搜档网
当前位置:搜档网 › 分子的手性与旋光性

分子的手性与旋光性

分子的手性与旋光性
分子的手性与旋光性

分子的手性和旋光性

【摘要】长久以来,分子的手性和旋光性都受到了人们的密切关注。这些性质既带给了人们便利,也给人们造成了伤害。本文讲述了手性和旋光性的基本信息,详细阐述了它们的判断方法,着重说明了它们的应用领域和对人类生活的影响,文章的最后还提出了一些手性分子的合成方法。

【关键词】手性;旋光性;判断方法;应用;合成

1.分子的手性

1.1分子手性的概念

手性分子,是化学中结构上镜像对称而又不能完全重合的分子。碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理和化学性质。但是从分子的组成形状来看,它们依然是两种分子。这种情形就像镜子里和镜子外的物体那样,看上去互为对应,可是由于是三维结构,它们不管怎样旋转都不会重合,就如同人们的左手和右手。这两种分子具有手性,所以叫手性分子。由于这两种分子互为同分异构体,所以这种异构的形式称为手性异构,有R型和S型两类。

1.2发展历史

在偏振光发现之后,人们很快认识到某些物质能使偏振光的偏振面发生偏转,产生旋光现象。1848年法国巴黎师范大学年轻的化学家Pastenr通过细心研究发现了酒石酸钠铵的晶体及水溶液的旋光现象,从而得出物质的旋光性与分子内部结构有关,提出了对应异构体的概念。人们在研究对应异构体时发现,在左旋和右旋两种对应异构体的分子中,原子在空间的排列是不重合的实物和镜像关系,这与左受和右手互为不能重合的实物和镜像关系类似,从而引入了手性及手性分子的概念。

1.3分子手性的判断方法

物质分子凡在结构上具有对称面和对称中心的,就不具有手性。反之,在结构上既不具有对称面,也不具有对称中心的,这种分子就有手性。具有手性的分子称为手性分子。

1.3.1对称轴

这种轴是通过物体或分子的一条直线,以这条直线为轴旋转一定的角度,得到的物体或分子的形象和原来的形象完全相同,这种轴称为对称轴。n指绕轴一周,有n个形象与原形象相同。

1.3.2对称面

某一平面将分子分为两半,就像一面镜子,实物(一半)与镜象(另一半)彼此可以重叠,则该平面是对称面(用σ表示)。如1,1-二氯乙烷(E)-1,2-二氯乙烯具有对称面,是非手性分子,没有对映异构体(如图 1 所示)。

1.3.3对称中心

分子中有一中心点,通过该点所画的直线都以等距离达到相同的基团,则该中心点是对称中心(用i 表示)。如苯和反—1,3—二甲基丁烷具有对称中心i,不具有手性,没有对映异构体(如图2所示)。

2.分子的旋光性

2.1分子旋光性的概念

分子的旋光性就是当光通过含有某物质的溶液时,使经过此物质的偏振光平面发生旋转的现象。它可通过存在镜像形式的物质显示出来,这是由于物质内存在不对称碳原子或整个分子不对称的结果。由于这种不对称性,物质对偏振光平面有不同的折射率,因此表现出向左或向右的旋光性。利用旋光性可以对物质(如某些糖类)进行定性或定量分析。

2.2发展历史

1815年,法国物理学家毕奥发现,当平面偏振光通过石英晶体时,偏振面会转动。也就是说,光以波浪形进入一个平面,而以波浪形从另一个平面射出。

1844年,巴斯德发现酒石酸和外消旋酸(2,3-二羟基丁二酸)虽然具有相同的化学成分,但酒石酸能使偏振光的振动平面转动,而外消旋酸却不能。通过在显微镜下观察这

两组盐的晶体,

他发现二者都是

不对称的。不过,

外消旋酸盐晶体

具有两种形式的

不对称性:一半晶体与酒石酸盐晶体的形状相同,而另一半则为镜像。也就是说,外消旋酸盐的晶体,有一半是左旋的,一半是右旋的。

外消旋酒石酸

酒石酸

1863年,德国化学家维斯利采努斯发现,乳酸(酸牛奶中的酸)能形成镜像化合物。他进一步证明,除了对偏振光所产生的作用不同外,这两种乳酸的其他性质完全一样。

1874年,范托夫和勒贝尔各自独立地提出了关于碳的价键的新理论,从而解答了镜像分子的构成问题。

2.3旋光性的判断方法

当普通光通过一个偏振的透镜或尼科尔棱镜(Nicol prism)时,一部分光就被挡住了,只有振动方向与棱镜镜轴平行的光才能通过。这种只在一个平面上振动的光称为平面偏振光,简称偏振光。偏振光的振动面化学上习惯称为偏振面。当平面偏振光通过手性化合物溶液后,偏振面的方向就被旋转了一个角度,向右旋转称为右旋物质(+);

