。 2.实验调节电流时注意不要使工作电流超过限额。电流过大有可能损坏光源和光探测器以及其它有源器件。 3.不能直视光纤、激光器出射的光束! 4.调节光学微调架时要小心、轻力,严禁强力搬拧光学微调架。 目录 实验1:光源与光纤耦合调整及光纤损耗特性测量实验 (4) 实验2:光纤温度传感系统特性实验 (8) 实验一.光源与光纤耦合调整及光纤损耗特性测量实验 一.实验目的 (1)了解提高光源与光纤耦合效率的原理及方法。重点掌握光路调整及光纤处理的基本方法。

(2) 了解光纤损耗的定义,掌握光纤衰减的测试方法。 二. 实验原理 1. 光源与光纤耦合调整实验原理 (1) 直接耦合:这种方法将光纤的端面直接靠近光源的发光面,为了保证耦合 的效率,光纤的端面必须经过特殊处理,而且光纤端面与光源发光面的距离要尽可能的近。光源的发光面不应该大于纤芯的横截面面积,这是为了避免较大的耦合损耗。通常带尾纤的光源都使用这种耦合方式。这种耦合方法对光源耦合封装工艺技术要求较高。 (2) 使用透镜耦合:具体方法描述如下——将光源发出的光通过透镜聚焦到光 纤的纤芯上,可以使光源与光纤的耦合效率提高。具体原理见图1。 五维调节架五维调节架 图1.透镜耦合 (3) 利用五维调节架对光纤入端及出端进行位置调整,使输出功率达到最大。 (4) 耦合效率的计算(适合所有的耦合方法): 2 1P P ≡η 其中P 1为输出功率,P 2为输入功率。 2. 光纤损耗特性测量实验 光纤衰减是光纤中光功率减少量的一种度量,它取决于光纤的工作波长类型和长度,并受测量条件的影响。

光电显示技术实验讲义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。 图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。

为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别为3.7eV和3.2eV,合金阴极可以提高器件的量子效率和稳定性,同时能在有机膜上形成稳定坚固的金属薄膜。此外还有层状阴极和掺杂复合型电极。层状阴极由一层极薄的绝缘材料如LiF, Li2O,MgO,Al2O3等和外面一层较厚的Al组成,其电子注入性能较纯Al电极高,可得到更高的发光效率和更好的I-V特性曲线。掺杂复合型电极将掺杂有低功函数金属的有机层夹在阴极和有机发光层之间,可大大改善器件性能,其典型器件是ITO/NPD/AlQ/AlQ(Li)/Al,最大亮度可达30000Cd/m2,如无掺Li层器件,亮度为3400Cd/m2。 为提高空穴的注入效率,要求阳极的功函数尽可能高。作为显示器件还要求阳极透明,一般采用的有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃,常用ITO玻璃。 载流子输送层主要是空穴输送材料(HTM)和电子输运材料(ETM)。空穴输送材料(HTM)需要有高的热稳定性,与阳极形成小的势垒,能真空蒸镀形成无针孔薄膜。最常用的HTM均为芳香多胺类化合物,主要是三芳胺衍生物。TPD:N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺NPD: N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺。电子输运材料(ETM)要求有适当的电子输运能力,有好的成膜性和稳定性。ETM一般采用具有大的共扼平面的芳香族化合物如8-羟基喹啉铝(AlQ),1,2,4一三唑衍生物(1,2, 4-Triazoles,TAZ),PBD,Beq2,DPVBi等,它们同时又是好的发光材料。 OLED的发光材料应满足下列条件: 1)高量子效率的荧光特性,荧光光谱主要分布400-700nm可见光区域。 2)良好的半导体特性,即具有高的导电率,能传导电子或空穴或两者兼有。 3)好的成膜性,在几十纳米的薄层中不产生针孔。 4)良好的热稳定性。 按化合物的分子结构,有机发光材料一般分为两大类: 1) 高分子聚合物,分子量10000-100000,通常是导电共轭聚合物或半导体共轭聚合物,可用旋涂方法成膜,制作简单,成本低,但其纯度不易提高,在耐久性,亮度和颜色方面比小分子有机化合物差。 2) 小分子有机化合物,分子量为500-2000,能用真空蒸镀方法成膜,按分子结构又分为两类:有机小分子化合物和配合物。 有机小分子发光材料主要为有机染料,具有化学修饰性强,选择范围广,易于提纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发射峰等优点,但大多数有机染料在固态时存在浓度淬灭等问题,导致发射峰变宽或红移,所以一般将它们以低浓度方式掺杂在具有某种载流子性质的主体中,主体材料通常与ETM和HTM层采用相同的材料。掺杂的有机染料,应满足以下条件: a. 具有高的荧光量子效率 b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能量适配,从主体到染料能有效地能量传递; c. 红绿兰色的发射峰尽可能窄,以获得好的色纯;

