搜档网
当前位置:搜档网 › 光敏二极管的检验方法

光敏二极管的检验方法

光敏二极管的检验方法
光敏二极管的检验方法

光敏二极管又叫光电二极管。

光敏二极管也是由一个PN结组成的半导体器件,也具有单向导电特性。它在电路中的符号是:

光敏二极管的重要特性就是把光能转换成电能。在没有光照时,光敏二极管的反向电阻很大,反向电流很微弱,称为暗电流。当有光照时,光子打在pn结附近,于是在pn结附近产生电子-空穴对,它们在pn结内部电场作用下作定向运动,形成光电流。光照越强,光电流越大。光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件。

光敏二极管在应用电路中的两种工作状态:

1、光敏二极管施加有外部反向电压

当光敏二极管加上反向电压时,管子中的反向电流随着光照强度的改变而改变,光照强度越大,反向电流越大,大多数都工作在这种状态。

2、光敏二极管不施加外部工作电压

光敏二极管上不加电压,利用P-N结在受光照时产生正向电压的原理,把它用作微型光电池。这种工作状态,通常用作光电检测器。

光敏二极管检测方法:

①电阻测量法

用万用表1k挡。光电二极管正向电阻约10kΩ左右。在无光照情况下,反向电阻为∞时,这管子是好的(反向电阻不是∞时说明漏电流大);有光照时,反向电阻随光照强度增加而减小,阻值可达到几kΩ或1kΩ以下,则管子是好的;若反向电阻都是∞或为零,则管子是坏的。

②电压测量法

用万用表1V档。用红表笔接光电二极管“+”极,黑表笔接“—”极,在光照下,其电压与光照强度成比例,一般可达0.2—0.4V。

③短路电流测量法

用万用表50μA档。用红表笔接光电二极管“+”极,黑表笔接“—”极,在白炽灯下(不能用日光灯),随着光照增强,其电流增加是好的,短路电流可达数十至数百μA。

光敏二极管的主要参数:

1)最高工作电压Vmax:指在无光照射时,光敏二极管反向电流不超过0·lμA时,所加的反向最高电压值。

2)光电流IL:光敏二极管在受到一定光线照射时,在加有正常反向工作电压时的电流值。此值越大越好。

3)暗电流ID:在无光照射时,光敏二极管加有正常工作电压时的反向漏电流。其值越小越好。

4)响应时间Tr:光敏二极管把光信号转换为电信号所需的时间。

5)光电灵敏度:也称电流灵敏度,是表示光敏二极管对光的敏感程度。它是以每μW入射光的能量条件下,所产生的光电流的大小。单位是μA/μW。

光敏二极管和光敏三极管区别

光敏二极管和光敏三极管简介及应用 光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。 一、光敏二极管 1.结构特点与符号 光敏二极管和普通二极管相比虽然都属于单向导电的非线 性半导体器件,但在结构上有其特殊的地方。 光敏二极管在电路中的符号如图Z0129 所示。光敏二极管 使用时要反向接入电路中,即正极接电源负极,负极接电 源正极。 2.光电转换原理 根据PN结反向特性可知,在一定反向电压范围内,反向电 流很小且处于饱和状态。此时,如果无光照射PN结,则因 本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面, 就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P 区,形成光电流。波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。因此,光照射时,流过PN结的光电流应是三部分光电流之和。 二、光敏三极管 光敏三极管和普通三极管的结构相 类似。不同之处是光敏三极管必须 有一个对光敏感的PN结作为感光 面,一般用集电结作为受光结,因 此,光敏二极管实质上是一种相当 于在基极和集电极之间接有光敏二 极管的普通二极管。其结构及符号 如图Z0130所示。 三、光敏二极管的两种工作状态 光敏二极管又称光电二极管,它是 一种光电转换器件,其基本原理是 光照到P-N结上时,吸收光能并转变为电能。它具有两种工作状态:

LED显示屏验收标准

LED显示屏验收标准 1 范 围 本标准规定了LED显示屏的定义、分类、技术要求、检验方法、检验规则以及标志包装运输贮存要求。本标准适用于LED显示屏产品。它是LED显示屏产品设计、制造、安装、使用、质量检验和制订各种技术标准、技术文件的主要技术依据。 2 引 用 标 准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB191-90 包装储运图示标志 GB2423.1-89 电工电子产品基本环境试验规程 试验A:低温试验方法 GB2423.2-89 电工电子产品基本环境试验规程 试验B:高温试验方法 GB2423.3-89 电工电子产品基本环境试验规程 试验Ca恒定湿热试验方法 GB4943-95 信息技术设备(包括电气事务设备)的安全 GB6388-86 运输包装收发货标志 GB6587.4-86 电子测量仪器振动试验 GB6587.6-86 电子测量仪器运输试验 GB6593-86 电子测量仪器质量检验规则 GB9813-88 微型数字电子计算机通用技术条件 GB11463-89 电子测量仪器可靠性试验 SJ/T10463-93 电子测量仪器包装、标志、贮存要求 3 定 义

本标准采用下列缩略语和定义: 3.1 LED发光二极管 ligth emitting diode LED发光二极管的英文缩写 3.2 LED显示屏 LED panel 通过一定的控制方式,用于显示文字、文本、图形、图像、动画、行情等各种信息以及电视、录像信号并由LED器件阵列组成的显示屏幕。 3.3 显示单元 display unit 由电路及安装结构确定的并具有显示功能的组成LED显示屏的最小单元。 3.4 致命不合格 gKe.C" QI critical defect 对使用、维护产品或与此有关的人员可能造成危害或不安全状况的不合格,或单位产品的重要特性不符合规定或单位产品的质量特性严重不符合规定。 3.5失控点 out-of-control point 发光状态与控制要求的显示状态不相符并呈离散颁的LED基本发光点。 3.6伪彩色LED显示屏pseudo-color LED panel在LED显示屏的不同区域安装不同颜色的单基色LED器件构成的LED显示屏。 3.7 全彩色LED显示屏 all-color LED panel 由红、绿、蓝三基色LED器件组成并可调出多种色彩的LED显示屏。 4 分 类 LED显示屏可依据下列条件分类: 4.1 使用环境 LED显示屏按使用环境分为室内LED显示屏和室外LED显示屏。 4.2 显示颜色 LED显示屏按显示颜色分为单基色LED显示屏(含伪彩色LED显示屏),双基色LED显

光敏二极管的检测方法

1.电阻测量法用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。 再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。 2.电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2~0.4V电压(其电压与光照强度成正比)。 3.电流测量法将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。 1.光敏二极管的简易判别方法 (1)电阻测量法 用万用表1k档,测正向电阻约10kΩ左右。在无光照情况下,反向电阻应为∞,反向电阻不是∞,说明漏电流大;有光照时,反向电阻应随光照增强而减小,阻值小至几kΩ或1kΩ以下。 (2)电压测量法 用万用表1V档(无1V档可用1.5V或3V档),红表笔接光敏二极管的“十”极,黑表笔接“-”极,在光照情况下,其电压应与光照度成比例,一般可达0.2~0.4V。 (3)短路电流测量法 用万用表50mA或500mA电流档,红表笔接光敏二极管的“十”极,黑表笔接“-”极,在白炽灯下(不能用日光灯),应随光照的增强,其电流随之增加。短路电流,可达数十mA~数百mA。 光敏二极管的主要特性参数 ①最高反向工作电压VRM:是指光敏二极管在无光照的条件下,反向漏电流不大于0.1μA时所能承受的最高反向电压值。 ②暗电流ID:是指光敏二极管在无光照及最高反向工作电压条件下的漏电流。暗电流越小,光

2 光电二级管特性

课程设计任务书 课程设计任务书

目录: 实验目的 (1) 实验内容 (1) 实验仪器 (1) 实验原理 (1) 注意事项 (4) 实验步骤 (5) 实验结果 (12) 实验总结 (15) 参考文献 (15)