向左旋转称为左旋物质(-)。

手性化合物都具有旋光性,螺旋型分子都是手性分子,旋光方向与螺旋方向一致,匝数越多旋光度越大,螺距小者旋光度大,分子旋光度是螺旋旋光度的代数和。一个分子拥有的手性碳原子不同时,有一个手性碳就意味着有一对对映异构体,有两个手性碳就意味着有两对,即2*2个;那么有n个手性碳那么他的旋光异构体(或对映异构体)数目为2*n,对映异构体的对数为2*n-1。

3.分子手性的应用

分子手性广泛应用于医药、农药、新材料及精细化学品合成等领域。

3.1分子手性在医药中的应用

20 世纪60年代的“反应停( Thalidomide) 事件”就是其中之一。反应停化学名为肽胺哌啶酮,有R-肽胺哌啶酮和S-肽胺哌啶酮2种对映异构体,R 构型对映体具有镇静功效,可用来缓解孕妇的妊娠反应,而S构型对映体则是导致婴儿畸形的祸根。1959~1962 年初, 西德有孕妇因服用反应停而导致2 000~3 000名畸形婴儿出生, 英国至少也有500 名。有文献报道, 1956~1961 年间, 反应停导致有6000~8000个类似“海豹”的胎儿没有胳膊和手, 此事在全世界引起轩然大波。不管怎样, 反应停消旋体的上市销售, 给人类带来了一场严重的、无法补救的灾难性后果,这也是20世纪60 年代药物不良反应的最大丑闻。

观察手性药物市场,可以发现其呈现逐年稳定而迅速增长态势。在1993年,手性药物的全球销售额仅330亿美元;1994年为452亿美元;1998年达到867亿美元;1999年为963亿美元;2000年为1330亿美元。至2003年,手性药物市场每年以8%的速度增长。

3.2分子手性在农药中的应用

有些化合物的一种对映体是高效的杀虫剂、杀螨剂、杀菌剂和除草剂,而另一种却是低效的,甚至无效或效果相反的。例如,芳氧基丙酸类除草剂Fluazi-fop-butyl,只有R型是有效的;而除草剂Metolachlor的四种异构体中只有两种异构体有活性,另外两种异构体则无活性。杀虫剂Asana的4个对映体中,只有一个是强力杀虫剂,另三个则对植物有毒。杀菌剂Paclobutrazol,RR型有高杀菌作用,低植物生长控制作用,而SS型有低杀菌作用、高植物生长控制作用。

过去,人们只将价值昂贵的农药(如菊酯类)拆分出不同的光学异构体,然后把无效体转化为有效体;而迄今,世界上已有的650种农药中,有173种已实现商品化,另有22种手性农药正在开发之中,手性农药占全球市场的35%。目前,手性农药主要有以下化合物:拟除虫菊酯类、有机磷类杀虫剂;三唑类、酰胺类杀菌剂;芳基苯氧基丙酸酯类、咪唑啉酮类、环己二酮类、酰胺类除草剂等。

3.3分子手性在新材料中的应用

手性二氧化硅材料尤其是功能化的手性二氧化硅由于其一系列优良的性能而在多个领域有着广阔的应用前景。到目前为止,其在载药系统、手性识别、分离和催化等领域的应用已开始被关注。手性纳米二氧化硅的功能化和杂化的手性二氧化硅材料因为同时具有无机材料的性质稳定、强度高和有机材料的可修饰性、多功能性,已经逐渐成为此领域新的热点。

4.如何进行手性合成

4.1手性合成的概念和发展史

手性合成就是通过底物分子的非手性部分与试剂作用后转变成手性部分,得到不等量的立体异构体的反应。

手性合成是近代有机合成中一个很活跃的领域,研究工作一直很有进展。1968年诺尔斯首先应用手性催化剂催化烯烃的氢化反应,第一次实现了用少量手性催化剂控制氢化反应的对应选择性。1980年,野一良治等发现了一类能够适用于各种双键化合物氢化

的有效手性催化剂,现在这类手性催化剂已被广泛地应用于手性药物及其中间体的合成。1980年夏普莱斯发现用钛和酒石酸二乙脂形成的手性催化剂可以有效的催化烯丙醇化合物的环氧反应,选择性非常高。后来,他又发现了催化不对称烯双烃基化反应。2001年诺贝尔化学奖的授予者威廉?诺尔斯、野依良治巴里?夏普雷斯为合成具有新特性的分子和物质开创了一个全新的研究领域。

4.2手性合成的方法

关于手性合成的方法大体可分为四种:偏振光照射法,生物化学法,手性溶剂和手性催化剂法,反应物的手性中心诱导法。这四种方法都是在手性因素的影响下利用立体选择反应而实现手性合成的,只是手性因素有所不同。

