搜档网
当前位置:搜档网 › Number Counts of Bright Extremely Red Objects Evolved Massive Galaxies at z~1

Number Counts of Bright Extremely Red Objects Evolved Massive Galaxies at z~1

Number Counts of Bright Extremely Red Objects Evolved Massive Galaxies at z~1
Number Counts of Bright Extremely Red Objects Evolved Massive Galaxies at z~1

a r X i v :a s t r o -p h /0404129v 1 6 A p r 2004

Astronomy &Astrophysics manuscript no.ERO˙surfd˙mth.rev2February 2,2008

(DOI:will be inserted by hand later)

Number Counts of Bright Extremely Red Objects:Evolved

Massive Galaxies at z ~1

P.V¨a is¨a nen 1,2and P.H.Johansson 3,4

1European Southern Observatory,Casilla 19001,Santiago,Chile

2Departamento de Astronom ′ia,Universidad de Chile,Casilla 36-D,Santiago,Chile 3Institute of Astronomy,Madingley Road,Cambridge,CB30HA,UK 4

Observatory,P.O.Box 14,FIN-00014University of Helsinki,Finland

Received /Accepted

Abstract.We present results on number counts of Extremely Red Objects (EROs)in a 2850arcmin 2near-infrared survey performed in European Large Area ISO Survey (ELAIS)?elds at K <17.5.Counts of EROs are extended to brighter levels than available previously,giving 0.002±0.001arcmin ?2at K <16.5and consistent numbers with literature values at fainter magnitudes.Photometric redshifts from HYPERZ as well as GRASIL model SEDs of galaxies imply that our EROs are located in the range z =0.7?1.5,with the bulk of the population at z ~1.Taking advantage of the ISO data in the ?elds,we use mid-IR detections to constrain the number of dusty EROs,and also discuss the superior capabilities of Spitzer Space Telescope to detect dusty EROs.Both the mid-IR data and the use of colour-colour diagrammes indicate that at most 10-20%of the EROs in this bright regime are dusty starbursting systems.The space density of our EROs,interpreted to be counterparts of local >2?3L ?massive galaxies at around z ~1,is estimated to be ≈2×10?5Mpc ?3,which is consistent with local values.Furthermore,the cumulative number counts at our bright magnitudes are remarkably well ?tted by pure luminosity evolution models.

Key words.Galaxies:evolution –Galaxies:formation –Infrared:galaxies –Cosmology:observations –Galaxies:starburst –Galaxies:elliptical and lenticular

1.Introduction

Extremely Red Objects (EROs,selected for example by R ?K >5,I ?K >4colours)have received much focus recently by virtue of their potential as a powerful window into the galaxy formation era.By and large,the majority of EROs have been incorporated into a bimodal popula-tion,where the extreme red colours are attributed either to old passively evolving distant (z >1)elliptical galaxies or to extremely dust reddened starburst galaxies (see e.g.recent papers by Cimatti et al.2003,Wold et al.2003,Yan &Thompson 2003,Takata et al.2003,Daddi et al.2002,Smail et al.2002,Roche et al.2002,and references therein for earlier pioneering ERO surveys).It is the class of aged early type galaxies whose number densities provide the strongest constraints on models of galaxy evolution.On the other hand,the dusty EROs could be related to the (ultra)luminous IR-galaxies producing the bulk of the to-tal energy in the Universe since the recombination era (see e.g.Elbaz &Cesarsky 2003for a review).

2V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~1

unidenti?ed.The mean redshift was found to be z~1.0 for both populations.Yan,Thompson,&Soifer(2004)on the other hand?nd a small10-15%fraction of isolated passive systems.Yan&Thompson(2003),Cimatti et al. (2003),Moustakas et al.(2004),and Gilbank et al.(2003) have used HST morphologies to di?erentiate between the classes:the results have further complicated the picture, as a large fraction(25-65%)of EROs seem to be disks (though see also Moriondo et al.2000).The expectation originally had been a clearer distinction into spheroids on one side,and irregular and interacting types on the other,expected for extremely dusty star forming galaxies. The relative fractions of di?erent types of EROs thus still remain uncertain(due to for example di?erent selection criteria used)and the results of testing surface densities against galaxy formation scenarios are inconclusive.

In addition to spectroscopic and morphological meth-ods mentioned above,one may separate the old elliptical and dusty EROs by means of longer wavelength observa-tions:any ERO detected at mid-IR to radio wavelengths should belong to the dusty population.Systematically this has been attempted by Mohan et al.(2002)in the sub-mm to radio and Smail et al.(2002)in the radio.Similar fractions(albeit with wide spread)as referred to above of dusty EROs were found in the latter study,while Mohan et al.(2002)?nd a much lower fraction.

In this paper we attempt to separate EROs,for the ?rst time,based on their mid-IR properties.As with far-IR to radio methods,this is a clear-cut de?nition,since the di?erence of ellipticals and starbursting galaxies is very large-distant evolved ellipticals would not be detected with ISO whereas dusty EROs should have strong mid-IR ?ux.Also,mid-IR avoids the identi?cation problems of e.g. large sub-mm beams.We have surveyed an ISO/ELAIS (European Large Area ISO Survey;Oliver et al.2000)?eld in the near-IR and matched the results with an optical dataset.We make use of the newly available Final ELAIS Catalogue(Rowan-Robinson et al.2004).In this paper we consider the surface densities of EROs resulting from a wide-?eld relatively shallow J and K-band survey.We shall present the results from a deeper NIR survey around faint mid-IR detections in subsequent papers(V¨a is¨a nen& Johansson2004;Johansson,V¨a is¨a nen&Vaccari2004,in prep.).

The structure of this paper is as follows.The observa-tional data are presented in§2,and in§3we de?ne and extract the ERO sample from the photometric catalogues. In§4we discuss the dusty vs.evolved ERO separation and in§5the SEDs of the detected EROs.The resulting sur-face densities of EROs are presented in§6.We assume throughout this paper a?at(?0=1)cosmology with ?m=0.3,?Λ=0.7and H0=70kms?1Mpc?1.2.Observations

2.1.Near-Infrared data

The observations presented here were conducted in the ELAIS?elds N1and N2,centered at(α,δ)= 16h09m00s,54?40′00′′and(α,δ)=16h36m00s,41?06′00′′J2000.0respectively.

The near-IR survey performed with the Mt.Hopkins 1.2-m telescope,reaching limiting magnitudes of approx-imately J=19.3and K=17.5,is fully presented in V¨a is¨a nen et al.(2000;hereafter V00).The data cover a total of one square degree,although a slightly smaller area is used here(2850arcmin2)after some edges and higher noise areas were excluded and,more importantly,only ar-eas with full coverage in both bands were considered.The detector used was a256×256InSb array with1.2′′pixels.

2.2.Optical data

We obtained optical photometric data from the Isaac Newton Telescope(INT)Wide Field Survey(WFS). The WFS data are publicly available on the Cambridge Astronomical Survey Unit(CASU)homepage1.For a re-view on the INT Wide Field Survey Project and instru-ment characteristics,see McMahon et al.(2001).The data consist of U,g′,r′,i′,Z band photometry(Vega-based)in the N1region and g′,r′,i′,Z photometry in the N2re-gion(the apostrophes are dropped henceforward for clar-ity).The WFS bandpasses are similar to the SDSS(Sloan Digital Sky Survey)?lters(Fukugita et al.1996).The WFS webpage2gives colour transformations between the WFS?lters and those of the standard Johnson-Cousins system(Landolt1992):r?R=0.275(R?I)+0.008and i?I=+0.211(R?I)for the bands most used in this paper.The nominal5σdetection limits for a1′′seeing are g≈25.0,r≈24.1,i≈23.2,and Z≈22.0(the WFS page).For further details on the pipeline processing of INT wide?eld survey data consult Irwin&Lewis(2001), and Gonzalez-Solares et al.(2004)for more in-depth dis-cussion of the WFS data in particular in ELAIS?elds.We also obtained raw R-band images of the ELAIS N1and N2 regions from the archives.After reduction we used them for object identi?cation–only the pipeline processed cat-alogues were used for photometry however.

2.3.Astrometry and photometry

The INT astrometry was derived using Guide Star Catalog (GSC)stars,which results in an external astrometric ac-curacy of0.5′′?1.0′′(Irwin&Lewis2001).Astrometric ac-curacy in the Mt.Hopkins data ranges between0.5?1.5′′, and was calibrated using GSC and US Naval Observatory (USNO)catalogues.

All our near-IR photometry is performed using the SExtractor software(v.2.2.1and v.2.3;Bertin&Arnouts

V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~13 1996).Our NIR photometry is explained in V00.As dis-

cussed therein,we used total magnitudes as given by the

SExtractor‘BEST’-magnitude.However,since the optical

WFS photometry was given only in2.4′′diameter aper-

ture magnitudes,we re-did all the old photometry with

matching apertures.It is crucial that the di?erent obser-

vations map the same region of the source when construct-

ing colour indices;near-IR magnitudes not associated with

colours are given as total magnitudes in this paper.

The archive optical INT WFS data in the ELAIS re-

gions come as fully calibrated photometric source cata-

logues(Irwin&Lewis2001;Gonzalez-Solares et al.2004).

No further processing is done for the catalogue except

merging of multiple and/or nearby sources,as described

below in Section3.2.