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

最新光电显示技术实验讲义

光电显示技术实验讲 义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。

图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。 为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别

光电效应的应用

University 《近代物理实验》课程论文 光电效应的应用 学院: 专业: 学号: 学生姓名: 指导教师: 二〇一四年五月

光电效应的应用 1887年赫兹在做电磁波的发射与接收实验中,他发现当紫外光照射到接收电极的负极时,接收电极间更易于产生放电,即光生电。1900年普朗克在研究黑体辐射问题时,将能量不连续观点应用于光辐射,提出了“光量子”假说,从而给予了光电效应正确的理论解释。1905年爱因斯坦应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部实验结果。密立根经过十年左右艰苦的实验研究,于1916年发表论文证实了爱因斯坦方程的正确性,并精确地测定了普朗克常数。 光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。如今光电效应已经广泛地应用于现代科技及生产领域,利用光电效应制成的光电器件(如光电管、光电池、光电倍增管等)已广泛用于光电检测、光电控制、电视录像、信息采集和处理等多项现代技术中。 1.光控制电器 在工业制造上,大部分光电控制的设备都要用到光控制电器。它包括电磁继电器、光电管、放大电路和电源等部件。如下图所示,当有光照在光电管K上时,便产生了电流,经过放大器后,使电磁铁M磁化,从而把衔铁N吸住。而当K上没光照射时,光电管电路就没有了电流,这时M和N便会自动离开。在实际的应用中,为了使射出的光线是一束平行光,我们把光源装在平行光管内,这样的平行光管在工程上称为发射头。光电管(多数情况下是用光敏二极管)也装在一个光管内(管末端装有聚光透镜),这种管在工程上称为接受头。 利用光电管制成的光控制电器,可以用于自动控制,如自动计数、自动报警、自动跟踪等等。如记录生产线上的产品件数。我们把产品放在传送带上,跟着传送带一起运动。在传送带的两则分别装上发射头和接收头。发射头所发射的平行光正好射入接收头。这时从发射头发出的光线射入接收头时,电路中所产生的电流,经过放大器放大,使电磁铁M磁化,吸引衔铁N,这时计数器的齿轮被卡住,计数器不发生动作。每逢产品把光线挡住的时候,电路中的电流就会消失,电磁铁自动放开衔铁,使计数器的齿轮转过一齿。这样,计数就自 动地把产品的数目记录下来。]1[ 2.光电倍增管在电视图像中应用

光电综合实验

光电综合实验

课程名称及性质:光电技术综合实验必修课 英文名称:Comprehensive Optical Experiment 课程编号:110129 课程类别:实践教学环节 课程总学时:56 实验学时:56 开设学期:5、6、7 面向专业:电子科学与技术 一、课程的目的与任务 按照专业教学计划,本课程是在大学物理实验的基础上,按循序渐近的原则,学习并掌握光电技术实验的原理,基础仪器设备(包括基本光学仪器、光电子学仪器、光电转换仪器等)组成,它们的调整技术及使用方法,通过实验对光电技术基本的常用元器件(包括各种形式光源、光电探测器件、光学调制解调器件等)的特性及使用规范有初步的了解。选择一些设计性和工程应用性较强的(电路设计、纤维光学)实验,培养学生在光电技术方面的科学实验能力,提高学生的动手能力和科学研究能力。 二、实验教学的基本要求 第一阶段:要求了解掌握典型光学基础实验,重点掌握基本光学(物理光学、近代光学等)仪器的使用,(实验序号1-4),共16学时。 第二阶段:实验重点在光电探测技术与光电探测器性能测量实验方面,(实验序号5-15)选择24学时。 第三阶段:为提高学生的独立实验技能和解决实际问题的能力,选择一些有一定应用背景的光电类设计性实验(实验序号16-31)选择16学时。 三、实验项目、内容及学时分配 序实验项目提要学时分实验实验