4.2.1从天然产物中提取

在某些生物体中含有具备生理活性的天然产物,可用适当的方法提取而得到手性化合物,某些手性药物是从动植物中提取的氨基酸、萜类化合物和生物碱。如:具有极强抗癌活性的紫彬醇最初是从紫彬树树皮中发现和提取的。

4.2.2外消旋体拆分法

通过拆分外消旋体得到手性药物是最常用的方法。目前报道的拆分方法有机械拆分法、化学拆分法、微生物拆分法和晶种结晶法等。其中化学拆分法是最常用和最基本的有效方法。

4.2.3生物合成

生物催化的不对称合成是以微生物和酶作为催化剂、立体选择性控制合成手性化合物的方法。用酶作为催化剂是人们所熟悉的,它的高反应活性和高度的立体选择性一直是人们梦寐以求的目标。

4.2.4手性试剂法

手性试剂和前手性底物作用生成光学活性产物。目前,手性试剂诱导已经成为化学方法诱导中最常用的方法之一。如:q—蒎烯获得的手性硼烷基化试剂已用于前列腺素中间体的制备。

4.2.5催化不对称合成法

在不对称合成的诸多方法中,最理想的是催化不对称合成。它具有手性增殖、高对映选择性、经济,易于实现工业化的优点。其中的手性实体仅为催化量,手性实体可以是简单的化学催化剂或生物催化剂,选择一种好的手性催化剂可使手性增值10万倍。

Made by---雪晶(2),

群华(12),

丽萍(38),

雅杰(42),

芝莹(56)

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

天然手性小分子分离研究进展

综述 题目:天然手性小分子分离研究进展 姓名:吴文凡 学号:z1415005 科目:天然药物化学

天然手性小分子分离研究进展 摘要:综述了色谱法和石英晶体微天平传感器技术在天然手性小分子分离研究的新进展,也同时介绍了分离天然手性小分子分离的手性固定相柱的制备,并探讨手性分子与手性固定相间识别的方法;也同时对紫外光谱和荧光光谱等在天然手性小分子分离的应用进行了阐述。 关键词:天然手性小分子;手性固定相;石英晶体微天平传感器; Abstract: The chromatography and quartz crystal microbalance sensor technology in the new progress of the study of natural chiral separation of small molecules, and also describes the preparation of small molecule chiral separation natural separation of chiral stationary phase column, and to explore chiral molecules chiral stationary phase identification method; also for UV and fluorescence spectra of small molecules in natural chiral separation applications are described. Key words: natural chiral small molecules; chiral stationary phase; quartz crystal microbalance sensors; 天然手性小分子是手性分子的一种,其分离方法类似于手性分子,手性是自然界特别是生物体的本质属性,作为生命活动重要基础的生物大分子和许多作用于受体的活性物质均具有手性特征,如酶、载体、受体、血浆蛋白和多糖等.对映异构体在生物活性、生理活性和药理活性等方面存在较大差异甚至可能完全相反的作用,因此获得单一的对映异构体对生理学和药理学的研究有着非常重要的意义[1].近年来,有关手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。 1.色谱法 色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分.目前,高效液相色谱、气相色谱、超临界流体色谱、模拟移动床色谱和毛细管电泳等在手性研究中得到了广泛应用.其中,高效液相色谱法(HPLC )进行手性药物对映体的光学拆分已成为药学研究中的一大热点,开发一些新型、具有不对称中心的手性固定相成为发展手性色谱技术的前沿领域之一.在手性固定相材料中,选择剂和手性分子间形成非对映异构体络合物,但由于不同对映体分子间存在空间结构的差异,直接影响两者的结合和络合物的稳定性.根据这些差异有望实现对手性底物的拆分[2].以环糊精衍生物、多糖衍生物和蛋白质等为手性选择剂的手性固定相材料备受研究者的关注,它们对许多手性药物对映体表现出良好的分离性能,已有许多填充手性固定相的色谱柱实现商品化,广泛应用在制药工业、化学品和食品等行业中.下文针对新型环糊精手性固定相、多糖手性固定相和蛋白质手性分离材料的制备及在拆分手性对映体方面的研究进行综述。 1.1环糊精类手性固定相 泽环糊精由7个葡萄糖单元通过糖苷键连接形成,内部有一个疏水性手性空腔,可与有机物、无机物及生物分子形成主客体包合物.1965年,Solms等[3 ]首先开发了适用于液相色谱标准粒径的环糊精聚合物固定相.通过化学修饰可改变泽环糊精的内腔深度和氢键作用位点,引人静电作用和n- n作用位点,满足识别不同类型和结构的底物要求,提高泽环糊精衍生物的手性识别能力。环糊精手性固定相在巴比妥酸、阻断剂、镇静安眠剂、抗组胺剂、生物碱、胡萝卜素、二肽、多肽、氨基酸、芳香醇、黄酮类等的分析检测和制备方面得到很好的应用[4 ]。