3.Construction of the ERO samples

3.1.De?nition of EROs

Numerous di?erent selection criteria have been de?ned for

EROs,including R?K≥6,R?K≥5.3,R?K≥5,

I?K≥4with K-magnitude upper limits from18to

21mag.All these criteria are designed for selecting early

type galaxies at z≥1.In this paper we use the following

de?nition for EROs:r?K≥5.5and/or i?K≥4.4.Our

limits result from colour transformations given above in

Section2.2for typical colours of R?I≈1.4?2.0of our

sources,and from the desire to have limits corresponding

to the commonly used R?K>5,I?K>4selections

to aid comparisons to other surveys.In addition,we will

check any results with r?K>5.8,i.e.R?K≥5.3,which

is also often used.

Furthermore,we calculated r?R and i?I colours us-

ing SEDs from the GRASIL library(Silva et al.1998)and

veri?ed the r?R≈0.5and i?I≈0.4colours to match

well those of ellipticals at z~1.Naturally an exact com-

parison or transformation between di?erent galaxy colour

selection criteria is redshift and galaxy SED dependent,

and we note that since the model colours that di?erent

authors use vary,there might easily be0.1–0.3mag di?er-

ences in the colours at z~1.Elliptical galaxies become

EROs at z≈1.1?1.2with the criteria and models we

used.

Fig.1shows r?K and i?K model colours of several

representative galaxies against redshift with the ERO cri-

teria included.Model SEDs are adopted from the GRASIL

library(Silva et al.1998;model SEDs and the GRASIL

code are available online3).Ordinary spirals(dotted line)

never reach the red colours of EROs,while both ellipticals

(solid)and reddened starbursts(dash-dot)become EROs

when seen beyond z~1.For comparison,the colour of the

prototype dusty ERO HR10is also plotted(dashed curve)

as a function of redshift.The colour of the HR10model

is due to extreme dust extinction(Silva1999).The lowest

panel shows the?ux ratio f15μm/f2.2μm–the degeneracy

4V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~1

some remaining NIR frame cosmic rays,etc.,and though a handful of these may be genuine very red objects(though not necessarily EROs)we decided to conservatively ex-clude all of these from the?nal source list.

Since the WFS catalogue contains multiple detections of the same source(due to overlapping CCD frames),opti-cal counterparts within0.5′′of each other were averaged. After this purging,the remaining multiple matches within 1.5′′were summed up since the corresponding NIR cata-logue would not have resolved them as individual sources, and then the brightest source was selected if there still were multiple counterparts available.Approximately18% of the original WFS optical catalogue closest matches were a?ected by the purging,though less than4%by more than 0.1magnitudes.

3.3.Star vs.galaxy separation

We then proceeded to separating stars from galaxies in the surveys.Stellarity indices were available from both the NIR catalogue(the SExtractor CLASS parameter)and the WFS catalogue,where a?ag de?nes galaxies,de?nite stars,and various degrees of uncertain stellarities.The WFS classi?cation is in principle more useful for us here, since it goes deeper than the NIR data.Note that the star-galaxy separation is di?erent from that conducted in V00since we now have a much deeper optical catalogue available.

However,for the EROs we are interested in,the red-dest and faintest objects in the catalogue,we?nd that a colour separation works best.This can be seen in Fig.2, which shows the full catalogue in r?i vs.r?K with the morphological classi?cation indicated:stars are over-plotted as small crosses in the left panel.A separating line,adjusted experimentally to maximally distinguish the main concentrations of stellar and extended sources in the ?gure,of r?K=2.16(r?i)+1.35is drawn.This colour-colour diagramme separates stars very well from galaxies; it is important to note that there is virtually no overlap between the stellar sources and galaxies in the region of interest at r?K>5.The r?i colour,in fact,is very important in the separation of red stars.Very low mass and cool stars(of the L spectral type in particular)have R?K and J?K colours closely mimicking those of extra-galactic EROs–for these stars,however,R?I(or r?i) always stays above≈2(see e.g.Chabrier et al.2000;Cruz et al.2003).On the other hand,we?nd no galaxy models resulting in r?i>2colours(GRASIL code used;see also eg.Fugukita et al.1995).All extremely red objects with r?i>2can safely be discarded as stars.

Representative galaxy colours calculated from GRASIL models(Silva et al.1998)are overplotted in the right panel.In fact,the elliptical model does overlap with the r?i~3extremely red stars,but only at z>4. This is a potential concern with deeper ERO surveys,but at our brighter magnitudes such distant sources are not expected to be seen.

We thus use a combination of methods.We de?ne as stellar all objects having stellar colours according to the above limit and those not having a galaxy morphology set by the WFS survey.The end result of this is that brighter sources are preferentially separated by morphology and fainter ones(especially red sources)by colour.The star counts were already compared to the SKY model predic-tions of Cohen(1994)in V00,and found to?t well model predictions for the corresponding?elds.In the regime K<17.5,45%of r?K>5.5sources were classi?ed as stars.In summary,it should be stressed that in the case of bright surveys of EROs,the contamination from red late type(typically L-type)stars is considerable when using the R?K based selections of EROs.

3.4.Extraction of EROs

We searched for EROs from the Mt.Hopkins galaxy cat-alogue according to the colour de?nitions given above in Section3.1.Only NIR detections at5σlevel and over were considered.We then went through the resulting list check-ing our NIR maps as well as the WFS CCD images for any obvious spurious objects(for example,anomalously low optical magnitudes were found in cases when sources fell close to gaps in the CCD frames,or near bright stars –these were excluded).Ultimately there were50EROs in the matched Mt.Hopkins catalogue using the r?K crite-rion and21using the i?K limit-17EROs are common to lists resulting from both selection criteria.This makes 54EROs in total.All the EROs have an i-band detection, while there were4EROs which have only upper limits in the r-band.It is obvious that the r and i band based selection criteria for EROs are not equivalent.There are more than twice as much r?K>5.5selected EROs than i?K>4.4selected ones.

The photometry for all EROs is given in Table1and the resulting total numbers of veri?ed EROs are summa-rized in Table2,along with some other survey character-istics.The colour-magnitude plot is shown in Fig.3.

We wish to point out,that in order to be very con-servative in limiting the number of spurious detections in ?nal ERO lists,as well as to be able to take advantage of the J?K colour in classi?ying EROs,we required both a J and a K detection for all considered objects from the survey.While the5σdetection requirement was applied only to the K-band,this nevertheless might exclude some genuine EROs which are very red in J?K colour.At our faintest levels of K≥17.5,we do not expect to detect any J?K≥2.5EROs,and already at K≥17the complete-ness of J?K≥2EROs would not be quite as high as J?K<2EROs.

4.Separation of dusty EROs

Since the Extremely Red Objects can be divided into two broad classes,the populations should be di?erentiated be-fore surface density comparisons to detailed galaxy for-mation models are attempted.A prime motivation of this

V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~1

5 Fig.2.Observed r?i vs.r?K colours of our survey.Stellar sources,as de?ned by the WFS classi?cation are overplotted as small crosses in the left panel.It is seen that this colour-colour diagramme does a very good job in separating stars from galaxies:in particular there is virtually no overlap in the region of interest,at r?K>5.Any “ERO”with r?i>2is classi?ed as a star.The right panel shows all the galaxy EROs of the Mt.Hopkins survey selected with r?K>5.5and several GRASIL model SEDs overplotted:the lowest solid curve is the SED of an Sb galaxy,the dashed curve reaching ERO regime is that of a starburst,and the highest curve an elliptical.The curves are plotted up to redshift of z=2(see text and Sect.3.1).

study is to attempt the separation using the mid-IR data. We shall also perform the separation using other estab-lished methods,and discuss the di?erences.

https://www.sodocs.net/doc/21581728.html,ing mid-IR data

Since only dusty EROs are expected to show up in the mid-IR ELAIS survey,the question to answer is,what fraction of the EROs are detected in the mid-IR to a given ?ux limit?

Among the54Mt.Hopkins EROs we?nd only one match with a15μm ISOCAM source.In the ELAIS band-merged catalogue(Rowan-Robinson et al.2004)the source is a candidate hyper luminous IR-galaxy based on a pho-tometric redshift of z≈1.0,which agrees with our inde-pendent photometric redshift determination of z=0.9. (We note that using the same near-IR data-set but with only K-band considered,another ISOCAM detected ERO is found in Rowan-Robinson et al.(2004)).Thus,at face value,the fraction of dusty EROs seems to be insignicant.

However,it is crucial to take into account detection limits.The main hindrance to the full power of the mid-IR separation with our data-set is the relative shallow-ness of the ELAIS survey.All the Mt.Hopkins EROs have K=16?https://www.sodocs.net/doc/21581728.html,paring to GRASIL models(Fig.1), a starburst galaxy with M82-type SED and K=17ap-parent magnitude should just have been detected over the 0.7mJy ISOCAM?ux limit.In comparison,to detect the Rayleigh-Jeans tail of ellipticals would have required approximately K=13brightness.We note that M82-type galaxy with K=17mag at z=0.7and z=1.0 translates to star formation rates SF R≈100and200 M⊙yr?1,respectively,as calculated from total IR lumi-nosity L IR(3?1000μm)with relation given e.g.in Mann et al.(2002)and using the GRASIL model SED.The cor-responding IR luminosities are log(L IR)>11.7.

There are23K<17EROs in the sample,out of which only one(4%)is detected in the mid-IR.As shown above, the ELAIS data is only sensitive to luminous IR galaxies at the expected redshifts of EROs(z>0.7).Thus,we can state that very strong starbursts(SF R>100M⊙yr?1 make up only a small fraction,less than10%,of counter-parts to bright EROs.For detection of more modest dusty galaxies other methods have to be used.