光电二极管特性测试实验 一、实验目的 1、学习光电二极管的基本工作原理; 2、掌握光电二极管的基本特性参数及其测量方法,并完成对其光照灵敏度、伏安特性、时间响应特性和光谱响应特性的测量; 3、通过学习,能够对其他光伏器件有所了解。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管伏安特性测试实验 3、光电二极管光照特性测试实验 4、光电二极管时间特性测试实验 5、光电二极管光谱特性测试实验 三、实验仪器 1、光电二极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述 随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,

光敏二极管

光敏二极管(光电二极管)基础知识 什么光敏二极管光敏二极管工作原理 光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。 光电二极管(也称光敏二极管)是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于微安),称为暗电流。当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。 它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。光电二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。 光敏二极管特性曲线

光电流---正电压特性 短路电流---照度特性

波长分布特性光敏二极管的特点 应用时反向偏置连接 没光照射,呈现极高阻值 有光照射时,电阻减小 可作光控关关 光敏二极管的符号及接线图 光敏二极管符号

光敏二极管接线图 光电二极管与光电三极管的联系与区别 光电二极管、光电三极管是电子电路中广泛采用的光敏器件。光电二极管和普通二极管一样具有一个PN结,不同之处是在光电二极管的外壳上有一个透明的窗口以接收光线照射,实现光电转换,在电路图中文字符号一般为VD。光电三极管除具有光电转换的功能外,还具有放大功能,在电路图中文字符号一般为VT。光电三极管因输入信号为光信号,所以通常只有集电极和发射极两个引脚线。同光电二极管一样,光电三极管外壳也有一个透明窗口,以接收光线照射。

LED灯检验规范

LED灯检验规范 一.外观检验 1.检查LED的两端点(两脚)及灯丝是否发黑发黄﹑氧化﹑氧化程度,尺寸规格是否与样品或技术文件符合要求。 2. 数量与包装是否符合要求,是否有出厂合格证明。 二.功能检验(LED直插灯此项可省略) 1.准备好电烙铁﹑万用表﹑温度计 2.把电烙铁温度调到300±5°度(注:用温度计测量——要求是电烙铁实际温度而不是电烙铁刻度表上的温度) 3.用万用表正极表笔与负极表笔分别接LED灯的正极端与负极端,目测灯的亮度与颜色。颜色是否与名牌上的标识颜色一致,亮度是否正常。 4.用电烙铁嘴(烙铁嘴不能带锡)去烫LED灯的正极端与负极端(注:烫的总时间控制在5±1秒内)。 5.用万用表正极表笔与负极表笔分别接LED灯的正极端与负极端,检查LED 是否能正常发光及目测灯的亮度与颜色,对比之前所测出的亮度与颜色是否有区别。(注:如果灯不亮或灯的颜色与亮度有区别,说明此LED灯耐高温不合格)。 三.参数测试 1.用LED光电参数测试仪测量LED灯的各项参数。如亮度﹑电压﹑电流等。用卡尺测量LED灯的规格尺寸。 2.测试仪的使用操作如下几个步骤:

2.1、接上对应插座,打开电源预热5分钟; 2.2、选LED(或光通量)测头,并接好; 2.3、工作电流设定: “正向/反向”键置“正向”,LED插座上插入LED,电流选择键置“IF1”或“IF2”,并调节对应的调节旋钮,确定 要求的正向工作电流IF1或IF2,一般选10mA或20mA; 2.4、反向电压设置,“正向/反向”键置“反向”,中窗显示的即为反向电压VR,调节VR使显示值为要求值,如VR= -10V,去掉LED,对IR进行调零。 2.5、LED光强测量:(选光强测头) (1)“Φ/Iv”键置“IV”,并对IV进行调零; (2)插入LED,“正向/反向”键置“正向”,LED亮(若不亮,将LED管脚换个位置)。这时右窗显示出电流值; (3)中窗显示的即为该LED的正向压降值; (4)左窗显示的即为该LED的光强值(×量程); (5)转动角度架,可得要求角度下的光强值IV;找到一个最大光强IM,再向左转动角度架,找到半强度0.5IM所对 应的角度θ1,再向右转动角度架,找到另一个半强度0.5IM所对应的角度θ2,θ1+θ2即为该LED的角度。 (6)“正向/反向”键置“反向”,可得该LED在VR下的反向电流值。