手性与手性药物

手性与手性药物 【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 Abstract:Recently,clinical sigmificance of chiral drug attracts wide attention.Exploration of chiral drug was an heated discussion of internatiomal research.The paper expounded the concept of chirality and drug ,chiral actual meaning of research,and progresses on the research of chiral drug,showed that market foreground of chiral drug was extensive. Key words:Chirality;Chiral drug. 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。

在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他

超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其

广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐药性小、生物相容性好、高疗效以及开发成本低、周期短、成功可能性大等诸多优点而备受关注,在抗肿瘤、抗炎镇痛、抗疟、抗菌、抗真菌、抗结核、抗病毒、抗癫痫、作为心血管和磁共振

金鸡纳生物碱衍生手性配体的合成

文章编号:025329837(2006)0620527205 研究论文:527~531 收稿日期:2005212225. 第一作者:何 炜,女,1972年生,博士.联系人:张生勇.Tel :(029)84776945;E 2mail :syzhang @https://www.sodocs.net/doc/26376945.html,. 基金项目:国家自然科学基金(20572131)和陕西省自然科学基金(2003B20)资助项目. 金鸡纳生物碱衍生手性双胺配体的合成及其 在不对称氢转移反应中的催化作用 何 炜, 张邦乐, 刘 鹏, 孙晓莉, 张生勇 (第四军医大学药学系化学教研室,陕西西安710032) 摘要:以价廉易得的天然金鸡纳生物碱奎宁和辛可宁为原料,在温和条件下容易地合成了6种手性双胺配体.考察了它们与 过渡金属Ir 和Rh 形成的配合物在苯乙酮不对称氢转移反应中的催化活性和不对称诱导作用.结果表明,92氨基金鸡纳生物碱配体具有良好的不对称催化活性,而当配体中的氨基被取代后其对映选择性降低.将92氨基(92脱氧)表辛可宁的Ir 配合物用于其它芳香酮的不对称氢转移反应时,该配体也显示了很高的催化活性(80%~90%收率)和对映选择性(除对氯苯乙酮ee 值为72%外,其余芳香酮ee 值均为95%~97%). 关键词:金鸡纳生物碱;奎宁;辛可宁;手性双胺配体;手性催化剂;不对称氢转移反应;苯乙酮中图分类号:O643/R914 文献标识码:A Synthesis of Chiral Diamine Ligands Derived from Cinchona Alkaloids and Their C atalytic Perform ance for Asymmetric T ransfer H ydrogenation HE Wei ,ZHANG Bangle ,L IU Peng ,SUN Xiaoli ,ZHANG Shengyong 3 (Depart ment of Chemist ry ,School of Pharm acy ,The Fourth Military Medical U niversity ,Xi ’an 710032,S haanxi ,China ) Abstract :The asymmetric transfer hydrogenation using 22propanol as the hydrogen source is a practical and ver 2satile method for obtaining secondary alcohols because of the inexpensive reagents and operational simplicity.Six chiral diamine ligands were synthesized from natural Ci nchona alkaloids ,quinine and cinchonine ,under mild conditions.These were first tested by asymmetric transfer hydrogenation of acetophenone in iridium and rhodi 2um catalytic systems using 22propanol as the hydrogen source.Both the iridium and rhodium complexes of these ligands showed high activity for this reaction ,and the enantioselectivity was influenced deeply by the structure of the chiral ligands.The complexes of 92amino (92deoxy )epiquinine and 92amino (92deoxy )epicinchonine proved to be effective catalysts ,whereas their benzamides and 42chlorobenzamides provided only moderate ee.The Ir 2complex of 92amino (92deoxy )epicinchonine was also applied in the hydrogenation of seven aromatic ketone sub 2strates ,resulting in a high catalytic activity (80%~90%)and high enantioselectivity (95%~97%ee ,except 72%ee for 42chloroacetophenone ).This is the first case using Ci nchona alkaloids skeleton in the iridium cat 2alyzed asymmetric reactions. K ey w ords :Ci nchona alkaloid ;quinine ;cinchonine ;chiral diamine ligand ;chiral catalyst ;asymmetric transfer hydrogenation ;acetophenone 氢转移反应是在催化剂的存在下,由氢原子供体作助剂的重键还原反应[1].不对称氢转移反应利 用异丙醇或甲酸作氢原子供体,在不用氢气或活性金属氢化物的情况下将潜手性酮还原为手性仲醇, 第27卷第6期 催 化 学 报 2006年6月Vol.27No.6 Chi nese Journal of Catalysis J une 2006

手性分子与手性药物1

有机化学 ——手性分子和手性药物 12应化一班 高钰(120911103) 胡傲(120911106) 文正(120911118) 鲍敏(120911126) 李梦园(120911132) 张艳(120911146) 郑丽(120911150)