号配类型地点 1 绪论及单色仪实验实验注意事项、安排与要求;通过 实验了解单色仪原理,利用单色仪 测量汞灯光源各个谱线的波长 4 验证 光电技术 综合实验 室 2 Michelson干涉的调节与 使用利用Michelson干涉仪测汞灯光 源绿光波长,了解双光束干涉的 特点 4 验证 光电技术 综合实验 室 3 声光效应实验调节并观察声光衍射实验曲线, 利用声光效应测定声光介质中超 声波速度。 4 验证 4 F—P干涉实验用F—P干涉仪测汞灯绿光波长, 观察钠灯双线F—P干涉花样,了 解多光束干涉的特点。 4 验证 5 可见光分光光度计实验分光光度计测液体的吸收特性 4 验证 6 电光效应电光调制 4 验证7 光电倍增管静态和时间 特性的测试 测试光电倍增管静态和时间特性 4 验证8 发光管(LED)的发射光谱 测量 测量发光二极管的发射光谱 4 验证 9 光导管光谱响应测量光导管光谱响应测量 4 验证 10 半导体泵浦激光实验半导体泵浦激光原理 4 验证 11 黑体测量实验黑体辐射测量 4 综合 12 单光子计数实验单光子计数测量实验 4 验证 13 多功能激光椭园偏振仪 实验 激光椭园偏振测量 4 验证 14 自动数显旋光仪实验旋光度测量 4 验证 15 硅光电池光谱特性测量硅光电池相对光谱响应的测量 4 验证 16 温度传感器及测量电路 设计 温度传感器元件应用8 设计

光电技术实验

光电技术实验实验报告

目录 一、光源与光辐射度参数的测量(必做) (3) 二、PWM调光控实验 (5) 三、LED色温控制实验 (8) 四、光敏电阻伏安特性实验 (11) 五、线阵CCD驱动电路及特性测试(必做) (13) 六、相关器的研究及其主要参数的测量(必做) (15) 七、多点信号平均器(必做) (19) 八、考试内容 (23)

实验一 光源与光度辐射度参数的测量 一、实验目的 1.熟悉进行光电实验过程中所用数字仪表使用方法 2.了解LED 发光二极管 3.研究影响LED 光照度的参数 二、实验仪器 光电综合实验平台主机系统 1 台、发白光的 LED 平行光源(远心照明光源)及其夹持装置各 1 个 三、实验原理 (1)LED 发光原理:LED 发光二极管为 PN 结在正向偏置下发光的特性。有些材料构成的 PN 结在正向电场的作用下,电子与空穴在扩散过程中要产生复合。复合过程中电子从高能级的“导带”跌落至低能级的“价带”, 电子在跌落过程中若以辐射的形式释放出多余的能量,则将产生发光或发辐射的现象。并且,可以通过控制电流来控制(或调整)发光二极管的亮度,即可以通过改变发光管的电流改变投射到探测器表面上的照度,这就是 LED 光源具有的易调整性。 (2)光度参数与辐射度参数:光源发出的光或物体反射光的能量计算通常是用“通量”、“强度”、“出射度”和“亮度”等参数,而对于探测器而言,常用“照度”参数。辐照度或光照度均为单位探测器表面所接收的辐射通量或光通量。即 )/(2m W S e Ee φ= 或 )(lx S v Ev φ= 式中S 为探测器面积。 (3)点光源照度与发光强度的关系:各向同性的点光源发出的光所产生的照度与发光强度 I v 成正比,与方向角的余弦(COS φ)成正比,与距离光源的距离平方(l^2)成反比,即 )(cos 2 lx l Iv Ev φ = 四、实验内容 (1)安装LED 发光装置与照度探测器装置,并在电路中接入电流表、限流电阻和可调电阻测量发光LED 的电流。 (2)测量发光管未点亮时的暗背景照度。 (3)测量同一距离、同一LED 的照度值随电流变化的情况。记录实验数据。 (4)调节LED 与照度探测器间的距离,重复步骤(3)。记录实验数据。 (5)更换不同的LED ,重复步骤(3)和(4)。 (6)测量遮罩时红光LED 的照度值和与探测器间距的关系,实验步骤类似,注意保持LED 电流不变。记录实验数据。 (7)关机结束实验。 五、数据处理 (1)测量不同距离、不同LED 光照度参数的测量 背景光强:Evb=7.35×10 Lx