光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究 (FB815型光敏传感器光电特性实验仪) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。 【实验原理】 1.光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体PN结内部有自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P 区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。 2.光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。

光敏电阻伏安特性光敏二极管光照特性

光敏电阻伏安特性、光敏二极管光照特性(FB815型光敏传感器光电特性实验仪 ) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管、光敏三极管、硅光电池与光学纤维的光电传感特性及在某些领域中的应用。 【实验原理】 1(光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体结内部有自建电场。当光照射在结及其附近时,在能量PNPN 足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场的作用,电子漂移到区,空穴漂移EN到区。结果使区带负电荷,区带正电荷,产生附加电动势,此电动势称为光生电动PPN 势,此现象称为光生伏特效应。 2(光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。 伏安特性: 光敏传感器在一定的入射光照度下,光敏元件的电流与所加电压之间的关系称为IU光敏器件的伏安特性。改变照度则可以得到一族伏安特性曲线。它是传感器应用设计时的重要依据。 光照特性: 光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一。

LED显示屏质量验收标准

罗湖交通层LED显示屏系统安装工程验收标准 深圳市元亨光电股份有限公司 二○○四年十月九日

罗湖交通层LED显示屏系统 质量验收标准 第一章:概述 1 总则 (1)为保证地铁监控系统显示设备——LED显示屏的安装质量,促进工程施工技术水平的提 高,确保系统安全运行,制定本标准。 (2)本标准适用于监控系统显示设备——LED显示屏的安装涉及的各类控制箱、盘、屏、台 和成套柜等及系统管线安装工程的施工及验收。 (3)在执行本项目合同时,首先应遵守有供货商提供的安装指南;对于所有材料和施工工艺 ,都应遵守国家和行业主管部门颁发的现行技术规范、标准和要求。若国家或部颁标准和规范做出修改时,则以修改后的新标准和规范为准,若供货商安装指南与下列标准有矛盾处,报监理工程师确定。 (4)本标准参考 中华人民共和国电子行业标准《LED显示屏通用规范》SJ/T11141-2003 《LED显示屏测试方法》SJ/T11281-2003 《地下铁道设计规范》GB50157-92 《100Mbps(100BASE-X)以太网标准》IEEE802.3u 《计算机软件开发规范》GB8566 《计算机软件产品开发文件编制指南》GB8567 《计算机软件需求说明编制指南》GB9385 《国际串行通讯标准》EIA RS-232C 《电工电子产品基本环境试验规则》GB2421-89 《工业计算机系统安装环境条件》ZBN18-001 《设备可靠性试验总要求》 GB5850.1-86 《信息技术设备的无线电干扰极限值和测量方法》GB9254-98 《电磁兼容》GB/T17626 《UTP电缆芯线定义》 EIA/TIA-T568B 《欧洲铁路软件开发及监控标准》EN50128, EN50126 《国际电信联盟R601建议》ITU-R601 《彩色电视广播测试标准》 GB2097-80 《国际电信联盟R653建议》ITU-R653 国际电气与电子工程师协会(IEEE)标准 电子工业协会(EIA)标准等制定。 (5)本标准未尽之处按照国家现行有关规范执行。 2 术语 (1)乘客资讯系统(PIS) 基于同一运行平台及服务器,实现为乘客提供资讯服务的显示及控制系统。 (2)LED显示屏(LED DISPLAY PANEL) 通过一定的控制方式,由LED器件阵列组成的显示屏幕。 (3)双基色(TWO BASIC COLOR) 由红、绿两种基色构成。 (4)全彩色(FULL COLOR) 由红、绿、蓝三种基色构成。 (5)亮度(BRIGHTNESS) LED显示屏单位面积上的发光强度,单位cd/m2。 (6)灰度(GREY SCALE) LED显示屏同一级亮度中从最暗到最亮之间能够区别的亮度等级。