手性分子 手性:实物和其镜像不能重叠的现象 手性碳:连有4个不同的原子或基团的碳原子(“*”)手性分子:不能与其镜像重合的分子 如何判断一个分子是否有手性? ●最直接法:画其对映体,看是否重合 ●观察有无手性碳: ●若分子中只含有一个手性碳,即为手性分子●若分子中含有2个以上手性碳,视情况分析●观察其结构中是否具有对称因素(对称面、对 称中心及其它对称因素);一般说来,如果分子既没有对称面有无对称中心,分子就具有手性。

最直接法 两者不能重合,是手性分子 两者能重合,不是手性分子

观察有无手性碳 有手性碳,是手性分子 有手性碳,但不是手性分子 有手性碳(两个及两个以上)的不一定是手性分子

对称性 (一)对称面:假想有一个平面它可以把分子分割成互为镜像的两半,这个平面就叫对称面。 (二)对称中心:在分子中取一点P,画通过P点的任一直线,若在与P点等距离的此直线两端为相同原子(团),则P点即为该分子的对称中心。 (三)对称轴:如果穿过分子画一条直线,分子以它为轴旋转一定角度后,可以获得与原来分子相同的形象,这一直线即为该分子的对称轴。

R/S构型标记法 (一)R/S构型标记法命名规则 1、根据次序规则,排列成序,a>b>c>d; 2、把最小的d基团放在最远,其它三个朝向自己; 3、观察a b c顺序,若呈顺时针为R-构型;呈逆时针为S-构型。(二)由费歇尔投影式确定R/S构型的方法

分子的手性与旋光性

分子的手性和旋光性 【摘要】长久以来,分子的手性和旋光性都受到了人们的密切关注。这些性质既带给了人们便利,也给人们造成了伤害。本文讲述了手性和旋光性的基本信息,详细阐述了它们的判断方法,着重说明了它们的应用领域和对人类生活的影响,文章的最后还提出了一些手性分子的合成方法。 【关键词】手性;旋光性;判断方法;应用;合成 1.分子的手性 1.1分子手性的概念 手性分子,是化学中结构上镜像对称而又不能完全重合的分子。碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理和化学性质。但是从分子的组成形状来看,它们依然是两种分子。这种情形就像镜子里和镜子外的物体那样,看上去互为对应,可是由于是三维结构,它们不管怎样旋转都不会重合,就如同人们的左手和右手。这两种分子具有手性,所以叫手性分子。由于这两种分子互为同分异构体,所以这种异构的形式称为手性异构,有R型和S型两类。 1.2发展历史 在偏振光发现之后,人们很快认识到某些物质能使偏振光的偏振面发生偏转,产生旋光现象。1848年法国巴黎师范大学年轻的化学家Pastenr通过细心研究发现了酒石酸钠铵的晶体及水溶液的旋光现象,从而得出物质的旋光性与分子内部结构有关,提出了对应异构体的概念。人们在研究对应异构体时发现,在左旋和右旋两种对应异构体的分子中,原子在空间的排列是不重合的实物和镜像关系,这与左受和右手互为不能重合的实物和镜像关系类似,从而引入了手性及手性分子的概念。 1.3分子手性的判断方法 物质分子凡在结构上具有对称面和对称中心的,就不具有手性。反之,在结构上既不具有对称面,也不具有对称中心的,这种分子就有手性。具有手性的分子称为手性分子。 1.3.1对称轴 这种轴是通过物体或分子的一条直线,以这条直线为轴旋转一定的角度,得到的物体或分子的形象和原来的形象完全相同,这种轴称为对称轴。n指绕轴一周,有n个形象与原形象相同。