It is relevant to note that the in-orbit Spitzer mission will de?nitely?nd large numbers of dusty EROs,including more modest ones than above:Using the M82SED once again as an example,sampling dusty K≈20EROs at z≈1would mean probing dusty starforming galaxies of SF R~10M⊙yr?1.The expected?ux densities of such objects with IRAC8μm and MIPS24μm bands would be of the order of10and150μJy,respectively,which are easily reached in a few minutes of integration time. For example,assuming10minute per pixel integrations, a10hour survey to the mentioned5σdepths would cover ~800arcmin2in both bands.This means detecting100–

6V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~

1

Fig.3.The K-band magnitude vs.the r?K and i?K colours,in left and right panels,respectively.All objects coming through the catalogue construction as galaxies are plotted as open circles.Individually veri?ed EROs at>5σlevel are overlaid with solid circles.Since the survey was done in ELAIS?elds,we also overplot all matched ISOCAM detections as solid triangles.Note that the total K-magnitude is used on the x-axis,whereas the colour is calculated with matching small apertures.

200MIR counterparts of dusty EROs,assuming average

ERO surface densities and an ad hoc50%fraction of dusty

EROs.

4.2.Colour-colour selections

Figure4shows the colour-colour separation scheme of

EROs by Pozzetti&Mannucci(2000)adopted for our r,i

?lters.The idea is that the J?K separates the EROs at

z>1to bluer early type galaxies(where the large optical

to near-IR colour is due to the4000?A break),and to the

redder(in J?K)dusty EROs which have a a smoother

SED from optical to near-IR.In the r?K plot we?nd

9/50r?K selected EROs in the dusty starburst side of

the indicator,and similarly3/16of the i?K EROs.In

the i?K plot many r?K EROs fall under the i?K=4.4

line,and the dusty percentages are higher for the remain-

ing EROs,30?50%.The one mid-IR ERO is overplotted

in the?gure,and it in fact falls on the elliptical side of

the division.However,given the typical photometric er-

rors of the EROs(the error bars on the mid-IR ERO are

representative)it is seen that at least1/3of the EROs fall

statistically on the dividing line.Moreover,while the ellip-

tical vs.starburst separating line is equivalent to Pozzetti

&Mannucci,it is only de?ned to work for R?K>5.3.If

we thus select EROs at r?K>5.8,nearly all galaxies on

the starburst side of the left panel in Fig.4fall out,and

the elliptical fraction becomes close to90%.Finally,our

Mt.Hopkins sample is1-2magnitudes brighter than other

typical ERO samples,and it is therefore not certain how

accurate the separation should be.

We also checked the colour-colour separation scheme

presented by Bergstr¨o m&Wiklind(2004)using R?J

vs.J?K colours(see their Fig.8).The result is85%

ellipticals regardless of whether r?K or i?K ERO crite-

rion(or both)is used,totally consistent with the fractions

emerging from the Pozzetti&Mannucci R?K vs.J?K

method.

We thus conclude that using the various J?K vs.

optical-NIR colour separation schemes approximately80%

of our EROs appear ellipticals.Only when using Pozzetti

&Mannucci i?K based separation for i?K>4.4EROs,

is the percentage lower,≈60%.We might be missing the

very reddest J?K EROs,i.e.some dusty EROs,because

of the selection of the sample in both bands.At K<17,

where there should be no bias in J?K colour,the fractions

of early type EROs range between65-80%,depending on

the optical band used.

5.Photometric redshifts and SEDs

We calculated photometric redshifts for the EROs using

the HYPERZ code(2000)which?ts GISSEL98synthetic

spectra(Bruzual&Charlot1993;BC hereafter)galaxy

templates to photometric data points.Figure5shows

the photometric redshift distributions of our sample.The

mean photometric redshift is z=0.94±0.49,excluding

the outliers at z~4.However,it is clear that subgroups

are involved,though the gap at z=1?1.2is di?cult to

understand.We also note that approximately half of the

V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~1

7 Fig.4.J?K vs.r?K and i?K ERO discriminator colours adopted from Pozzetti&Mannucci

(2000).All galaxies are plotted as dots and EROs are overlaid with larger symbols.Squares are r?K>5.5EROs and asterisks i?K>4.4 EROs.Those i?K EROs with no r-band detection have lower limits indicated in the left panel.The only mid-IR detected ERO is shown as the large solid symbol–its error bars are representative to errors of all EROs.

?ts result in a con?dence better than>85%,so the results

should be taken with some caution.On the other hand,

the overall distribution,average redshifts,or properties of

sub-groups discussed below do not change if we consider

only those EROs with?ts of>85%con?dence.

The21i?K selected EROs,the white regions in the

histogram,are more evenly distributed and at higher z

(average z≈1.4)than r?K EROs.The17objects which

are EROs with both selection criteria cover quite evenly

the range z=0.6?1.8(average at z≈1.3).The EROs

#51–54in Table1are all between z=1.4?1.9.

Most notably,however,those EROs that are not EROs

with the i?K>4.4criteria,show a signi?cantly nar-

rower redshift distribution(hatched region of histrogram)

with z=0.73±0.06.Moreover,these objects constitute

more than half,33/54,of our total ERO sample–we re-

turn to these below in Section6.2.Taken together,the

photometric redshifts thus suggest that r?K>5.5se-

lects more nearby systems at redshift unity and below,

and i?K>4.4includes a wider range of EROs.

Virtually all,50/54,of the best-?t HYPERZ BC SEDs

are either starburst spectra of age0.4to2Gyr,or ellipti-

cal spectra at several Gyr–these SEDs are nearly iden-

tical(see Fig.6).In fact,in a recent paper by Pierini et

al.(2004)it was proposed that post-starburst ellipticals,

forming in a short bursts during the period where EROs

are observed(between1

stituent of ERO populations.It should be stressed that ba-

sically all of the best-?t HYPERZ’starbursts’are evolved

results of instantenious bursts and not dusty starforming

galaxies.

Fig.5.Photometric redshifts as calculated by HYPERZ.

All54Mt.Hopkins EROs are plotted,whatever the con?-

dence of the?t(half have>85%).r?K>5.5selected

EROs which are not EROs with i?K>4.4selection are

hatched,the empty regions of the histogram thus show

the i?K>4.4EROs.

8V¨a is¨a nen &Johansson:Bright EROs and massive galaxies at z ~

1

Fig.6.Averaged and K -band normalized SEDs of i ?K EROs (circles)and those r ?K EROs with i ?K <4.2(squares).The observed bands are g,r,i,Z,J,K .The GRASIL M82model and elliptical and evolved starburst SEDs from BC are also plotted at indicated redshifts.

6.Discussion

6.1.ERO counts and surface densities

The numbers of detected EROs are given in Table 3,and the corresponding cumulative number counts are plotted in Fig.7.The numbers plotted are the total ERO counts:based on the previous discussion,the fraction of dusty EROs is low (~15%)and does not have signi?cant e?ect even if subtracted from the counts.

Our wide survey from Mt.Hopkins extends the ERO number counts to brighter magnitudes than observed be-fore.We report the ?rst ERO counts at K <16.5,where the r ?K >5.5(ie.R ?K >5)selection yields a surface density of 0.002±0.001arcmin 2,and the i ?K >4.4(ie.I ?K >4)selection ≈50%of this value.At K <17mag-nitudes we arrive at 0.007±0.002arcmin 2of r ?K EROs.Beyond K >17mag the Mt.Hopkins survey is starting to be a?ected by incompleteness,and based on simulations performed in V00for the same dataset,we estimate a fac-tor of 1.5correction to the K <17.5cumulative ERO density.The resulting r ?K selected surface density at K <17.5is 0.018±0.003arcmin 2.

We compare these numbers to the only two other ?eld ERO surveys with enough sky coverage to reach these bright magnitude levels:The largest ERO survey to date Daddi et al.(2000a;with 701arcmin 2),yielded 0.003±0.002arcmin 2at K <17and 0.02±0.006arcmin 2at K <17.5.These are totally consistent with our result.The Yan &Thompson (2003;409arcmin 2)HST ERO counts were selected using I ?K >4.0.At K <17they agree with our corresponding i ?K >4.4selection within

the errors.At K <17.5there is a clear discrepancy,how-ever.It is our r ?K selected EROs which are in closer

agreement with the Yan &Thompson ERO counts –we systematically ?nd a factor of ~2less i ?K selected EROs than r ?K selected ones.Especially at the faintest bin there appears to either be more incompleteness than we expect,or the i ?K >4.4selection does not pick up as many bright K ~17galaxies at z ~1than the r ?K selection does.Indeed,the discussion on “excess”r ?K EROs in the next Section 6.2and the photometric red-shifts derived for the EROs hint at the latter possibility.

6.2.Evolved ellipticals at z ~1

The strength,and motivation,of ERO searches has been to look for the most massive galaxies at redshifts of unity and over (see e.g.Saracco et al.2003),since it is exactly these which place tight constraints on galaxy formation scenarios.The dusty vs.early type ERO discriminators showed that most of our ERO sample is consistent with being early type galaxies.However,we argue that the clearest population of ellipticals comes from the class of r ?K >5.5EROs which have r ?K <4.4–these consti-tute 60%of all our EROs.Fig.8shows an i ?K vs.r ?K plot,where these “excess”EROs populate the upper right quadrant (see also Figs.4and 6).

Intuitively,the upper left quadrant galaxies should be sources at a redshift where a signi?cant 4000?A break falls right in between the r and i bands:i.e.ellipticals or very early type spirals at a redshift z ~0.8.We calculated numerous GRASIL models,and it turns out to be fairly di?cult to obtain colours in this ERO regime.Any signi?-cant on-going star-formation drops the r ?K colour down,as noted also by e.g.Yan &Thompson (2003;see their Fig.9.).The e?ect is seen in the solid curve of the right panel of Fig.8:the elliptical model has a formation red-shift of z ?=3and at redshifts of z >1.5the e?ects of the starburst turn the r ?K colour sharply down.Signi?cant amounts of extinction,including edge-on spirals,do not bring models to the r ?K >5.5,i ?K <4.4region either:the dotted line depicts the extremely dusty HR10model as an example.