生活中的光电系统实例

生活中的光电系统实例 ——《光电技术与实验》姓名:王泽颖学号:20080244 班级:01410801 光电产业的分类 关于光电产业的分类,目前没有统一的标准。根据国内外科技和产业界的一般看法,光电产业可划分为九类行业,即光电元器件、光电显示、光输入/输出、光存储、光通信、激光、光伏发电、半导体照明、光电周边产品(主要是光电产品专用制造设备等)。 北京光机电一体化产业基地 北京以位于通州区的北京经济技术开发区为主,建立光机电一体化产业基地。光机电一体化产业是北京市发展奥运经济的重点行业和主导产业之一,在加速推进建设光机电一体化基地的同时,重点发展数控机床及先进制造设备,激光加工设备;智能化仪器仪表及设备、机器人、印刷设备;新一代医用治疗诊断仪;和光电子器件;数码摄像机、数码投影机等;和微电子制造专用设备等。充分发挥京东方、清华紫光、联想和北大方正等一批知名企业的带动作用,尽快形成产业规模,满足国民经济和奥运会等体育赛事的需要。 生活中的光电系统应用实例——太阳能路灯 刚刚过去的这个暑假,因为每天要骑半小时车去北航那边学英语,所以路上有很多时间观察生活。在途中的一条比较宽敞,采光充足的马路上,有一列太阳能路灯。太阳能电池板几乎与正午时最强的光线垂直,以便采集到最多的光能。这便是光电转换的一个典型例子。太阳能路灯的主要原理是光伏发电。 光伏发电的工作原理 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是少受地域限制,因为阳光普照大地

光电信息技术实验

光电信息实验(二)学生姓名:代中雄 专业班级:光电1001 学生学号:U201013351 指导老师:黄鹰&陈晶田

实验一阿贝原则实验 一、实验目的 1.熟悉阿贝原则在光学测长仪中的应用。 二、基本原理 1.阿贝比较原则 万能工具显微镜结构及实物图所示。 万能工具显微镜的标准件轴线与被测件轴线不在一条直线上,而处于平行状况。产生的阿贝误差如下: 1=tan a δ? g 35 =(13215) a??? +++??? g a? ≈g 一阶误差,即阿贝误差 2.结论 1)只有当导轨存在不直度误差,且标准件与被测件轴线不重合才产生阿贝误差(一阶误差)。 2)阿贝误差按垂直面、水平面分别计算。 3)在违反阿贝原则时,测量长度为τ的工件所引起的阿贝误差是总阿贝误差的L τ。 4)为了避免产生阿贝误差,在测量长度时,标准件轴线应安置在被测件轴线的延长线上(阿贝原则)。

5)满足阿贝原则的系统,结构庞大。 3.阿贝测长仪 阿贝测长仪中,标准件轴线与被测件轴线为串联形式,无阿贝误差,为二阶误差,计算形式如下: 22=C ?δ 三、 实验内容 1. 万能工具显微镜进行测长实验 1)仪器:万能工具显微镜,精度:1微米。 用1元、5角、1角的硬币,分别测它们的直径,用数字式计量光栅读数及传统的目视法读数法。每个对象测8次,求算数平均值和均方根值。 2)实验步骤: 瞄准被测物体一端,在读数装置上读一数;瞄准被测物体另一端,在读数装置上再度一数(精度1微米);两次读数之差即为物体长度。 3)实验结果: 数据处理: 由8次测量结果可以算出硬币的平均直径,算数平均值: ()1 11.45311.45111.45611.45811.46411.43811.44511.4508 11.452D mm =?+++++++=