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

含手性碳DIOP型双膦配体的合成及修饰

含手性碳DIOP型双膦配体的合成及修饰 摘要:不对称催化是由潜手性反应物合成光活性化合物的有效途径,ɑ,β不饱和氨基酸的氢化立体选择性已达90%以上,L-Dopa的工业化生产则标志着不对称催化氢化开始走向实际应用。高选择性的催化剂一般是一价铑的手性双磷配体络合物,其中DIOP[2,3-O-异丙叉-2,3-二羟基-1,4-双(二苯基磷基)丁烷〕是合成最早、研究最深入的催比剂配体之一。 关键词:DIOP、酒石酸、修饰 1、DIOP型双膦配体的合成 1971年,kagan等由天然酒石酸经五步反应合成了DI0P,全程收率27%。随后,Murrer等改进了该法中的膦化反应,其收率可达49%。 1.1 酒石酸二乙酯(DEtT)的合成 将100g酒石酸用20mL蒸馏水浸润,加入250mL95%乙醇和0.5g对甲苯磺酸,安装酯化分水器加热至溶解,加入450mL苯,回流分水。反应结束后冷却,加入2g碳酸钾,充分振摇后过滤、蒸馏,收集96℃~98℃/53~93Pa馏份。 1.2 2,3-O-异丙叉酒石酸二乙酯(DEtIT)的合成 45.8g酒石酸二乙酯、45mL原甲酸三乙酯、25mL丙酮、0.5g对甲苯磺酸和250mL正己烷混匀,回流4h。冷却后改装分馏柱,待汽相温度升至58℃以上时,冷却,加入少量碳酸钾,充分振摇,过滤后减压蒸馏,收集94~96℃/67Pa的溜份。 1.3 2,3-O-异丙叉-1,2,3,4-丁四醇(ITol)的合成 于500mL四口瓶中,加入11.5g四氢锂铝,通N2,搅拌下滴加150mL干燥四氢呋喃,回流30min,冷却后将45gDEtIT溶于150mL干燥四氢吠喃中,滴入反应瓶中,控制滴加速度维持微沸,回流6h。冰水浴中冷却,依次滴加15mL 冰水、15mL 4mol/L氢氧化钠和4mL冰水,分解过剩的四氢锂铝,过滤,滤饼由3×150mL二氧六环提取,合并滤液,蒸除溶剂。 1.4 1,4-二对甲苯磺酰-2,3-O-异丙叉-l,2,3,4-T四醇(DTosITol)的合成 27.5g ITol溶于125mL新蒸吡啶中,搅拌下分批加入125g重结晶对甲苯磺酰氯。lh后于-25℃放置17h,lh内滴入250mL冰水,搅匀,置于冰箱中24h。结晶过滤,用3×20mL95%乙醇洗涤,粗品在240mL无水乙醇中重结晶。 1.5 2,3-O-异丙叉-2,3-二羟基-l,4-双(二苯基膦基)丁烷(DIOP)的合成 于100mL烧瓶中,加入800mg金属钾、200mg金属钠,抽空,充N2 ,重复3次。N2保护下加热至120℃,电磁搅拌至混合均匀,冷至室温。注入干燥脱气的三苯基膦二氧六环溶液(2.6g/40mL),搅拌2h后,注入干燥脱气的DToslTol甲苯溶液(2.3g/40mL),搅拌30min,封闭系统中过滤,蒸除溶剂,在N2保护下于冷

手性分子与手性药物

. . . . . 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. . . . . 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. . . . . 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. . . . . 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. . . . . Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

手性分子与手性药物

. 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

【CN110078932A】手性CSub3Sub超分子聚合物及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910326820.2 (22)申请日 2019.04.23 (71)申请人 上海大学 地址 200444 上海市宝山区上大路99号 (72)发明人 张阿方 吴金雕 林尧东 仲国强  徐刚 刘延军 李文  (74)专利代理机构 上海上大专利事务所(普通 合伙) 31205 代理人 顾勇华 (51)Int.Cl. C08G 83/00(2006.01) (54)发明名称 手性C 3超分子聚合物及其制备方法 (57)摘要 本发明提供一种手性C 3分子及其制备方法。 该分子的结构式为:。该C 3分子能够在 溶剂中,通过超分子作用力下,自发组装堆叠形 成超分子聚合物。该C 3超分子聚合物在二氯甲烷 中呈现出超强的手性信号,并且具有极强的荧光 效应。在超分子聚合物的基础上,发生丁二炔基 元在紫外光照下的拓扑聚合反应,使得聚合物中 相邻的C 3分子之间形成共价键,从而实现从超分 子聚合物向共价聚合物的转变,形成更稳定的聚合物。该方法利用超分子化学方便可设计的优点,实现了超高的手性诱导以及避免了传统共价化学合成聚合物产生的各种不可控因素。基于超分子聚合物实现的手性诱导、传递和放大,在手性材料、光学器件、生物医用材料等方面有重要 应用价值。权利要求书1页 说明书4页 附图4页CN 110078932 A 2019.08.02 C N 110078932 A