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台

四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I 区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P 区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪崩区较窄,不能充分吸收光子,相当多的光子进入了I区。I区很宽,可以充分吸收光子,提高光电转换效率。我们把I区吸收光子产生的电子-空穴对称为初级电子-空穴对。在电场的作用下,初级光生电子从I区向雪崩区漂移,并在雪崩区产生雪崩倍增;而所有的初级空穴则直接被P+层吸收。在雪崩区通过碰撞电离产生的电子-空穴对称为二次电子-空穴对。可见,I区仍然作为吸收光信号的区域并产生初级光生电子-空穴对,此外它还具有分离初级电子和空穴的作用,初级电子在N+-P区通过碰撞电离形成更多的电子-空穴对,从而实现对初级光电流的放大作用。

光敏二极管特性实验

光敏二极管特性实验 一、实验目的 通过实验掌握光敏二极管的工作原理及相关特性,了解光敏二极管特性曲线及其测试电路的设计。 二、基本原理 1、光敏二极管工作原理(详见红外功率可调光源曲线标定实验)。 2、光敏二极管特性实验原理 光敏二极管在应用中一般加反向偏压,使得其产生的光电流只与光照度有关。图1-9中,当光照为零时,光敏二极管不会产生广生载流子,也没有其他电流流过,整个电路处于截止状态;当有光照时,光敏二极管产生光电流,由于放大器的正负输入端虚短,放大器输出负电压。再二级放大,然后用跟随器输出。并且光照越强,输出电压越大。 R2680 总线模块 光电检测综合试验台的总 线模块 +5V -5V AGND +12V -12V 222426 40 PIN1 光敏二极管 PIN2 电流流向 A V GND VCC Vin ADJ R11K LED C9013R2680 +5V 0~5V GND 实验台 R V A AGND

2_+ 3+5V -5V 74 2_+ 3+5V -5V 74 2_+ 3+5V -5V 74 -5V +5V 2224AGND 40 图1-9 光敏二极管特性测试图 三、实验仪器 1、光电检测与信息处理实验台(一套) 2、红外功率可调光源探头 3、红外接收探头 4、光电信息转换器件参数测试实验板 5、万用表 6、光学支架 7、导线若干 四、实验步骤 1、按图1-9连接实验线路。 (1)把光电信息转换器件参数测试实验板插在光电检测综合试验台的总线模块PLUG64-1、PLUG64-2、PLUG64-3的任意位置上; (2)由光敏二极管探头的两个输出接线端PIN1、PIN2分别引出导线连接到试验台的总线模块的22(负极)和24

光敏三极管特性测试

实验三光敏三极管特性测试 一:实验原理: 光敏三极管是具有NPN或PNP结构的半导体管,结构与普通三极管类似。但它的引出电极通常只有两个,入射光主要被面积做得较大的基区所吸收。光敏三极管的结构与工作电路如图(11)所示。集电极接正电压,发射极接负电压。 二:实验所需部件: 光敏三极管、稳压电源、各类光源、电压表(自备4 1/2位表)、微安表、负载电阻 三:实验步骤: 1、判断光敏三极管C、E极性,方法是用万用 表欧姆20M测试档,测得管阻小的时候红表 棒端触脚为C极,黑表棒为E极。 2、暗电流测试: 按图(11)接线,稳压电源用±12V,调整 负载电阻RL阻值,使光敏器件模板被遮光罩盖 住时微安表显示有电流,这即是光敏三极管的暗 电流,或是测得负载电阻RL上的压降V暗,暗 电流LCEO=V暗/RL。(如是硅光敏三极管,则 暗电流可能要小于10-9A,一般不易测出。 3、光电流测试: 取走遮光罩,即可测得光电流I光,通过实验比较可以看出,光敏三极管与光敏二极管相比能把光电流放大(1+HFE)倍,具有更高的灵敏度。 1、伏安特征测试: 光敏三极管在给定的光照强度与工作电压下,将所测得的工作电压Vce与工作电流记录,工作电压可从+4V~+12V变换,并作出一组V/I曲线。 2、光谱特性测试: 对于一定材料和工艺制成的光敏管,必须对应一定波长的入射光才有响应。按图(11)接好光敏三极管测试电路,参照光敏二极管的光谱特性测试方法,分别用各种光照射光敏三极管,测得光电流,并做出定性的结论。 3、光电特性测试:

图(12)光敏三极管的温度特性图(13)光敏三极管的光电特性曲线 在外加工作电压恒定的情况下,照射光通量与光电流的关系见图(13),用各种光源照射光敏三极管,记录光电流的变化。 4、温度特性测试: 光敏三极管的温度特性曲线如图(12)所示,试在图(11)的电路中,加热光敏三极管,观察光电流随温度升高的变化情况。 思考题:光敏三极管工作的原理与半导体三极管相似,为什么光敏三极管有两根引出电极就可以正常工作?

二极管的特性及万用表的测试法(精)

二极管的特性及万用表的测试法 1、二极管的特性 二极管的英文是diode。二极管的正.负二个端子,(如图1)正端A称为阳极,负端B称为阴极。电流只能从阳极向阴极方向移动。 A https://www.sodocs.net/doc/2e416926.html,/Article/uploadimages/110-y-3.gif" width=65>B 图1 2、如何用万用表测量二极管的正负极 对半导体二极管政府极进行简易测试时,要选用万用表的欧姆档。测量方法如(图2、图3)所示。和万用表+输入相连的红表笔与表内电源的负极相通;而与万用表-输入端相连的黑表笔却与表内电源的正极相通。 https://www.sodocs.net/doc/2e416926.html,/Article/uploadimages/11 0-y-1.gif" width=180> https://www.sodocs.net/doc/2e416926.html,/Article/uploadimages/11 0-y-2.gif" width=180> 图2 图3 测量的方法是先把万用表拨到“欧姆”档(通常用R×100或R×1K),然后用万用表分别接到二极管的两个极上去。当表内的电源使二极管处于正向接法时,二极管导通,阻值较小(几十欧到几千欧的范围),这就告诉我们黑表笔接触的时二极管的正极;红表笔接触的时二极管的负极(见图3);当表内的电源使二极管处在反向接法时,二极管截止,阻值很大(一般为几百千欧),这就告诉我们黑表笔接触的是二极管的负极,红表笔接触的是二极管的正极。 3、用万用表R×100档和R×1K档测量同一个二极管的正向电阻,为什么阻值不同 在用万用表欧姆挡的R×100档位和R×1K档位测量同一只二极管的正向电阻时,测得的阻值是不同的。这是由于R×100和R×1K两种量程所对应的等效内阻r不同,在电源电压E不变时,流过表头的电流也不同的缘故。

LED路灯检验标准

LED路灯检验标准 本标准适用于250 V以下直流电源或1 000 V以下交流供电的道路、街路、隧道照明和其他室外公共场所照明用LED(发光二极管)路灯。 根据参考以下标准制定出本公司生产路灯的检验标准:

1. GB/T 191 包装储运图示标志(GB/T 191—2008,ISO 780:1997,MOD) 2. GB/T 2900.65 电工术语照明(GB/T 2900.65—2004,IEC 60050-845: 1987,MOD) 3. GB 7000.1—2007 灯具第1部分:一般要求与试验(GB 7000.1—2007, IEC 60598-1:2003,IDT) 4. GB 7000.5—2005 道路与街路照明灯具安全要求(GB 7000.5—2005, IEC 60598-1-3:2002,IDT) 5. GB/T 9468 灯具分布光度测量的一般要求 6. GB 17625.1 电磁兼容限值谐波电流发射限值(设备每相输入电流 ≤16A) 7. GB/T 17626.5 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 电磁兼容试验和测量技术浪8.涌(冲击)抗扰度试验(GB 17626.5—2008,IEC 61000-4-5:2005,IDT) 9. GB 17743 电气照明和类似设备的无线电骚扰特性的限值和测量方法 (GB 17743—2007,CISPR 15:2005,IDT) 10. GB 19510.1 灯的控制装置第1部分:一般要求和安全要求(GB 19510.1—2004,IEC 61347-1:2003,IDT) 11. CJJ 45—2006 城市道路照明设计标准 12. SJ/T 11364 电子信息产品污染控制标识要求 13. IEC 60838-2-2 杂类灯座第2-2部分 LED模块用连接器的特殊要求 14. IEC 61347-2-13 灯的控制装置第2-13部分 LED模块控制装置安 全要求 15. IEC 62031 普通照明用LED模块安全要求 16. IEC 62471 灯和灯系统的光生物安全