One gets closest to the r ?K >5.5,i ?K ~4re-gion by merely redshifting an old present-day elliptical to Sa galaxy to the appropriate redshift.This is shown as the dashed curve,a 13Gyr old Sa spiral;any >10Gyr old elliptical produces a similar result.While this is an unphysical model,it serves to point out that while pure reddening is unlikely to reach this part of the colour-colour diagramme,an old stellar population does that.We thus conclude that EROs which are selected by r ?K >5.5(i.e.R ?K >5)which are not EROs by i ?K >4.4(i.e.I ?K >4)are mostly early type galaxies.In fact,at i ?K <4.2there should not be any contamination from dusty galaxies (compare the vertical dotted line to the dusty model curves).

V¨a is¨a nen &Johansson:Bright EROs and massive galaxies at z ~1

9

Fig.7.Cumulative ERO counts are shown for R ?K >5and R ?K >5.3selections (ie.r ?K >5.5and r ?K >5.8),

in the left and right panels,respectively,with solid triangles.Additionally,the i ?K >4.4selected EROs are plotted in the left panel with circles.Error bars are Poissonian.Our other ?eld ERO counts from a deeper survey (IRTF,V¨a isanen &Johansson 2004)are shown as stars.Squares show the EROs of Daddi et al.(2000a)and the asterisks the Roche et al.(2002)EROs in the left panel.The left panel shows R ?K >5selected EROs of Daddi et al.(2000a)and Roche et al.(2002).In addition to the Daddi et al.R ?K >5.3selected EROs the right panel plots the corresponding Smith et al.(2002)and Smail et al.(2002)EROs.We plot PLE models of Daddi et al.calculated using the indicated R ?K cuts.The curves are di?erent by their galaxy formation redshifts,as indicated in the ?gure.The two dashed-lines employ a di?erent LF –the higher curve results from a 2MASS normalized LF,and the lower from that of Marzke et al.(1994).

We also plot a sample of averaged SEDs of our EROs in Fig.6.The “excess”EROs with i ?K <4.2are plot-ted with squares and are well ?t by very evolved galaxy SEDs,as just discussed.The critical observed band is the i band,where the di?erence between elliptical and dusty starbursts (M82plotted)is the largest at the redshifts of our targets.Note that the g -band is biased to the bluest sources,since the average is calculated from those EROs detected in the corresponding band,and only 25%of the sources have a g -band detection.

The r ?K and i ?K selections alone are quite di?er-ent (see e.g.Scodeggio &Silva 2000).At least with bright ERO surveys such as ours,it seems that r ?K selects more passive systems.This is consistent with spectroscopic fol-lowup of R ?K >5.3surveys ?nding signi?cant amounts of ellipticals (e.g.Cimatti et al.2002)and those following up I ?K >4selections ?nding much more star formation (e.g.Yan et al.2004).

6.2.1.Number densities

There are 33“excess”r ?K EROs with i ?K <4.4.They appear to be at redshifts z =0.7?1.2:BC SED ?tting favours redshifts below unity (Fig.5),while the GRASIL models suggest redshifts at z ≈1?1.2(eg.Fig.8).These EROs have typical magnitudes of K ≈17.2,which would

make them at least ~2L ?galaxies,taking into account passive evolution since that redshift.Very simply,assum-ing that this group of EROs consists of ellipticals and is constrained in the mentioned redshift range we derive a co-moving volume of 2×106Mpc 3for the Mt.Hopkins survey area,and thus a space density of ~2×10?5Mpc ?3.Taking K -band LF parameters from Kochanek et al.(2001),this is a signi?cant part of the expected density of ≈8×10?5Mpc ?3for local >2L ?early type galax-ies.Given the incompleteness in our survey at K >17,and that we did not include ellipticals at i ?K >4.4in this calculation these ERO counts are a very conservative lower limit,and thus indicate that a major part of massive present day ~2?3L ?ellipticals were in place at z ~1.

The space density just derived is intriguingly close to those estimated for the higher redshift sub-mm popula-tion,which are suspected to be the most luminous star-bursts,perhaps the progenitors of present day massive el-lipticals (see e.g.discussion in Scott et al.2002).

6.3.Constraints on galaxy formation scenarios

Figure 7plots our ERO counts along with several other recent surveys and pure luminosity evolution (PLE)mod-els of Daddi et al.(2000a).All curves depict ellipticals with a τ=0.1Gyr initial starburst,and passive evolution

10V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~

1

Fig.8.i?K vs.r?K colour-colour magnitude diagramme of the veri?ed EROs is plotted in the left panel.The mid-IR detected EROs is overplotted as a large solid symbol.Several GRASIL models are plotted in both panels:the models are drawn until redshift z=2,and the z=1locations are indicated by small solid circles along the curves. The reddening direction is indicated in the left panel by the diagonal arrow which correcponds to A V=1extinction. afterwards.The di?erent lines have formation redshifts of

z form=2.4,3.0,and10.All the models use a Marzke et

al.(1994)LF,except the uppermost dashed line,which

instead uses a2MASS based LF(Kochanek et al.2001)

resulting in a higher normalization by approximately a

factor of two.

We stress that all EROs are counted in the?gure,i.e.

no corrections for the dusty population have been made.

As was seen previously,this is perfectly reasonable for our

very bright sample of EROs.However,even a very large

correction(not supported by our observations)of50%

of the EROs being in fact dusty,would not change the

conclusion signi?cantly.At somewhat fainter magnitudes,

recent studies have shown(Cimatti et al.2002,Smail et

al.2002)that the percentage of dusty EROs is likely some-

where around30–60%.

The PLE model using a formation redshift of z form=3

?ts all the data remarkably well.Formation redshifts

slightly lower than this also?t well our bright ERO counts,

but start underpredicting the numbers at fainter magni-

tudes.On the other hand,corrections for dusty galaxies

might be larger at the fainter levels(see eg.Smith et al.

2002).However,models with z form<2.4start underpre-

dicting the counts at all levels,especially when using the

R?K>5.3selection criteria.The very highest formation

redshifts of z form=10and over,predict steeper number

counts and are more di?cult to?t to both the bright and

faint end of ERO counts with the same normalization.The

?gure shows two di?erent LFs giving a factor of~2di?er-

ence.Note also that eventhough the R?K>5.3criterion

eliminates nearly all the(possibly)lower redshift z~0.8

EROs,there is no signi?cant di?erence in the?ts of PLE

models in the right and left panels of Fig.7.

Using the2MASS normalized LF it is in fact slightly

more di?cult to?t both R?K>5and R?K>5.3

counts simultaneously.The R?K>5counts are overpre-

dicted by a factor of1.5?3with all except the very lowest

z form=2.2?2.4formation redshifts.Good?ts in the range

K=16.5?18.5are again acquired with z form≥4,but the

faintest counts are overpredicted.Roche et al.(2002,2003)

?nd their2MASS-LF based PLE models signi?cantly over-

predicting I?K>4ERO counts,and show that certain

amount of merging and density evolution?ts the counts

much better in particular in the fainter K>20regime.

That a range of formation redshifts are necessary to

model EROs is seen for example by comparing Figs.8

and7(see also Cimatti et al.2003):though models with

formation redshifts of z≈3?t well the counts,the colours

produced by such a scenario are not red enough for many

EROs found in this survey,and others.Very red colours

of r?K>6.5or i?K>5can not be produced without

pushing z form closer to10(unless all such extreme EROs

are heavily reddened starbursts).

We do not investigate hierarchical formation scenarios

in more detail here.We merely point out that predictions

from some recent models(Cole et al.2000as presented in

Smith et al.2002),fall short an order of magnitude in the

numbers of EROs in the range K=17?20.See also e.g.

discussion by Martini(2001)and Firth et al.(2002).It is

important to realize that a drastic increase in the fraction

of dusty EROs does not make the hierarchical models?t

the ERO counts any better:they predict too few EROs of

V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~111

all kinds.On the other hand large fractions of dusty EROs would have to be subtracted from PLE models including only ellipticals,making all the Daddi et al.PLE models used above to overpredict the counts by factors of1.5?3.

It is concluded that the PLE models do give remark-ably good?ts to the brightest ERO counts.Formation redshifts around z~3are favoured–however,by alter-ing the details of the models,formation redshifts between z=2?10are also consistent.Moreover,a range in the formation era of ellipticals is suggested by the range in ERO colours.

7.Summary

We have searched for EROs in a near-IR survey performed in ELAIS?elds,using r?K>5.5,r?K>5.8,and i?K>4.4colour criteria.These are equivalent to the commonly used R?K>5,R?K>5.3,and I?K>4. In the survey,reaching approximately K=17.5,we?nd 54EROs.The area covered is2850arcmin2.

Taking advantage of overlapping mid-IR data,we search for dusty EROs,since only these should be de-tected with the used15μm ISOCAM band.Only one is found from our conservatively constructed catalogue. Taking into account detection limits we limit the number of very strong starbursts(SF R≥200M⊙year?1)in the bright K<17?17.5ERO population to<10%.

We also make use of a J?K vs.optical-infrared colour-colour diagramme to separate EROs,and?nd that the fraction of dusty ERO population is<10?40%,depend-ing on the colour used.There are more dusty galaxies in the i?K based ERO selection than if r?K is used. HYPERZ photometric redshifts and template?ts are also employed:nearly all redshifts are in the range z=0.6?1.8 with a strong peak at z~0.8.Approximately90%of the best-?t SEDs are those of evolved stellar populations.