权 利 要 求 书1/1页 CN 110078932 A 1.一种手性C3分子, 其特征在于该分子的结构式为:Array 其中n= 1~6,R1=H或C1~C3的烷基,R2 = H或C1~C3的烷基,X为C1~C3的烷基。 2.一种制备根据权利要求1中所述的手性C3分子的方法,其特征在于该方法的具体步骤为:将该C3分子溶于有机溶剂或水中,在超分子作用力下,即苯环-丁二炔组成的扩展共轭核的强π-π堆叠作用和肽链的氢键作用,能够自发组装形成超分子螺旋聚合物,具有动态可逆的特征,并且在手性中心的诱导下,形成的聚合物具有明显的手性增强和有序二级结构。 3.一种根据权利要求1所述的C3分子的制备方法,其特征在于该方法的具体合成步骤如下: 步骤a:在惰性气体保护下,将Boc保护的二肽甲酯、DMAP、寡聚乙二醇单体溶于二氯甲烷中,冰盐浴20 min,加入EDC?HCl,1 h后撤去冰盐浴,室温过夜反应,经分离提纯得到产物; 步骤b:将步骤a产物溶于二氯甲烷中,冰浴下加入TFA,10min后撤去冰浴,搅拌反应1 h,滴加甲醇终止反应,蒸干溶剂得到产物; 步骤c:将4-戊炔酸溶于二氯甲烷中,加入HOBt,搅拌溶解,取步骤b产物和DiEA搅拌溶于二氯甲烷中,把两种混合溶液搅拌加入烧瓶中,在惰性气体保护下,把体系放入冰盐浴中冷冻20 min,加入EDC?HCl,室温过夜反应,经分离提纯得到产物; 步骤d:将步骤c产物、1,3,5-三(2-溴乙炔基)苯、三乙胺,溶于四氢呋喃的反应管中,用液氮冻住反应液,用泵抽气15 min,解冻,加入催化剂Pd(PPh3)2Cl2,CuI,再用液氮冻住反应液,用泵抽气15 min,解冻,如此循环冻抽3次,油浴升温至29o C,避光过夜反应,经分离提纯得到目标C3产物。 2

手性分子药物与人类健康

手性分子药物与人类健康 班级:药学三班 姓名:王威 学号:20121240310

【摘要】 目的 阐明药物手性的概念及其药理活性。 方法 综述手性分子的研究历史和药物手性对药理作用的影响。结果 手性药物有着不同的药理活性,对人体产生各种生理效应,对其进行合理的分离纯化可以减小药物毒副作用,增强药效,同时能够带来巨大的经济效益。 结论 通过对手性药物药理活性的研究能更深入地理解或积极地预期一些药物相互作用,为临床合理用药提供依据。

【关键词】手性药物; 药理活性 近年来,药物手性的临床意义已引起了人们的注意,手性药物的开发已成为国际热点。目前,世界正在开发的1200种新药中有3/3是手性药物。手性药物有的以消旋体(racemate)形式上市,有些以单一对映体(enantiomer)上市。手性药物发展的潜势是十分巨大的。手性药物带来了巨大的经济效益,其市场范围包括手性药物制剂,手性原料药和手性中间体。2000年全世界的手性药物销售额突破了1200亿美元,其中制剂就有900亿美元[1]。因此,研究手性药物为临床合理使用手性药物及研制开发优对映体新药,具有重要的意义。 1、手性药物相关问题简述 分子结构基团在空间排列不同的化合物称为立体异构体,其中在空间上不能重叠,互为镜像关系的立体异构体称为对映体,这一对化合物就像人的左右手一样,称为具有手性;当药物分子中碳原子上连接有4个不同的基团时,该碳原子被称为手性中心(也称不对称中心),相应的药物被称作手性药物(chiral drug)。对映体之间,除了使偏振光偏转(旋光性)的程度相同而方向相反外,其他理化性质相同。因此,对映体又称光学异构体[2]。

手性分子绝对构型的确定

手性分子绝对构型的确定 手性分子可以分为下面几种类型:中心手性分子,轴手性分子,平面手性分子及螺旋手性分子。 下面用R/S 命名法依次对它们进行命名。 中心手性分子: 如果一个原子连接四个不同的基团,则称这个原子具有手性。常见的有C, N, P, S, Si, As 等原子。 判断方法:先将与手性原子相连的四个原子(团)按次序规则进行排列,然后将次序最小的原子(团)放在距观察者最远的位置,再观察其他3个原子(团)的排列次序,若由大到小的排列次序为顺时针方向,则R 为型,若为逆时针方向,则为S 型. e a 假定原子的优先次序为a >b > d >e b d 为顺时针方向,R 型 b d 为逆时针方向,S 型 轴手性分子:四个基团围绕一根轴排列在平面之外的体系,当每对基团不同时,有可能是不对称的。轴手性分子可分为以下几种类型: 丙二烯型分子:螺环型分子: 环外双键型分子: 联苯型分子: C 3 3 H 3 3 H 3 (远端) 逆时针方向,R 型 顺时针方向,R 型 (近端)逆时针方向,S 型 (近端)逆时针方向,S 型 从左向右看: 从左向右看: (远端) 判断方法:从左向右看,先看到的基团为近端,用实线表示,后看到的基团为远端,用虚线 表示,然后从近端的大基团看到近端的小基团再看到远端的大基团(不看远端的小基团),若为顺时针方向,则为则R 为型,若为逆时针方向,则为S 型. 平面手性分子:平面手性通过对称平面的失对称作用而产生,其手性取决与平面的一边与另