光敏二极管的检验方法

光敏二极管又叫光电二极管。 光敏二极管也是由一个PN结组成的半导体器件,也具有单向导电特性。它在电路中的符号是: 光敏二极管的重要特性就是把光能转换成电能。在没有光照时,光敏二极管的反向电阻很大,反向电流很微弱,称为暗电流。当有光照时,光子打在pn结附近,于是在pn结附近产生电子-空穴对,它们在pn结内部电场作用下作定向运动,形成光电流。光照越强,光电流越大。光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件。 光敏二极管在应用电路中的两种工作状态: 1、光敏二极管施加有外部反向电压 当光敏二极管加上反向电压时,管子中的反向电流随着光照强度的改变而改变,光照强度越大,反向电流越大,大多数都工作在这种状态。 2、光敏二极管不施加外部工作电压 光敏二极管上不加电压,利用P-N结在受光照时产生正向电压的原理,把它用作微型光电池。这种工作状态,通常用作光电检测器。 光敏二极管检测方法: ①电阻测量法 用万用表1k挡。光电二极管正向电阻约10kΩ左右。在无光照情况下,反向电阻为∞时,这管子是好的(反向电阻不是∞时说明漏电流大);有光照时,反向电阻随光照强度增加而减小,阻值可达到几kΩ或1kΩ以下,则管子是好的;若反向电阻都是∞或为零,则管子是坏的。 ②电压测量法 用万用表1V档。用红表笔接光电二极管“+”极,黑表笔接“—”极,在光照下,其电压与光照强度成比例,一般可达0.2—0.4V。 ③短路电流测量法 用万用表50μA档。用红表笔接光电二极管“+”极,黑表笔接“—”极,在白炽灯下(不能用日光灯),随着光照增强,其电流增加是好的,短路电流可达数十至数百μA。

光敏二极管和光敏三极管

光敏二极管和光敏三极管 光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。 一、光敏二极管 1.结构特点与符号 光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有 其特殊的地方。 光敏二极管在电路中的符号如图Z0129 所示。光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。 2.光电转换原理 根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。 不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。因此,光照射时,流过P N结的光电流应是三部分光电流之和。 二、光敏三极管 光敏三极管和普通三极管的结构相类似。不同之处是光敏三极管必须有一个对光敏感的PN结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。其结构及符号如图Z0130所示。 当人射光子在基区及集电区被吸收而产生电子一空穴对时,便形成光生电压。由此产生的光生电流由基极进入发射极,从而在集电极回路中得到一个放大了β倍的信号电流。因此,光敏三极管是一种相当干将基极、集电极光敏二极管的电流加以放大的普通晶体管放大。 1、判断光敏三极管C、E极性,方法是用万用表20M电阻测试档,测得管阻小的时候红表棒端触脚为C极,黑表棒为E极。 2、暗电流测试: 按图(11)接线,稳压电源用±12V,调整负载电阻RL阻值,使光敏器件模板被遮光罩盖住时微安表显示有电流,这即是光敏三极管的暗电流,或是测得负载电阻RL上的压降V暗,暗电流LCEO=V暗/RL。(如是硅光敏三极管,则暗电流可能要小于10-9A,一般不易测出。 3、光电流测试: 缓慢地取开遮光罩,观察随光照度变化测得的光电流I光的变化情况,并将所测数据填入下表:

光敏二极管的分光灵敏度特性

光敏二极管的分光灵敏度特性 在使用光敏二极管的时候,无论如何都应当知道其分光灵敏度特性。所谓分光灵敏度特性,如图 1.7 所示,它表示的是光敏二极管对于不同波长的光具有多高的灵敏度。 如果对光敏二极管照射波长为λ的光,那么该二极管每吸收一个光子,都会产生一对能够形成光电流的载流子。但是,每个光子能否被该二极管吸收,取决于该光子的能量是否超过制作该光敏二极管的半导体材料的禁带能级宽度Eg。 波长为λ的光的光子能量 Eph 可以表示为: 式中,h 是普朗克常数(6.626×10 -34J·s);c 是光速(3×108m/s);λ是光的波长(m)。 当 Eph>Eg 时,产生光电流;当 Eph<Eg 时,没有光电流产生。当光敏二极管的材料为 Si(硅)的时候,Eg =1.1eV,从式(1.1)可知,该光敏二极管对于波长λ>1100mm 的光照射没有感知灵敏度.光敏二极管的波长感知灵敏度特性如图 1.8 所示。

图1.7中的 BS120 与 PH302B 所用的材料都是 Si,所以他们呢本身的特性都应当如图1.8 所示;然而由于它们各自对应的用途不同。而配置了不同的滤光片,BS120 配置的是视觉校正滤光片,PH302B 配置的是遮挡可见光的滤光片,于是它们就有了图 1.7 所示的不同的特性。 与 Si 材料相比,GaAsP 的禁带宽度 Eg 更大一些,因此用 GaAsP 制作而成的光敏二极管的分光灵敏度会往波长更短的方向移动。有关这一点,从图 1.8 中可以看得比较清楚。不过,通过改变 GaAsP 中 GaAs 与 GaP 结晶比的方法,可以改变 Eg 的大小。 图 1.7 中的 G3614 就是用 GaAsP 制作而成的,它在紫外线领域具有灵敏度,因此可以用作紫外线的检测。

二极管特性及应用实验

姓名班级________学号____ 实验日期__节次教师签字成绩 二极管的特性研究及其应用一.实验目的 1.通过二极管的伏安特性的绘制,加强对二极管单向导通特性的理解; 2.了解二极管在电路中的一些应用; 3,学习自主设计并分析实验 二.实验内容: 1.二极管伏安特性曲线绘制; 2.交流条件下二极管电压波形仿真; 3.二极管应用电路 三.实验仪器 稳压电源RIGOL DS5102CA FLUKE190型测试仪;1N4001二极管若干; 函数信号发生器 TFG2020G ;电阻若干; 四.实验步骤 1.二极管伏安特性曲线绘制; 二极管测试电路

(1)创建电路二极管测试电路; (2)调整V1电源的电压值,记录二极管的电流与电压并填入表1; (3)调整V2电源的电压值,记录二极管的电流与电压并填入表2; (4)根据实验结果,绘制二极管的伏安特性。 表一 V1 200mv 300mv 400mv 500mv 600mv 700mv 800mv 1v 2v 3v ID VD 表二 V1 I D V D 绘制U—I图: 2.交流条件下二极管电压波形仿真;

D1 1N4001GP R1 100Ω V16 Vpk 100 Hz 0° XSC1 A B C D G T 2 1 仿真电路图 仿真结果

3.二极管应用电路 (1)桥式整流电路 D1 1N4001 D2 1N4001 D3 1N4001 D4 1N4001 V115 Vpk 60 Hz 0° R1100Ω 1 3 45 用示波器测量R1两端波形,并记录

桥式整流电路仿真 D1 1N4001 D21N4001 D3 1N4001 D41N4001 V115 Vpk 60 Hz 0° R12kΩ 4 XSC1 A B Ext Trig + + _ _ + _ 3 2 仿真结果

光电二三极管特性测试实验报告

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

相关主题