We?nd a considerable amount,~60%of all our EROs, of r?K>5.5EROs which are not EROs with the i?K>https://www.sodocs.net/doc/21581728.html,ing models we interpret these to be early type galaxies at redshift of z~0.7?1.1.They are interpreted to be the counterparts of local2?3L?galax-ies,and their resulting space density is approximately 2×10?5Mpc?3.

Cumulative number counts are provided for the EROs, extending the available ERO counts to brighter limits than previously.Our counts are consistent with litera-ture counts in the overlapping magnitude region with same colour cut-o?s.

Our ERO number counts,as well as other literature data,are well?t by pure luminosity evolution models. Formation redshifts for early type galaxies in excess of z=2.5are required to?t the ERO counts,and z≈3 is favoured.However,the range in the colours of EROs suggests also a wide range in formation redshifts. Acknowledgements.We thank the referee for good and clarify-ing comments.We are grateful for useful discussion with Kalevi Mattila,Emanuele Daddi,and Margrethe Wold.Emanuele Daddi is especially thanked for providing the ERO count mod-els used in this paper.

References

Bergstr¨o m,S.,Wiklind,T.2004,A&A,414,95

Bertin,E.&Arnouts,S.1996,A&AS,117,393 Bolzonella,M.,Miralles,J.-M.&Pell′o,R.2000,A&A,363, 476

Bruzual,G.&Charlot,S.1993,ApJ,405,538

Chabrier,G.,Bara?e,I.,Allard,F.,Hauschildt,P.2000,ApJ, 542,464

Cimatti,A.,Villani,D.,Pozzetti,L,di Serego Alighieri,S.

2000,MNRAS,318,453

Cimatti,A.,Daddi,E.,Mignoli,M.et al.2002,A&A,381,L68 Cimatti,A.,Daddi,E.,Cassata,P.et al.2003,A&A,412,L1 Cohen,M.1994,AJ,107,582

Cole,A.,Lacey,C.G.,Baugh,C.M.,Frenk,C.S.2000,MNRAS, 319,204

Cruz,K.L.,Reid,I.N.,Liebert,J.;Kirkpatrick,J.D.,Lowrance, P.J.2003,AJ,126,2421

Daddi,E.,Cimatti,A.,Pozzetti,L.et al.2000,A&A,361,535 Daddi,E.,Cimatti,A.,Renzini,L.2000,A&A,362,L45 Daddi,E,.Cimatti,A.,Broadhurst,T.,et al.2002,A&A,384, L1

Eggen,O.J.,Lynden-Bell,D.&Sandage,A.R.1962,ApJ,136, 748

Elbaz,D.&Cesarsky,C.2003,Science,300,270

Firth, A.E.,Somerville,R.S.,McMahon,R.G.et al.2002 MNRAS,332,617

Fukugita,M.,Shimasaku,K.&Ichikawa,T.1995,PASP,107, 945

Fukugita,M.,Ichikawa,T.,Gunn,J.E.et al.1996,AJ,111, 1748

Gilbank, D.G.,Smail,I.,Ivison,R.J.,Packham, C.,2003, MNRAS,submitted(astro-ph/0308318)

Gonzalez-Solares,E.A.,Perez-Fournon,I.,Rowan-Robinson, M.et al.2004,MNRAS,submitted(astro-ph/0402406) Hall,P.B.&Green,R.F.1998,ApJ,507,558

Irwin,M.&Lewis,J.2001,NewAR,45,105

Kau?mann,G.&Charlot,S.1998,MNRAS,297,L23 Kochanek,C.S.,Pahre,M.A.,Falco,E.E.et al.2001,ApJ,560, 566

Landolt,A.U.1992,AJ,104,340

Larson,R.B.1975,MNRAS,173,671

Mann,R.G,Oliver,S.,Carballo,R.,et al.2002,MNRAS,332, 549

Martini,P.2001,AJ,121,2301

Marzke,R.O.,Geller,M.J.,Huchra,J.P.,Corwin,H.G1994, AJ,108,437

McMahon,R.G.,Walton,N.A.,Irwin,M.J.et al.2001, NewAR,45,97

Mohan,N.R,Cimatti,A.,R¨o ttgering,H.J.2002,A&A,383, 440

Moriondo,G.,Cimatti,A.,Daddi,E.2000,A&A,364,26 Moustakas,L.A.,Casertano,S.,Conselice,C.,et al.,2004,ApJ, 600,L131

Oliver,S.,Rowan-Robinson,M.et al.2000,MNRAS,316,749 Pozzetti,L.,Mannucci,F.2000,MNRAS,317,L17

Pierini, D.,Maraston, C.,Bender,R.,Witt, A.N.2004, MNRAS,347,1

Roche,N.D.,Almaini,O.,Dunlop,J.S.,Ivison,R.J.&Willott,

C.J.2002,MNRAS,337,1282

12V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~1 Roche,N.D.,Dunlop,J.S.,Almaini,O.2003,MNRAS,346,

803

Rowan-Robinson,M.,Lari,C.,Perez-Fournon,I.,et al.2004,

MNRAS,in press(astro-ph/0308283)

Saracco,P.,Longhetti,M.,Severgnini,P.,et al.2003,A&A,

398,127

Scodeggio,M.&Silva,D.R.2000,A&A,359,953

Scott,S.E.,Fox,M.J.,Dunlop,J.S.et al.2002,MNRAS,331,

817

Silva,L.,Granato,G.L.,Bressan,A.,Danese,L.1998,ApJ,

509,103

Silva,L.,1999,PhD thesis,SISSA(International School for

Advanced Studies),Trieste,Italy.

Smail,I.,Owen,F.N.,Morrison,G.E.,et al.2002,ApJ,581,

844

Smith,G.P.,Smail,I.,Kneib,J.-P.,et al.2002,MNRAS,330,

1

Somerville,R.S.,Primack,J.R.1999,MNRAS,310,1087

Takata,T.,Kashikawa,N.,Nakanishi,K.,et al.2003,PASJ,

55,789

V¨a is¨a nen,P.,Tollestrup,E.V.,Willner,S.P.,Cohen,M.2000,

ApJ,540,593(V00)

V¨a is¨a nen,P.,Johansson,P.2004,A&A,submitted

White,S.D.M.&Rees,M.J.1978,MNRAS,183,341

White,S.D.M.&Frenk,C.S.1991,ApJ,379,52

Wold,M.,Armus,L.,Neugebauer,G.,Jarrett,T.H.,Lehnert,

M.D.2003,AJ,126,1776

Yan,L.&Thompson,D.2003,ApJ,586,765

Yan,L.,Thompson,D.,Soifer,B.T.2003,AJ,127,1274

V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~113 RA(J2000)DEC(J2000)g′r′i′Z J K

1816h06m52.7s54?46′37.3′′>25.0022.49±0.0521.06±0.0320.29±0.0318.75±0.1916.89±0.20

1916h08m15.6s54?41′51.7′′>25.0022.60±0.0620.94±0.0320.02±0.0319.03±0.2317.07±0.17

2016h08m38.7s55?00′19.5′′>25.0023.14±0.0921.52±0.0420.45±0.0618.88±0.2417.29±0.26

2116h08m59.4s54?56′34.1′′24.72±0.1722.84±0.0721.33±0.0320.08±0.0419.06±0.2017.10±0.18

2216h08m60.0s54?56′25.7′′>25.0022.84±0.0721.41±0.0420.17±0.0519.16±0.2317.12±0.19

2316h10m21.0s55?07′28.1′′24.72±0.1522.86±0.0821.14±0.0320.32±0.0518.83±0.1717.24±0.24

2416h10m30.3s55?08′21.1′′24.58±0.1322.73±0.0721.47±0.0320.99±0.0918.83±0.1917.18±0.20

2516h10m40.4s55?05′25.7′′24.31±0.1122.72±0.0721.16±0.0320.20±0.0418.88±0.2317.18±0.21

2616h10m51.0s55?12′05.8′′24.29±0.1122.99±0.0821.75±0.0421.04±0.0919.31±0.3317.47±0.24

2716h10m59.1s54?31′26.2′′>25.0022.90±0.0721.28±0.0420.15±0.0319.00±0.5517.25±0.23

2816h11m08.9s54?50′17.7′′>25.0023.07±0.0721.64±0.0520.85±0.0619.42±0.3117.42±0.24

2916h11m12.8s55?08′24.7′′23.43±0.0522.57±0.0621.25±0.0320.17±0.0418.73±0.2416.91±0.17

3016h11m14.7s55?05′31.8′′>25.0023.02±0.0921.43±0.0320.75±0.0719.09±0.2617.07±0.21

3116h11m58.4s54?53′56.5′′>25.0022.91±0.0821.50±0.0420.50±0.0518.93±0.2417.40±0.23

3216h34m14.4s41?14′42.5′′24.49±0.1622.32±0.0420.71±0.0319.91±0.0318.81±0.2716.59±0.26

3316h34m22.8s40?56′07.1′′>25.0022.76±0.0620.96±0.0420.23±0.0419.13±0.2617.12±0.23

3416h34m52.1s40?50′50.2′′>25.0023.02±0.0821.41±0.0520.57±0.0519.05±0.2317.39±0.20

3516h34m58.4s40?52′55.4′′>25.0022.80±0.0621.10±0.0420.36±0.0418.86±0.1917.20±0.16

3616h35m12.1s40?47′31.0′′>25.0023.31±0.1121.82±0.0820.69±0.0719.13±0.2717.60±0.25

3716h36m01.0s41?05′59.3′′>25.0022.99±0.0821.58±0.0620.30±0.0519.01±0.1717.22±0.21