一边的差别,还取决与三个基团的种类。判断方法:第一步是选择手性平面,第二步是确定平面的优先边,这个优先边可以通过按标准的顺序规则在直接连接到平面原子的原子中找到哪一个是最优先的来确定。连接到平面的一套原子中的最优先原子,即先导原子或导向原子标记了平面的优先边(标记为1号),第二优先(标记为2号)给予手性平面直接与1号基团成轴连接的原子,等等,对于1-2-3为顺时针方向,则为R p 为型,若为逆时针方向,则为S p 型. 例如: S p 型R p 型 螺旋手性分子:螺旋性是手性的一个特例,其中分子的形状就像右的或左的螺杆或盘旋扶梯,从旋转轴的上面观察,看到的螺旋是顺时针方向的定为P 构型,而逆时针方向的定为M 构型. 例如: M 型 几个例子: 22 3 从上往下看: 顺时针方向,R 构型 近端 远端 从左向右看: R S 参考文献 《有机结构理论》,图书馆藏书

手性药物发展趋势_附件

手性药物的发展趋势 手性药物在新药的设计、研究、开发、上市是一个主要的课题[1–4]。立体化学结构是药理学的一个重要方面[1]。在过去的几十年中,药典的主导力量是外消旋体,但是自从1980年新技术的出现,允许显著数量的纯对映体的药剂,人们对药物作用的立体化学的认识和兴趣有所增加[2-4]。 立体选择性生物分析的进步,导致了立体选择性药效学和药代动力学的重要性的新的认识,使对映体对整体药物作用的相对贡献出现了差异。当一种对映体负责感兴趣的活性,与其成对的对应体可能是无效的,拥有一些感兴趣的活性,可能是活性对映体的拮抗剂,也可能是希望的或不希望的单独的活动[3-5]。考虑到这些可能性,似乎是纯立体化学药物的主要优势,比如说总给药剂量减少,治疗窗增大,减少主体间变异以及剂量-反应关系间更精准的估计[3,4]。这些因素导致在企业和一些监管机构越来越偏爱单一对映体。手性药物的监管始于美国,1992年美国出版了一本正式的方针关于手性药物的发展,这份文件的题目是新立体异构体药物的政策声明[6]。紧接着,1994年欧盟发表了手性活性药物的研究[7]开始了对手性药物的监管。申请人必须认识到新药中手性药物的存在,企图分离立体异构体,评估不同的立体异构体对感兴趣的活性的不同的贡献,并且做出理性的选择对上市的立体异构体的形式。 单一对映体形式的手性药物的全球销售额持续增长。单一对映体剂型的药的市场份额在逐年增长,从1996年的27%(744亿美元),到1997年的29%,1998年的30%,1999年的32%,2000年的34%,2001年的38%,到2002年其市场份估计到了39%(1519亿美元)[8-13]。 排名前十的单一对映体药物(每年销售额大于10亿美元)是:阿托伐他汀

手性与手性药物

【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为d-构型,氨基酸为l-构型,蛋白质和dna的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对l一氨基酸和d一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺r型具有镇静作用,而s型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是s型还是r型,作为药物都有致畸作用。1984年荷兰药理学家ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他的一系列论述的发表,引起药物部门广泛的重视。2001年诺贝尔化学奖授予了3位美日科学家,表彰他们在手性催化氢化反应和手性催化氧化反应领域所做出的重大贡献。目前,研究和发展新的手性技术,借此获得光学纯的手性药物,已成为许多实验室和医药公司追求的目标。 2 药物的手性 据统计,1800个药物,具有手性中心的就有1026种,占57%。现在市场上只有61种药物是以单对映体形式存在,其余均为外消旋体(左、右旋各半)混合形式。研究表明,不同的对映体在人体内的药理,代谢过程,毒性和疗效存在着显著差异[2-5],大致有以下几个类别: 2.1 对映体之间有相同或相近的某一活性 2.2 一个对映体具有显著的活性但其对映体活性很低或无活性 一般认为若某一对映体只有外消旋体的1%的药理活性,则可以认为其无活性。因为这微小的活性可能来源于掺杂于该单一对映体中微量的活性单一对映体。例如氯苯吡胺(扑尔敏,ehlorpheniramine)右旋体的抗组胺作用比左旋体强100倍。抗菌药氧氟沙星的s-(-)-异构体是抗菌活性体,而r-(+)-异构体则无活性。属于这一类的药物还有是氯霉素、芬氟拉明、吲哚美辛等。 2.3 对映体有相同、但强弱程度有差异 某一活性抗癌药环磷酰胺(ey-elophosphamide),其手性中心不是在通常的碳原子,而在磷原子。其(s)-异构体活性是(r)-异构体的2倍,然而,对映体毒性几乎相同。有时一个异构体具有较强的副作用,也应予考虑。如氯胺酮(ketamine)是以消旋体上市的麻醉镇痛剂,但具有致幻等副作用,进一步的药理研究证实(s)-异构体活性是(r)-异构体的三分之一,却伴随着较强的副作用。

相关主题