光纤光缆性能测试技术实验指导书

光纤光缆性能测试技术实验指导书 姚燕李春生 北京邮电大学机电工程实验教学中心 2006.5

实验一 数字发送单元指标测试实验 一、实验目的 1、了解数字光发端机输出光功率的指标要求 2、掌握数字光发端机输出光功率的测试方法 3、了解数字光发端机的消光比的指标要求 4、掌握数字光发端机的消光比的测试方法 二、实验内容 1、测试数字光发端机的输出光功率 2、测试数字光发端机的消光比 3、比较驱动电流的不同对输出光功率和消光比的影响 三、预备知识 1、输出光功率和消光比的概念 四、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、FC接口光功率计 1台 3、FC/PC-FC/PC单模光跳线 1根 4、万用表 1台 5、850nm光发端机(可选) 1个 6、ST/PC-FC/PC多模光跳线(可选) 1根 7、连接导线 20根 五、实验原理 光发送机是数字光纤通信系统中的三大组成部分(光发送机、光纤光缆、光接受机)之一。其功能是将电脉冲信号变换成光脉冲信号,并以数字光纤通信系统传输性能所要求的光脉冲信号波形从光源器件组件的尾纤发射出去。 光发送机的指标有如下几点: 1、输出光功率:输出光功率必须保持恒定,要求在环境温度变化或LD器件老化的过程中,其输出光功率保持不变,或者其变化幅度在数字光纤通信工程设计指标要求的范围内,以保证其数字光纤通信系统能长期正常稳定运行。 输出光功率是指给光发端机的数字驱动电路送入一伪随机二进制序列作为测试信号,用光功率计直接测试光发端机的光功率,此数值即为数字发送单元的输出光功率。 输出光功率测试连接如图1-1所示。 图1-1 输出光功率测试连接示意图 根据CCITT标准,信号源输出信号为表1-1所规定的要求。 表1-1 信号源输出信号要求 数字率(kbit/s) 伪随机测试信号 2048 215-1

光电技术实验指南

光电技术 实验指南 上实验课前务必仔细阅读本实验讲义

目录 前言……………………………………………………………………………………………错误!未定义书签。 目录 (3) 第一章产品说明书 (4) 第二章实验指南 (6) 实验一光电基础知识实验 (5) 实验二光敏电阻实验 (11) 实验三光敏二极管的特性实验 (15) 实验四光敏三极管特性实验 (19) 实验五光开关实验(透射式) (23) 实验六红外线光电开关 (25) 实验七光电池实验 (258) 实验八热释电红外传感器实验 (30) 实验九光源及光调制解调实验 (33) 实验十 PSD位置传感器实验 (36)

第一章CSY2000G光电传感器实验仪说明 CSY2000G光电传感器实验仪主要有主机箱、传感器装置、实验模板、实验桌四大部分组成 (一)主机箱:供电电源AC220V,50HZ。额定功率200W。 1、有实验所需的电源、压力源 0-12V连续可调直流稳压电源。 0-5V连续可调直流稳压电源。 ±15V、+12V、+5V稳压电源。 2、显示压力源:气压量程4-20KPa(通过调节玻璃转子流量计、旋钮、气压输出大小可调) 电流表:DC20μA-20mA(量程三档切换) 电压表:DC200mV-20V(量程三档切换) 光功率计:1999mW 光照度计:1999Lx 频率/转速表:f:0-9999Hz、n:0-9999 r/min 计时器(秒表):9999S 气压表:4-40 KPa 3、温控仪: PID位式调节仪:0-2000C (二)传感器装置 光学传感器由底座,升降支架、遮光筒、滑轨等组成,可卸式活动安装各种光电器件探头,光源等。 1、光敏器件及传感器 光敏电阻 光敏二极管 光敏三极管 红外光敏二极管(光接受)

互换性与测量技术实验指导书(2016-2017-1-32)课件

《互换性与技术测量实验》实验指导书 (2016-2017-1) 互换性与技术测量教研组编 机械工程学院 2016年08月 班级: 学号: 姓名:

目录 实验一长度测量 (3) 实验二表面粗糙度测量 (9) 实验三齿轮齿圈径向跳动的测量 (13)

实验一长度测量 一、实验目的 1.了解和掌握杠杆千分尺、和立式数显光学计的测量原理、主要结构及使用方法。 2.应用上述仪器检验光滑极限量规。 3.巩固尺寸公差的概念,学会由测得数据判断零件合格性的方法。 二、仪器结构及工作原理 1.杠杆千分尺 杠杆千分尺相当于外径千分尺与杠杆式卡规组合而成,其外形如图1-1(a)所示。它的工作原理与杠杆式卡规及千分尺相同。可以用作相对测量,也可以作绝对测量。杠杆式卡规的工作原理如图1-1(b)所示。 (a)(b) 图1-1杠杆式卡规的工作原理图 当测量杆1移动时,使杠杆2转动,在杠杆的另一端装有扇形齿轮,可使小齿轮3和装牢在小齿轮轴的指针4转动,在刻度盘5上便可读出示值。为了消除传动中的空程,装有游丝6。测量力由弹簧8产生。为了防止测量面磨损和测量方便,装有退让器9。 杠杆千分尺刻度值有0.001毫米和0.002毫米两种(现在使用的是前者),表盘的示值范围±0.02毫米,测量力是500-800克,测力变化不大于100克。 2.立式数显光学计 立式光学计又称光学比较仪,集光电、机电于一体,是我国最先进的数显式光学仪器。直接测量可以达到10毫米。测量结果可以根据需要选择工、英制在显示屏上显示,也可以在任意位置置零。当被测工件大于10毫米时,在测量前用量块(或标准件)对准零位,被测尺寸与量块尺寸的差值在屏幕上读得。 立式数显光学计对五等量块和一级精度的量块,球形和圆柱形工件得直径和不圆度,线型、板型、金属及非金属薄膜的厚度和平行度进行高精度测量。 仪器基本度量指标:

光电技术综合实验

光电技术综合实验——光电相位探测传感器设计 班级:光通信082 姓名: 学号: 指导老师:张翔

光电相位探测传感器的重要意义: 基于光电探测技术检测输出波前相位特性,对改善光束的质量有着重要的意义。光波在大气中传输会受到大气湍流、温度等因素的影响,使激光辐射在传播过程中随机地改变其光波参量,使光束质量受到严重影响,出现所谓光束截面内的强度闪烁、光束的弯曲和漂移(亦称方向抖动)、光束弥散畸变以及空间相干性退化等现象。为了改善光束的质量,主动光学诞生了,在观测过程中内置的光学修正部件对像质进行自动调整,即自适应光学。目前探测波前扭曲程度的传感器主要有两类:沙克-哈特曼(Shack-Hartmann)波前传感器,它通过由每一个附属的图像探测器产生的参考星星像来探测实际波前的扭曲情况。另一个是曲率探测系统,它的改正是通过双压电晶片自适应透镜来完成的,透镜由两个压电平面组成。 大气湍流将使在大气中传输的光波的光束质量明显变坏,产生波前相位畸变;自适应光学系统可以对畸变的光波相位波前进行实时探测、波前复原和预先进行实时的波前校正,从而显著改善到达靶面的光束质量。光波相位的探测,进而控制光波的相位来提高光束的质量。 一、设计目的与要求 1、设计目的 利用所学知识设计光电相位探测传感器,着重研究其前端激光器及光电探测模块。 2、设计内容 ①光电相位探测器器的基本结构及原理示意图 ②光电相位探测传感器的构成 ③掌握激光器的的组成,和各组件的作用,特别是前端激光器和光电探测模块 ④阐述高斯匹配问题 ⑤定性绘出采用圆形镜稳定腔He-Ne激光器输出光强分布特性,并对模式特性进行细致阐述 ⑥叙述扩束系统的结构形式 ⑦微透镜器件基本原理和参数选取 ⑧光电探测器件的分类 二、光电相位探测器的基本结构及原理示意图 1、基本结构 (1)光学匹配系统:将入射光束的口径缩小(放大)到与微透镜阵列相匹配尺寸。 (2)微透镜阵列:将入射光瞳分割,对分割后的入射波波前成像。 (3)光电探测器:接收光电信号,目前多用CCD探测器。 (4)图像采集卡:微透镜阵列与光电探测器之间加入匹配透镜。 (5)数据处理计算机:通过数据处理,进一步得到波前相位分布。 (6)光波相位模式复原软件等。

光电信息技术实验指导书word资料13页

光电信息技术实验指导书 光通信系 2019年8月

实验一光纤活动连接器插入损耗及回波损耗测试实验 一、实验目的 1、认知光纤活动连接器(法兰盘)。 2、了解光纤活动连接器在光纤通信系统中的作用。 二、实验内容 1、认识和了解光纤活动连接器及其作用。 2、测量光纤活动连接器的插入损耗。 三、实验器材 1、主控&信号源、25号模块各1块 2、23号模块(光功率计)1块 3、连接线若干 4、光纤跳线2根 5、光纤活动连接器(法兰盘)1个 6、Y型分路器1个 四、实验原理 光纤活动连接器即光纤适配器,又叫法兰盘,是光纤传输系统中光通路的基础部件,是光纤系统中必不可少的光无源器件。它能实现系统中设备之间、设备与仪表之间,设备与光纤之间以及光纤与光纤之间的活动连接,以便于系统接续、测试、维护。它用于光纤与光纤之间进行可拆卸(活动)连接的器件。它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小。 目前,光纤通信对活动连接器的基本要求是:插入损耗小,受周围环境变化的影响小;易于连接和拆卸;重复性、互换性好;可靠性高,价格低廉。 光连接器的指标有:插入损耗、回波损耗、重复性和温度范围等。 I、插入损耗测试 光纤活动连接器插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的分贝数,计算公式为: IL=10lg(P0/P1) 其中P0为输入端的光功率,P1为输出端的光功率,功率单位W。