3816h36m07.5s41?21′42.3′′24.69±0.0022.39±0.0420.97±0.0019.95±0.0019.11±0.2716.74±0.23

3916h36m07.8s41?03′41.4′′>25.0022.94±0.0721.35±0.0720.78±0.0719.56±0.2717.24±0.23

4016h36m58.1s40?49′43.9′′>25.0022.41±0.0520.74±0.0319.95±0.0318.64±0.2016.72±0.11

4116h37m23.9s41?01′16.0′′>25.0023.27±0.1021.42±0.0920.66±0.0519.19±0.2717.64±0.26

4216h37m27.5s40?55′43.6′′>25.0023.03±0.0021.27±0.0020.90±0.0818.97±0.2417.45±0.26

4316h37m31.0s40?53′36.3′′23.93±0.1022.47±0.0520.76±0.0319.99±0.0318.57±0.2016.79±0.16

4416h37m38.6s40?56′59.3′′>25.0023.00±0.0721.36±0.0520.39±0.0419.19±0.4017.10±0.17

4516h37m40.2s40?54′21.8′′>25.0022.64±0.0520.80±0.0519.66±0.0518.86±0.2317.10±0.20

4616h37m49.6s40?55′43.5′′>25.0022.66±0.0520.86±0.0320.12±0.0318.92±0.2416.98±0.17

4716h37m57.2s41?19′38.4′′24.18±0.0023.09±0.0821.57±0.0620.75±0.0819.65±0.3117.45±0.22

4816h37m58.1s41?09′47.6′′24.24±0.1222.80±0.0621.48±0.0520.56±0.0619.40±0.2817.15±0.19

4916h38m20.3s41?03′42.5′′23.73±0.0822.21±0.0420.55±0.0219.76±0.0318.72±0.3116.62±0.23

5016h38m46.1s41?08′18.8′′>25.0023.37±0.1021.64±0.0620.48±0.0619.39±0.2917.27±0.24

Table1.Photometry of the whole ERO sample.Sources1–17are those with r?K>5.5and i?K>4.4,while 18–50and51–54are selected by only r?K>5.5and i?K<4.4,respectively.

14V¨a is¨a nen&Johansson:Bright EROs and massive galaxies at z~1

Sample N N?Area arcmin2K limEROs ERO/arcmin2 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) Table2.Columns(2)to(5)give the total numbers of sources and stellar objects,the surveyed area,and the average limiting magnitude.The rest of the columns refer to galaxies only:columns(6)to(7)give mean colours,though note that these are lower limits since optical non-detections we ignored.Column(8)gives the number of EROs selected by r?K≥5.5,(9)by i?K≥4.4,and(10)by their combination;column(11)is the range of surface densities resulting from either r or i band based selection;column(12)is the range of cumulative surface densities at K<17

r?K>5.5r?K>5.8i?K>4.4

K limit Frac.ΣK Frac.ΣK Frac.ΣK

(mag)N%arcmin?2N%arcmin?2N%arcmin?2

Table3.The sample of Mt.Hopkins EROs.Cumulative counts are given for di?erent ERO colour selection criteria. Total numbers(N),Fraction of EROs compared to the total galaxy count(“Frac.”)is calculated using galaxy counts in these same?elds(V¨a is¨a nen et al.2000).At K≤17.5N shows the completeness corrected value,and the raw count is given in parentheses.

对数函数及其性质重点难点创新突破

对数函数及其性质重点难点创新 一、教学目标 课程标准对本节课的要求为:理解对数函数的概念及单调性,掌握对数函数的图象通过特殊点,依据学生的学习基础及自身特点结合课标要求,我确定了本节课的教学目标:知识目标:1、理解对数函数的定义,掌握对数函数的图象和性质; 2、会求和对数函数有关的函数的定义域; 3、会利用对数函数单调性比较两个对数的大小。 能力目标:1、通过对底数的讨论,使学生对分类讨论的思想有进一步的认识,体会由特殊到一般的数学思想; 2、通过例题、习题的解决,使学生领悟化归思想在解决问题中的作用。 情感目标:学生在参与中感受数学,探索数学,提高学习数学的兴趣,增强学好数学的自信心。 二、教学重难点: 教学重点:理解对数函数的定义,掌握对数函数图象和性质; 教学难点:底数a对函数值变化的影响及对数函数性质的应用。 三`教学方法: 通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点 四、课堂结构设计: 本节课是概念、图象及性质的新授课,为了使学生更好的达成学习目标我设计了以学生活动为主体,以培养学生能力为中心,提高课堂教学质量为目标的课堂结构。这是我的课堂结构设计:

五、教学媒体设计: 根据本节课的教学任务和学生学习的需要,我设计了利用多媒体课件展示引例、例题、习题和练习……,增大教学的容量,也使学生易于接受,提高学生的学习兴趣和积极性;利用几何画板演示作图,展示图象的动态变化过程,有效地突出重点、突破难点、提高教学效率,增强直观性和准确性。这是我的教学媒体设计: 钟 15 分 钟 钟 钟 6 分 钟

六、教学过程设计 在对教材及学生全面深入了解的基础上,我设计了以下五个教学环节:

函数图象重难点分析

函数图象重难点分析 本资料为woRD文档,请点击下载地址下载全文下载地址www.5y kj.co m 用“五点法”画函数的简图,及函数,,的图像与正弦曲线的联系,参变数A,对图像的影响是本课的重点.弄清函数与图像的关系,特别是和对图形的影响是本课学生的一个难点. 克服难点的办法,是要让学生弄清: (1)在函数中,对函数性质所起的作用; (2)函数的图像是通过怎样的方法由正弦曲线变化而得到,三个参数在图像变换中起什么作用. 本节运用了对图像的三种变换: 振幅变换,是由A的变化引起的; 周期变换,是由的变化引起的; 相位变换(也叫沿x轴方向的平移变换):是由的变化引起的. 将函数图像与各点的横坐标不变,纵坐扩大到原来的2倍,得到的图像,将图像上各点的纵标不变,横坐标扩大到原来的2倍,得到的图像.在这里,学生往往弄不明白为什么沿y轴“扩大到2倍”是乘以2,沿x轴“扩大到2倍”

却是除以2?函数图像在横纵两个坐标轴上的拉伸为什么不一致.也弄不明白在横纵两轴的平移究竟是什么样子.其实这些问题在学生们学习了坐标轴的变换及曲线与方程的关系后很容易理解.我们可以通过“点变换”去认识“线变换”. (1)的图像与的图像上横坐标相同的相应两点与之间的关系要满足,可见,将图像点横坐标不变,纵坐标伸长(A>1)或压缩(A<1)到原来的A倍,变成了的图像.(2)的图像与的图像纵坐标相同的相应两点和,之间的关系要满足,即 ,因此,将图像上各点的纵坐标不变,横坐标压缩或伸长到原来的倍,就变成了的图像. 可以用类似的方法解释为什么时,把的图像向左平移个单位得到的图像,而时,要把的图像向右平移个单位得到的图像. 在图像变换的教学中,要教给学生利用观察、对比、分析找出变换的规律,弄清变换的原因,理解变换的过程,而不能死记变换的结论.特别要掌握“变换”中的辩证观点:由点变换认识线变换. “五点法”作图,是作函数的静态图,在学习初期对了解函数图像的形状有益,继续学习时,必须从国家的变换角度研究图像间的关系,也就是要教给学生在运动变化中,寻

对数函数 优秀教案

《对数函数》教学设计 一、教材分析 本小节选自《中等职业教育课程改革国家规划新教材-数学(基础模块上册)》第四章,主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计 教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结 (一)熟悉背景、引入课题 1.让学生看材料: 如图1材料(多媒体):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……,

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

高一函数重难点突破

高一函数重难点突破 一、 求复合函数的定义域的四种题型 1. 已知f[x]的定义域,求f(g(x))的定义域 例1设函数f(x)的定义域为(0,1),求函数f(lnx)的定义域 2. 已知f[g(x)]的定义域,求f(x)的定义域 例2已知f(3-2x)的定义域为x € [-1,2], 求函数f(x)的定义域 3. 已知f[g(x)]的定义域,求f(h(x))的定义域 例3若函数f(2 x )的定义城为[-1,1], 求f(log 2X )的定义域 4. 已知f x 的定义域,求四则运算型函数的定义域 例4已知函数f x 定义域为是[a,b],且a b 0 求函数h x = fx ,m 「fx -m ]〔m - 0的定义域 b - m : b m ,又 a - m : b m 要使函数h x 的定义域为非空集合,必须且只需 a ? m 空b - m ,即0 ::: m 乞b 「a 2 此时函数h x 的定义域为{x|a+m]l :二:…iT (} 求函数解析式的六种题型 1?待定系数法:在已知函数解析式的构造时,可用待定系数法 例1设f(x)是一次函数,且f[f (x)] =4x ?3,求f(x) a —m^x^ b —m .a+m^x^b+m m 0, a - m :: a m

2. 配凑法或换元法:已知复合函数f[g(x)]的表达式,求f (x)的解析式。 f[g(x)]的表达式容易配成g(x)的运算形式时,常用配凑法。但要注意所求函数f(x)的定义域不是原复合函数的定义域,而是g(x)的值域。 1 1 例 2 ( 1)已知f(x + _)=x2+p (x>0),求f (x)的解析式 x x (2)已知f(x 1) =x 2 x,求 f (x 1) 3?构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组, 通过解方程组求得函数解析式。 例3 设 f (x)满足 f (x) -2f (1Hx,求f(x) x

对数及对数函数教案

对数 教学目的:(1)理解对数的概念; (2)能够说明对数与指数的关系; (3)掌握对数式与指数式的相互转化. 教学重点:对数的概念,对数式与指数式的相互转化 教学难点:对数概念的理解. 教学过程: 一、引入课题 1. (对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要 性; 设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神. 2. 尝试解决本小节开始提出的问题. 二、新课教学 1.对数的概念 一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ) ,记作: N x a log = a — 底数,N — 真数,N a log — 对数式 说明:○ 1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 思考:○ 1 为什么对数的定义中要求底数0>a ,且1≠a ; ○ 2 是否是所有的实数都有对数呢? 设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备. 两个重要对数: ○1 常用对数(common logarithm ):以10为底的对数N lg ; ○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数N ln . 2. 对数式与指数式的互化 x N a =log ? N a x = 对数式 ? 指数式 对数底数 ← a → 幂底数 对数 ← x → 指数 真数 ← N → 幂 例1.(教材P 73例1) 巩固练习:(教材P 74练习1、2) 设计意图:熟练对数式与指数式的相互转化,加深理解对数概念.

函数的单调性重难点分析

《函数的单调性》内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学. 这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系. 重点:理解函数单调性的概念明确概念的内涵,用定义证明函数的单调性。 难点:求函数的单调区间,及其证明过程. 这一节课是概念课,重点在于理解函数单调性的概念并用概念解决问题。因而对于概念的深度剖析就非常重要,概念的本质属性以及引入这一概念的作用都将帮助学生理解概念。因而再给出概念前要做好铺垫工作,即根据函数图象观察走势再进行数学的严格刻画。由于该概念是根据函数图象性质而来,因此数形结合的思想方法就显得格外重要。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。学生在学习过程中应动手操作,积极参与到教学活动中,注意概念的本质属性理解概念的内涵,积极思考善于观察。

专题:一次函数重难点题型专题讲练

专题:一次函数重难点题型专题讲练 ※题型讲练 【例1】已知一次函数y=(2m+1)x+m–3,分别解答下列各题: (1)求m的取值范围; (2)若该函数是正比例函数,求m的值; (3)若该函数图象在y轴的截距为-2,求m的值; (4)若该函数图象平行直线y=3x–3,求m的值; (5)若该函数图像y随着x的增大而减小,求m的取值范围; (6)若该函数图像经过一、二、三象限,求m的范围; (7)若该函数图像不过第二象象限,求m的范围; (8)若该函数图像必过二、四象限,求m的范围; (9)若函数图像必过三、四象限,求m的范围; (10)若该函数图像过点(–1,–2),求函数解析式; (11)若该函数图像是由函数y=–5x+n–3的图像延y轴向上平移2个单位得来,求m和n的值; (12)若该函数图像与函数y=(n–5)x+2n–2关于x轴对称,求m和n的值; (13)若该函数图像与函数y=–x+3的图像同时交于函数y=3x+19上一点,求函数解析式; (14)该函数图像是否过定点?若过,请求出这个定点;若不过,请说明理由. 【例2】已知y+1与x+2成正比例,且当x=4时,y=-4. (1)求y关于x的函数关系式; (2)若点(a,2)和(2,b)均在(1)中函数图像上,求a、b的值. (3)当-2≤x≤6时,求y的取值范围.

【例3】已知某一直线过点(1,-4)和点(4,-2), (1)求该直线所在的一次函数关系式; (2)求该直线与两坐标轴所围成的三角形的面积; (3)若函数图像上有两点(a,m+3)、(b,-2m+6)且a>b, 求m的取值范围. 【例4】一次函数y=kx+b的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求该一次函数的解析式. 【例5】如图,函数y=ax+b和y=kx的交于点P,则根据图象可得: (1)方程ax+b-kx=0的解是; (2)方程组y=ax+b, y=kx的解 是__________; (3)不等式ax+b

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

2018人教版初中数学教材重难点分析

2018人教版初中数学教材 重难点分析 (名师总结教材重点,绝对精品,建议大家下载打印学习) 一、构建完整的知识框架——夯实基础 1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。但有很多初中学生不重视书本的概念,对某些概念一知半

解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。 2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,解决问题才能得心应手,成绩才会提高。 二、初中数学中考知识重难点分析 1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。 函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。 2、整式、分式、二次根式的化简运算 整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。

对数与对数函数重难点突破

专题 对数与对数函数(重难点突破) 重难点一 对数的概念 如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 重难点二 对数的性质、换底公式与运算性质 (1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则;如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log a m M n =n m log a M (m ,n ∈R ,且m ≠0). (3)换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1). 重难点三 对数函数及其性质 (1)概念:y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,定义域是(0,+∞). (2) 一、重难点题型突破 重难点1 对数与对数式的化简求值 如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (MN )=log a M +log a N ;(2)log a M N =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 例1.(1)(2017·全国高一课时练习)已知lg 9=a,10b =5,则用a ,b 表示log 3645

为 . 【解析】由已知得lg5b =,则36lg 45lg 5lg 9log 45lg 36lg 4lg 92lg 2b a a ++= ==++, 因为10 lg 2lg 1lg515b ==-=-,所以2lg 22(1)22b a a b a b a b a a b +++==+-+-+, 即36log 4522 a b a b += -+. (2)求下列函数的定义域: (1)f (x )=lg(x -2)+1 x -3 ;(2)f (x )=log (x +1)(16-4x ). 【解析】 (1)要使函数有意义,需满足? ???? x -2>0, x -3≠0,解得x >2且x ≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足???? ? 16-4x >0,x +1>0, x +1≠1,解得-1

指数指数函数重难点解析

指数 指数函数 【重点难点解析】 1.本单元的知识结构 2.指数概念由特殊乘法运算定义,是乘法运算的发展,是人类探索化简运算的过程中,创造并发展的数学知识;它由正整数指数开始,到负整数指数、零指数,再到分式指数(根式),最后到实数指数. 3.指数运算的特点是强概念性及性质使用而弱计算性,所以指数的运算性质及方根表示既是重点也是难点. 4.指数函数的概念及性质是重点,指数函数的值域易被忽视而成为难点. 【考点】 1.指数运算一般结合其他知识在应用中进行考查. 2.根式及方根运算与指数函数的图象和性质,几乎每年高考都要涉及. 【典型热点考题】 例1 完成下列计算: (1)33)3(-; (2)44)2(-; (3)1)25(--; (4)5p ; (5)32 )8 33(- -; (6)2 3 )900 1(-. 思路分析 运算时,一般将根式化为分指数,运用指数运算性质进行化简计算,但要注意的是分指数的运算实质是方根的化简,必须依照方根运算的要求进行,即注意根指数(分指数的分母)的奇偶性来决定结果,一般偶次方根化简时尤须注意. 解: (1)3 133 3 ] )3[() 3(-=-

3 3] 3[-= 3 133 ? -= =-3. (2)4 1444 ] )2[() 2(-=- 414] 2[= =2. (3)2 51)25(1-= -- ) 25)(25(25+-+= 25+=. (4)2 1 55)p (p = 2114 ) p p (?= 2 12 p p ?= p p 2=. (5)32 32)8 27()833(- --=- 3 2 1])278[(---= 32 )278(-= 2313}])3 2 ({[-= 2)32(-= 9 4=. (6)23 12 3 )900()900 1(---=

对数函数(第一课时).doc

对数函数(第一课时) 一、教材分析1、教材的地位与作用函数是高中数学的核心,对数函数是重要的基本初等函数之一,它是学生已学过指数函数及对数与常用对数基础上引入的,这为过渡到本节的学习起到辅垫作用;“对数函数”这节教材是在没有学习反函数的基础上研究指数函数和对数函数的自变量与因变量之间的关系。学习本节使学生的知识体系更加完整、系统,同时又是指数函数知识的拓展和延伸,它是解决有关自然科学领域中实际问题的重要工具。2、教学目标的确定及依据通过对教材的研究和结合学生的实际情况等方面的要求,本节的知识目标:理解对数函数的概念,掌握对数函数的图象和性质,在掌握性质的基础上学会初步应用。能力目标是:通过对数函数的学习,培养学生数形结合,分类讨论的数学思想;注重培养学生分析、类比、归纳的能力。情态及价值观目标:用联系的观点分析问题,认识事物之间的转化,在民主和谐的教学气氛中,培养合作意识,感受学习乐趣,动脑思考的良好个性品质。3、教学重点、难点重点:对数函数的概念,图象和性质难点:①指数函数与对数函数的内在关系②通过已知的指数函数图象和性质再类比对数函数的图象和性质。二、教法分析数学是一门培养和发展人的思维的重要学科,因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”。1、教法——发现法发现法的教学方法,体现了认知心理学的应用。在教学过程中,首先创设一个问题的情境,引导学生积极思考,容易激发其兴趣,唤起

其有意注意,兴趣可调动学习积极性。由学生熟悉的指数函数知识逐步过渡到对数函数知识的认识,其次,借助老师和学习伙伴的帮助,发挥其主动性来对知识的“发现”和接受(即在学习过程中帮助学生很好地掌握对数函数的概念,图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解)2、学法启发式与独立自主学习,合作交流学习相结合提出富有启发性的问题激发他们的独立自主探索,与合作交流。以学生作为教学主体,教师作为教学主导,在讨论中以教师的点拔如“类比法”使学生能够找到解决问题的方法,从而解决所提问题,通过加强合作交流,反馈练习法,激发他们手脑并用,引发和加强学生的有意注意。3、教学手段①利用学校局域网,采用计算机辅助教学,让形象、直观、清晰的对数函数与指数函数图象加深学生的理解。②利用投影仪提出问题三、教学过程教学矛盾的主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。创设情境提出问题类比联想动手操作观察分析合作交流巩固应用知识整合(一)教学流程图引入新课XX年10月18日,美国某城市的日报醒目标题刊登了“市政委员会今天宣布,本市垃圾的体积达到50000立方米”,副标题“垃圾的体积每三年增加一倍”(1)设想城市垃圾的体积继续每三年增加一倍,24年后本市的垃圾的体积是多少?(2)若按现在这个速度,该市要经过多少年垃圾的体积达到百万立方米、千万立方米,……(由环保问题引出)这个问题的解决方法,就是今天所要学习的内容——对数函数设计意图:通过“引例”使学生对本节内容产生兴趣。有了“引例”辅垫,学生将