设备自带的功率计组成架构图 插入损耗实验测试框图a 插入损耗实验测试框图b 光纤活动连接器的插入损耗越小越好。光纤活动连接器插入损耗测试方法为:如上述实验测试框图所示,(图B)向光发端机的数字驱动电路送入一伪随机信号,保持注入电流恒定。将活动连接器连接在光发机与光功率计之间,记下此时的光功率P1;(图A)取下活动连接器,再测此时的光功率,记为P0,将P0、P1代入公式即可计算出其插入损耗。 II、回波损耗测试 活动连接器的回波损耗:向光发端机的数字驱动电路送入一伪随机信号,保持注入电流恒定。按下图所示组成的回波损耗测试系统,按图A测得此时的光功率为P1。将活动连接器按图B接入。测得此时的光功率为P2,将P1、P2代入公式 即可计算出其回波损耗。 回波损耗测试框图A 回波损耗测试框图B 五、注意事项 1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。 2、不要带电插拔信号连接导线。 六、实验步骤 注:建议实验前先了解和学习系统中光功率计的搭建和使用方法。 A、光纤活动连接器插入损耗测量 1、系统关电,依次按下面说明进行连线。 (1)用连接线将主控信号源模块的PN,连接至25号模块的TH2数字输入端。 (2)用光纤跳线连接25号模块的光发端口和光收端口,此过程是将电信号转换为光信

光电课程设计报告

课程设计总结报告 课程名称:《光电技术》课程设计学生姓名:汤备 系别:物理与电子学院专业:电子科学与技术指导教师:徐代升 2010年07 月02日

目录 一、设计任务书 (3) 1、课题 (3) 2、目的 (3) 3、设计要求 (3) 二、实验仪器 (3) 三、设计框图及整体概述 (4) 四、各单元电路的设计方案及原理说明 (4) NE定时器构成多谐振荡器作调制电源 (5) 1、用555 NE电路结构 (5) (1)555 NE定时器组成的多谐振荡器 (5) (2)由555 (3)发射端电路 (6) LF放大器构成接收放大电路 (7) 2、用353 (1)光放大器 (7) (2)光比较放大器 (7) 五、调试过程及结果 (8) 1、调试的过程及体会 (8) 2、调试结果 (9) 六、设计、安装及调试中的体会 (9) 七、对本次课程设计的意见及建议 (9) 八、参考文献 (10) 九、附录 (10) 1、整体电路图 (10) 2、课程设计实物图 (10) 3、元器件清单 (11)

一、设计任务书 1、课题 光电报警系统设计与实现。 2、目的 本课程设计的基本目的在于巩固电子技术、光电技术、感测技术以及传感器原理等方面的理论知识,从系统角度出发,培养综合运用理论知识解决实际问题的能力,并养成严谨务实的工作作风。通过个人收集资料,系统设计,电路设计、安装与调试,课程设计报告撰写等环节,初步掌握光电系统设计方法和研发流程,逐步熟悉开展工程实践的程序和方法。 3、设计要求 (1)基本要求 NE构成占空比为0.5多谐振荡器作发光二极管的调制电源,并对参用555 LM构成比较放大器进行报警电路设计;画出所数选择进行分析说明;选用324 做实验的全部电路图,并注明参数;记录调试完成后示波器输出的各测量点电压波形。 (2)扩展要求(选做) 分析影响作用距离的因素,提出提高作用距离的措施;设想光电报警系统的应用场合,并根据不同应用提出相应电路的设计方案。如需要闪烁报警,电路如何设计? 二、实验仪器 多功能面包板………………………………………………………………1块TDS.60MHz.1Gs s双通道数字存储波示器………………………1台1002 YB A A直流稳压电源…………………………………………………1台 17333 万用表………………………………………………………………………1台

相关主题