人教版高中数学必修一《函数的应用》重难点解析(含答案)

人教版数学必修一第三章《函数的应用》重难点解析 第三章 课文目录 3.1 函数与方程 3.2 函数模型及其应用 重点: 1.通过用“二分法”求方程近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 2.认识指数函数、对数函数、幂函数等 函数模型的增长差异,体会直线上升、指数爆炸、对数增长的差异. 难点: 1.在利用“二分法”求方程近似解的过程中,对给定精确度的近似解的计算. 2.如何选择适当的函数模型分析和解决 实际问题. 一、方程的根和函数的零点 1.函数的零点 给出三个具体函数的图象——设置问题研究情景,通过对函数图像的观察,归纳出结论: 一元二次方程()002 ≠=++a c bx ax 的根,就是相应的二次函数 ()02≠++=a c bx ax y 的图象与x 轴的交点的横坐标。 我们把使()0=x f 的实数x 叫做函数()x f y =的零点。 注意函数的零点与方程的根间的联系和区别,二者不能混为一谈。 例1 函数322 --=x x y 的零点是( ) A .31=-=x x 或 B .()()030,1,或- C .31-==x x 或 D .()()030,1, 或- 函数的零点与方程的根——形数的结合的典范。利用学生熟悉的二次函数的图象和性

质,为理解函数的零点提供直观认识,为判定零点是否存在和求零点提供支持,使函数零点的求解与函数的变化建立联系。 为判断方程()0=x f 实数根的个数,只需观察函数()x f y =的图象与x 轴交点的个数——方程根的研究转化为函数零点的研究。 例2 判断方程062ln =-+x x 实根的个数。 2.函数零点存在的判定 引导学生观察图象连续的函数的变化情况,让学生通过连续的函数值的变化情况认识到: 当函数值由正变为负时必定经过一个零点; 当函数值由负变为正时必定经过一个零点。 由此概括得到函数零点存在的判定方法。 如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有 ()()0

一次函数重难点题型

{ 一次函数重难点题型专题讲练 ※题型讲练 【例 1】已知一次函数 y =(2m +1)x +m –3,分别解答下列各题: (1) 求 m 的取值范围; (2) 若该函数是正比例函数,求 m 的值; (3) 若该函数图象在 y 轴的截距为-2,求 m 的值; (4) 若该函数图象平行直线 y =3x –3,求 m 的值; (5) 若该函数图像 y 随着 x 的增大而减小,求 m 的取值范围; (6) 若该函数图像经过一、二、三象限,求 m 的范围; (7) 若该函数图像不过第二象象限,求 m 的范围; (8) 若该函数图像必过二、四象限,求 m 的范围; (9) 若函数图像必过三、四象限,求 m 的范围; (10) 若该函数图像过点(–1,–2),求函数解析式; (11) 若该函数图像是由函数 y =–5x +n –3 的图像延 y 轴向上平移 2 个单位得来,求 m 和 n 的值; 【例 3】已知某一直线过点(1,-4)和点(4,-2), (1) 求该直线所在的一次函数关系式; (2) 求该直线与两坐标轴所围成的三角形的面积; (3) 若函数图像上有两点(a ,m +3)、(b ,-2m +6)且 a >b ,求 m 的取值范围. 【例 4】一次函数 y =kx +b 的自变量的取值范围是-3≤x ≤6, 相应函数值的取值范围是-5≤y ≤-2,求该一次函数的解析式. 【例 5】如图,函数 y =ax +b 和 y =kx 的交于点 P ,则根据图象可得: (1) 方程 ax +b -kx =0 的解是 ; (2) 方程组的解是 ; (3) 不等式 ax +b

《对数函数及其性质》的重难点突破

对数函数及其性质的重难点突破 一、对数函数及其性质教学设计的说明 新课标指出:学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础对教学设计加以说明。 数学本质:探究对数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过分类讨论,通过研究两个具体的对数函数引导学生通过观察图象发现对数函数的图象规律,从而归纳对数函数的一般性质,经历一个由特殊到一般的探究过程。引导学生探究出对数函数的一般性质,从而对对数函数进行较为系统的研究。 二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章的内容,研究对数函数的定义,图像及性质。是在学生已经较系统地学习了函数的概念,将对数扩充到实数范围之后学习的一个重要的基本初等函数。它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的基础。因此,在教材中占有极其重要的地位,起着承上启下的作用。 此外,《对数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,因此学习这部分知识还有着广泛的现实意义。 三、教学目标分析:根据本节课的内容特点以及学生对抽象的对数函数及其图象缺乏感性认识的实际情况,确定在理解对数函数定义的基础上掌握对数函数的图象和由图象得出的性质为本节教学重点。本节课的难点是对数函数图像和性质的发现过程。为此,特制定以下的教学目标: 1)知识目标(直接性目标):理解对数函数的定义,掌握对数函数的图像、性质及其简单应用、能根据单调性解决基本的比较大小的问题. 2)能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力。 3)情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,用联系的观点看问题体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。引导学生发现数学中的对称美、简洁美。善于探索的思维品质。 教学问题诊断分析: 学生知识储备:通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构。

人教版高中数学必修一知识点和重难点

人教版高中数学必修一————各章节知识点与重难点第一 章集合与函数概念 1.1 集合 1.1.1 集合的含义与表示【知识要点】 1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。 2、集合的中元素的三个特性 (1)元素的确定性;(2)元素的互异性;(3)元素的无序性 2、“属于”的概念 我们通常用大写的拉丁字母A,B,C, ??表示集合,用小写拉丁字母a,b,c, ??表示元素如:如果a是集合 A 的元素,就说a属于集合 A 记作a∈A,如果a不属于集合 A 记作 a A 3、常用数集及其记法 非负整数集(即自然数集)记作:N;正整数集记作:N* 或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R 4、集合的表示法 (1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 (2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2 的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(Venn 图) 1.1.2 集合间的基本关系【知识要点】 1、“包含”关系——子集 一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合 A 为集合B的子集,记作 A B 2、“相等”关系 如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合 A 等于集合B,即:A=B A B且B A 3、真子集 如果 A B,且 A B那就说集合A是集合B的真子集,记作 A B(或 B A) 4、空集不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空 集合的真子集. 1.1.3 集合的基本运算【知识要点】 1、交集的定义 一般地,由所有属于 A 且属于B的元素所组成的集合,叫做A,B 的交集.记作A∩B(读作“A 交B”),即A∩B={x| x∈A,且x∈B}. 2、并集的定义 一般地,由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做A,B的并集。记作:A ∪B(读作“A 并B”),即A∪ B={x | x∈A,或x∈B}.

指数函数和对数函数的重点知识

指数函数和对数函数的重点知识 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为 1,但y x =1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210 ,,的图象的认识。 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐 标都大于1,在第二象限内的纵坐标都小于1,y x =?? ???12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101 ,则,则 (4)y y x x ==210,的图象自左到右逐渐上升,y x =?? ? ? ?12的图象逐渐下降。 (4)当a >1时,y a x =是增函数, 当01<

(完整word)高中数学必修一对数函数.doc

2.3 对数函数 重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换 底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用. 考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数 或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数 函数的单调性,掌握函数图像通过的特殊点;③知道对数函数是一类重要的函数 模型; ④了解指数函数与对数函数互为反函数. 经典例题:已知 f( logax ) =,其中a>0,且a≠1. (1)求 f( x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则() A . B .C.D. 2.设表示的小数部分,则的值是() A . B .C.0 D . 3.函数的值域是() A .B. [0,1] C. [0, D . {0} 4.设函数的取值范围为() A .(- 1,1)B.(- 1,+∞)C.D. 5.已知函数,其反函数为,则是() A .奇函数且在( 0,+∞)上单调递减B.偶函数且在( 0,+∞)上单调递增C.奇函数且在( - ∞, 0)上单调递减 D .偶函数且在( -∞, 0)上单调递增 6.计算=.

7.若 2.5x=1000,0.25y=1000, 求. 8.函数 f(x) 的定义域为 [0,1], 则函数的定义域为. 9.已知 y=loga(2 -ax)在[ 0, 1]上是 x 的减函数,则 a 的取值范围是. 10 .函数图象恒过定点,若存在反函数,则 的图象必过定点. 11.若集合 {x , xy, lgxy} ={0 , |x|, y} ,则 log8 ( x2+ y2)的值为多少. 12. (1) 求函数在区间上的最值. (2) 已知求函数的值域. 13.已知函数的图象关于原点对称.(1)求 m 的值; (2)判断 f(x) 在上的单调性,并根据定义证明. 14.已知函数 f(x)=x2 - 1(x ≥1) 的图象是 C1,函数 y=g(x) 的图象 C2 与 C1 关于直线 y=x 对称. (1) 求函数 y=g(x) 的解析式及定义域M ; (2) 对于函数y=h(x) ,如果存在一个正的常数a,使得定义域 A 内的任意两个不等的值x1 ,x2 都有 |h(x1) - h(x2)| ≤ a|x1-x2|成立,则称函数y=h(x) 为 A 的利普希茨Ⅰ类函数.试证明: y=g(x) 是 M 上的利普希茨Ⅰ类函数. 参考答案:

相关主题